毛迎新 黃丹娟 王紅娟 譚榮榮 陳勛 王友平
摘要:以菜子餅+茶葉配方肥(YSJF1)、脲甲醛緩釋肥(YSJF2)、茶葉配方肥(YSJF3)、畜禽糞商品有機(jī)肥+茶葉配方肥(YSJF4)、菜子餅+脲甲醛緩釋肥(YSJF5)、包膜控釋肥(YSJF6)、茶葉復(fù)混肥(YSJF7)、不施肥(YSJF8)和習(xí)慣施肥(YSJF9)處理后的茶園土壤為研究對(duì)象,利用Ion S5TMXL高通量測(cè)序技術(shù),以16S rRNA基因?yàn)榘袠?biāo),研究不同施肥模式對(duì)茶園土壤細(xì)菌數(shù)量、多樣性和群落結(jié)構(gòu)的影響,分析細(xì)菌數(shù)量、多樣性與土壤理化性質(zhì)的關(guān)聯(lián)性。在門分類水平上,27個(gè)樣品共鑒定獲得46個(gè)類群,其中變形菌門(Proteobacteria)、酸桿菌門(Acidobacteria)、放線菌門(Actinobacteria)、綠彎菌門(Chloroflexi)、厚壁菌門(Firmicutes)、奇古菌門(Thaumarchaeota)、擬桿菌門(Bacteroidetes)為優(yōu)勢(shì)類群,相對(duì)豐度占87.08%~96.76%。不同施肥處理間變形菌門、酸桿菌門、放線菌門、綠彎菌門的相對(duì)豐度差異顯著。不同施肥處理的ACE指數(shù)、Chao1指數(shù)、Shannon指數(shù)和Simpson指數(shù)分別為656.34~962.36、655.79~1 040.41、5.22~6.54和0.925 0~0.969 3。相關(guān)性分析和冗余分析結(jié)果表明,土壤pH、有機(jī)質(zhì)含量和堿解氮與細(xì)菌豐度、α多樣性指數(shù)和細(xì)菌群落結(jié)構(gòu)有一定的相關(guān)性,土壤pH是影響細(xì)菌群落重要的環(huán)境因子。
關(guān)鍵詞:茶園;施肥模式;細(xì)菌菌落多樣性;16S rRNA
中圖分類號(hào):S154.3? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):0439-8114(2019)22-0065-06
DOI:10.14088/j.cnki.issn0439-8114.2019.22.015? ? ? ? ? ?開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Effects of different fertilization managements on tea garden soil bacterial diversity
MAO Ying-xina,HUANG Dan-juana,WANG Hong-juana,TAN Rong-ronga,CHEN Xuna,WANG You-pingb
(a.Institute of Fruit and Tea;b.Institute of Plant Protection and Soil Fertilizers/Key Laboratory of Integrated Pest Management Crops in Central China,Ministry of Agriculture,Hubei Academy of Agricultural Sciences,Wuhan 430064,China)
Abstract: A field trial was conducted in tea plantation, nine different soil samples were collected, including rapeseed cake fertilizer and tea formula fertilizer(YSJF1), urea-formaldehyde slow released fertilizer(YSJF2), tea formula fertilizer(YSJF3), animal manure and tea formula fertilizer(YSJF4), rapeseed cake fertilizer and urea-formaldehyde slow released fertilizer(YSJF5), coated controlled release fertilizer(YSJF6), tea compound fertilizer(YSJF7),no fertilization(YSJF8), and the chemical fertilizer(YSJF9). Using Ion S5TMXL high-throughput sequencing technology, targeting the 16S rRNA gene, the effects of different fertilization patterns on the number, diversity and community structure of soil bacteria in tea plantation, and the correlation between the number, diversity and soil physical and chemical properties was analyzed. At the phylum level, forty-six phyla were obtained in all the treatments, among which Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Firmicutes, Thaumarchaeota and Bacteroidetes were the common dominant bacteria, accounting for 87.08%~96.76% of the total reads. There were significant differences in relative abundance of Proteobacteria, Acidobacteria, Actinobacteria and Chloroflexibetween among different treatments. The index of Ace, Chao1, Shannon and Simpson were 656.34~962.36, 655.79~1 040.41, 5.22~6.54 and 0.925 0~0.969 3, respectively. Correlation analysis and redundancy analysis showed that soil pH, organic matter content and alkali-hydrolyzed nitrogen were correlated with bacterial abundance, alpha diversity index and bacterial community structure, and soil pH was an important environmental factor affecting bacterial community.
利用Uparse軟件(Uparse v7.0.1001)[10]對(duì)所有樣品的全部有效數(shù)據(jù)進(jìn)行聚類,以97%的一致性(Identity)將序列聚類成為操作分類單元OTUs(Operational Taxonomic Units),篩選OTUs中出現(xiàn)頻數(shù)最高的序列作為OTUs的代表序列。
用Mothur方法與SILVA132(http://www.arb-silva.de/)[11]的SSUrRNA數(shù)據(jù)庫(kù)[12]進(jìn)行物種注釋分析(設(shè)定閾值為0.8~1.0),獲得分類學(xué)信息并分別在各個(gè)分類水平統(tǒng)計(jì)各樣本的群落組成。使用MUSCLE[13](Version 3.8.31,http://www.drive5.com/muscle/)軟件進(jìn)行快速多序列比對(duì),得到所有OTUs序列的系統(tǒng)發(fā)生關(guān)系。最后對(duì)各樣品的數(shù)據(jù)進(jìn)行均一化處理,以樣品中數(shù)據(jù)量最少的為標(biāo)準(zhǔn)進(jìn)行均一化處理,后續(xù)的Alpha多樣性分析和Beta多樣性分析都是基于均一化處理后的數(shù)據(jù)。
1.4? 數(shù)據(jù)處理
利用SPSS 22.0對(duì)土壤理化性質(zhì)、細(xì)菌16S rRNA相對(duì)豐度、多樣性指數(shù)等數(shù)據(jù)進(jìn)行多重比較、方差分析和相關(guān)性分析;環(huán)境因子對(duì)細(xì)菌群落結(jié)構(gòu)影響的冗余分析采用R3.3.2軟件完成。
2? 結(jié)果與分析
2.1? 土壤樣品測(cè)序結(jié)果
利用Ion S5TMXL平臺(tái)對(duì)細(xì)菌16S rRNA基因的V3-V4區(qū)測(cè)序,27個(gè)土壤細(xì)菌樣品通過(guò)對(duì)Reads剪切過(guò)濾,平均每樣品測(cè)得83 166條Reads,經(jīng)過(guò)質(zhì)控平均得到78 142條有效數(shù)據(jù),平均長(zhǎng)度為407.93 bp,質(zhì)控有效率達(dá)94.01%。以97%的一致性(Identity)將序列聚類成為OTU(Operational taxonomic units),共得到4 173個(gè)OTU。樣品OTU稀釋曲線趨向平坦,說(shuō)明測(cè)序數(shù)據(jù)量合理(圖1)。
2.2? 不同施肥模式對(duì)土壤細(xì)菌群落組成的影響
在97%相似性閾值下,9個(gè)處理(YSJF1至YSJF9)分別聚類為2 578、2 377、2 547、2 994、2 779、2 789、2 986、3 027和1 706個(gè)細(xì)菌OTU(表2)。不同處理間共有的OTU數(shù)目為789個(gè),代表性的物種分別屬于γ-變形菌綱(Gammaproteobacteria)、酸桿菌綱(Acidobacteriia)、α-變形菌綱(Alphaproteobacteria)、Nitrososphaeria、酸微菌綱(Acidimicrobiia)、纖線桿菌綱(Ktedonobacteria)、擬桿菌綱(Bacteroidia)等。不施肥處理不含有其獨(dú)有的細(xì)菌OTU。與不施肥處理相比,YSJF1、YSJF6施肥處理均增加了纖維桿菌綱(Fibrobacteria)、甲烷微菌綱(Methanomicrobia)等細(xì)菌物種;YSJF2施肥處理增加了Rhodothermia等物種;YSJF3施肥處理增加了其獨(dú)有未歸類的螺旋體綱的細(xì)菌(unidentified_Spirochaetes);YSJF4施肥處理增加了互營(yíng)養(yǎng)菌(Synergistia)等菌群;YSJF5施肥處理增加了未歸類的泉古菌門的細(xì)菌unidentified_Crenarchaeota等;YSJF7施肥處理增加了甲烷桿菌綱(Methanobacteria)、Chitinivibrionia、unidentified_Zixibacteria等獨(dú)有的細(xì)菌物種;YSJF9處理增加了互營(yíng)養(yǎng)菌、Rhodothermia等物種;同時(shí)施肥處理也存在細(xì)菌物種的減少,如習(xí)慣施肥處理減少了全噬菌綱(Holophagae)、未歸類的古細(xì)菌unidentified_Archaea等6個(gè)細(xì)菌物種。
2.3? 不同施肥模式對(duì)土壤細(xì)菌相對(duì)豐度的影響
在門分類水平上,共鑒定獲得46個(gè)類群,其中,變形菌門(Proteobacteria)、酸桿菌門(Acidobacteria)、放線菌門(Actinobacteria)、綠彎菌門(Chloroflexi)、厚壁菌門(Firmicutes)、奇古菌門(Thaumarchaeota)、擬桿菌門(Bacteroidetes)為優(yōu)勢(shì)類群,相對(duì)豐度分別為30.45%~61.59%、5.85%~27.42%、2.34%~23.40%、0.74%~14.48%、0.11%~14.41%和0.93%~13.62%,相對(duì)豐度共占87.08%~96.76%(圖2)。
不同施肥模式間變形菌門(P<0.05)、酸桿菌門(P<0.01)、放線菌門(P<0.01)、綠彎菌門(P<0.001)的相對(duì)豐度差異顯著。調(diào)查發(fā)現(xiàn),YSJF1處理組放線菌門高于其他處理組,綠彎菌門顯著高于其他處理組,擬桿菌門則低于其他處理組。YSJF9處理組變形菌門顯著高于其他處理組,但其放線菌門、綠彎菌門、奇古菌門和芽單胞菌門則低于其他處理組。
在綱分類水平上,共鑒定獲得59個(gè)綱,γ-變形菌綱、酸桿菌綱、α-變形菌綱、Nitrososphaeria、酸微菌綱、纖線桿菌綱、擬桿菌綱為主要優(yōu)勢(shì)類群,相對(duì)豐度分別為15.14%~52.96%、5.57%~24.75%、8.54%~23.20%、0.11%~14.16%、1.16%~13.59%和0.39%~12.32%,相對(duì)豐度共占63.68%~80.10%(圖3)。
不同施肥模式間嗜熱油菌綱(P<0.05)、酸桿菌綱(P<0.01)、γ-變形菌綱(P<0.001)、酸微菌綱(P<0.001)、纖線桿菌綱(P<0.001)的相對(duì)豐度差異顯著。YSJF1處理組酸微菌綱、梭菌綱(Clostridia)均高于其他處理組,纖線桿菌綱顯著高于其他處理組,擬桿菌綱則低于其他處理組。YSJF9處理組擬桿菌綱高于其他處理組,γ-變形菌綱顯著高于其他處理組,但其酸微菌綱、纖線桿菌綱和嗜熱油菌綱則低于其他處理組(圖3)。
[7] 顧松松,胡秋龍,劉仲華,等.不同類型茶園土壤細(xì)菌多樣性及群落結(jié)構(gòu)研究[J].茶葉通訊,2019,46(2):162-169.
[8] LANGILLE M G I,ZANEVELD J,CAPORASO J G,et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J].Nature biotechnology,2013,31(9):814-821.
[9] MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J].Embnet journal,2011,17(1):10-12.
[10] HAAS B J,GEVERS D,EARL A M,et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J].Genome research,2011,21(3):494-504.
[11] EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J].Nature methods,2013,10(10):996-998.
[12] WANG Q,GARRITY G M,TIEDJE J M,et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J].Applied and environmental microbiology,2007,73(16):5261-5267.
[13] QUAST C,PRUESSE E,YILMAZ P,et al. The SILVA ribosomal RNA gene database project:Improved data processing and web-based tools[J].Nucl Acids Res,2013(41):590-596.
[14] 陳聲明,張立欽.微生物學(xué)研究技術(shù)[M].北京:科學(xué)出版社,2006.209.
[15] JANSSEN P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes[J].Applied and environmental microbiology,2006,72(3):1719-1728.
[16] YOU J,DAS A,DOLAN E M,et al. Ammonia-oxidizing archaea involved in nitrogen removal[J].Water research,2009,43(7):1801-1809.
[17] GRIFFITHS R I,THOMSON B C,JAMES P,et al. The bacterial biogeography of British soils[J].Environmental microbiology,2011,13(6):1642-1654.
[18] ZHALNINA K,DIAS R,QUADROS P D DE,et al. Soil pH determines microbial diversity and composition in the park grass experiment[J].Mol Ecol,2015,69(2):395-406.
[19] 王伏偉,王曉波,李金才,等.施肥及秸稈還田對(duì)砂姜黑土細(xì)菌群落的影響[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2015,23(10):1302-1311.