摘要:不存在以散在單型Janko群J1作為本原自同構(gòu)群基柱的旗傳遞2-(v, k, λ)設(shè)計(jì).
關(guān)鍵詞:Janko群; 群作用; 2-設(shè)計(jì)
中圖分類(lèi)號(hào):O152.1, O157.2? ?文獻(xiàn)標(biāo)示碼:A
對(duì)于具有傳遞性質(zhì)的2-(v, k, λ)設(shè)計(jì)的研究由來(lái)已久,早在1985年,Kantor就已經(jīng)對(duì)2-傳遞自同構(gòu)群作用下的2-(v, k, λ)對(duì)稱(chēng)設(shè)計(jì)進(jìn)行了完全分類(lèi)[1].1988年,Zieschang給出了旗傳遞2-(v, k, λ)在(r, λ)=1時(shí)的自同構(gòu)群需要滿(mǎn)足的條件[2].2000年,Camina等人給出了線傳遞2-(v, k, λ)設(shè)計(jì)的自同構(gòu)群基柱不能為散在單群的結(jié)論[3].2015年,田德路和周勝林完全分類(lèi)了散在單群作為自同構(gòu)群基柱的旗傳遞、點(diǎn)本原2-(v, k, λ)對(duì)稱(chēng)設(shè)計(jì)[4].2017年,詹小秦和周勝林就散在單群基柱和λ≥(r, λ)2條件下的旗傳遞點(diǎn)本原非對(duì)稱(chēng)設(shè)計(jì)展開(kāi)了研究[5].本文繼續(xù)對(duì)2-設(shè)計(jì)的分類(lèi)問(wèn)題進(jìn)行研究,討論散在單型Janko群J1作為本原自同構(gòu)群基柱的非平凡的旗傳遞2-(v, k, λ)設(shè)計(jì)的存在性問(wèn)題,得到了如下定理:
基金項(xiàng)目支持:廣州市科技計(jì)劃項(xiàng)目(No:201804010088);廣東省特色創(chuàng)新類(lèi)項(xiàng)目(No:2018KTSCX160).
參考文獻(xiàn)
[1] W. Kantor, Classification of 2-transitive symmetric designs, Graphs Combin (1985), 165–166.
[2] P. H. Zieschang, Flag transitive automorphism groups of 2-designs with (r , λ)=1. J. Algebra 118, 265–275 (1988).
[3] A. R. Camina and F. Spiezia, Sporadic groups and automorphisms of linear spaces, J Combin Designs 8 (2000), 353–362.
[4] D. L. Tian, S. L. Zhou, Flag-transitive 2-(v, k, λ) symmetric designs with sporadic socle, J Combin Designs 23(4)(2015), 140-150.
[5] X. Q. Zhan, S. L. Zhou, A classification of flag-transitive 2-designs with λ≥(r , λ)2 and sporadic socle, Discrete Mathematics 340 (2017), 630-636.
[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of
Finite Groups, Oxford University Press, London, 1985.
[7] W. Bosma,? J. Cannon and? C. Playoust,? The MAGMA algebra system I: The user language, J. Symb. Comput 24(1997), 235-265.