高 鵬,牛一帆,任 欣,楊 東,彭紅波*
滇池泥炭土對(duì)兩種抗生素和雙酚A的吸附
高 鵬1,牛一帆2,任 欣2,楊 東2,彭紅波2*
(1.昆明理工大學(xué)環(huán)境科學(xué)與工程學(xué)院,云南 昆明 650500;2.昆明理工大學(xué)農(nóng)業(yè)與食品學(xué)院,云南 昆明 650500)
用不同濃度NaOH溶液處理采集自云南滇池的泥炭土,研究處理前后的泥炭土對(duì)兩種抗生素磺胺甲惡唑(SMX)、卡馬西平(CBZ)及雙酚A(BPA)的吸附機(jī)理,并深入探討3種污染物及泥炭土性質(zhì)對(duì)吸附特性的影響. 吸附等溫線擬合結(jié)果表明,Freundlich模型對(duì)3種物質(zhì)在泥炭土上的吸附等溫線有較好的擬合優(yōu)度.3種物質(zhì)中,BPA的非線性指數(shù)值最低,這可能是由于其不對(duì)稱的結(jié)構(gòu)特征導(dǎo)致.隨著處理泥炭土的NaOH濃度增加,3種吸附質(zhì)在泥炭土上的吸附順序?yàn)锽PA > CBZ > SMX, BPA的吸附最高可能是由于其含有兩個(gè)酚羥基,與泥炭土有較強(qiáng)的極性作用導(dǎo)致,而CBZ的吸附比SMX的吸附高是由憎水性作用引起.NaOH處理后并沒(méi)有增加泥炭土對(duì)這3種吸附質(zhì)的吸附,說(shuō)明對(duì)于離子型化合物,吸附過(guò)程和機(jī)理復(fù)雜,BPA蝴蝶狀結(jié)構(gòu)及苯環(huán)上含有兩個(gè)羥基可能導(dǎo)致其在泥炭土上出現(xiàn)特異性吸附,這導(dǎo)致其吸附系數(shù)最高; NaOH處理后泥炭土的有機(jī)碳含量增加但比表面積可能降低,從而使3種污染物的吸附降低.因此,本研究3種離子型化合物在泥炭土上的吸附受到吸附質(zhì)的官能團(tuán)及溶解度、泥炭土的有機(jī)碳含量及官能團(tuán)等多種因素的影響.
有機(jī)污染物;吸附;泥炭土;吸附機(jī)理
抗生素是一種來(lái)源于細(xì)菌、真菌和其他微生物的抑菌或殺菌藥物,被廣泛應(yīng)用于農(nóng)業(yè)、畜牧業(yè)和人類醫(yī)學(xué)中[1],在預(yù)防和治療人類和動(dòng)植物疾病中發(fā)揮著重要的作用[2].由于抗生素本身具有特殊的理化性質(zhì),進(jìn)入環(huán)境中后不易被降解,可以長(zhǎng)期滯留在環(huán)境中[3].長(zhǎng)期暴露在低濃度抗生素環(huán)境條件下的陸地和水生生物會(huì)中毒[4],以直接飲用水或間接食物鏈富集方式積累的抗生素會(huì)對(duì)人體產(chǎn)生潛在的危害[5].Pan等[6]研究表明即使暴露于mg/L的磺胺甲惡唑(SMX)濃度水平下,也會(huì)對(duì)一些生物產(chǎn)生急性或慢性毒性效應(yīng)或者導(dǎo)致基因突變.此外,當(dāng)SMX和其他抗生素混合時(shí),毒性會(huì)大大增強(qiáng),從而使其在臨床醫(yī)療中失效.目前,有研究表明抗生素的濫用導(dǎo)致多種細(xì)菌的抗藥性增強(qiáng),出現(xiàn)大量的抗藥細(xì)菌病毒,對(duì)人類健康構(gòu)成了極大的威脅.因此,抗生素環(huán)境行為和風(fēng)險(xiǎn)評(píng)估的研究已經(jīng)引起了廣泛關(guān)注.
SMX作為磺胺類抗生素的代表,主要用于治療泌尿系統(tǒng)感染、鼻竇炎、弓形體病等疾病[7],并能有效對(duì)抗多種細(xì)菌,如大腸桿菌等[8].研究表明磺胺類抗生素不易被動(dòng)物組織吸收,進(jìn)入動(dòng)物體內(nèi)的抗生素約有50%會(huì)以母體化合物的形式排出體外,約有30%的抗生素作為乙酰結(jié)合物排出[9],即不能被動(dòng)物吸收的60%~80%的磺胺類抗生素最終會(huì)釋放到環(huán)境中[10].目前,傳統(tǒng)城市污水處理系統(tǒng)對(duì)SMX的去除效率只有33%~82%,因此,在地表水、地下水、沉積物等介質(zhì)中均檢測(cè)到SMX[11].
卡馬西平(CBZ)是一種神經(jīng)科用藥,被廣泛用于治療癲癇、三叉神經(jīng)痛、躁狂抑郁癥等疾病.由于其相對(duì)穩(wěn)定的化學(xué)性質(zhì),被釋放到環(huán)境中后很難被降解[12],再加上其在世界范圍內(nèi)的廣泛使用,目前已經(jīng)在飲用水等環(huán)境介質(zhì)中被檢出,地表水、醫(yī)院和廢水處理廠中的CBZ濃度在1~3600ng/L[13],而藥物工業(yè)廢水的濃度為10~443mg/L[14].內(nèi)分泌干擾物(EDCs)作為一種新型的有機(jī)污染物,可以通過(guò)破壞機(jī)體原有的內(nèi)分泌平衡來(lái)影響生物體的正常生長(zhǎng)、行為和繁殖[15].雙酚A(BPA)作為EDCs的代表性物質(zhì),是生產(chǎn)聚碳酸酯塑料和環(huán)氧樹(shù)脂的中間體,主要用于生產(chǎn)殺菌劑、染料、環(huán)氧樹(shù)脂等.隨著塑料制品的廣泛應(yīng)用,BPA造成了嚴(yán)重而廣泛的環(huán)境污染[16]. BPA具有很強(qiáng)的生物毒性,在低濃度的BPA下也會(huì)對(duì)生物體造成傷害[17].因此,研究BPA等內(nèi)分泌干擾物的環(huán)境行為和風(fēng)險(xiǎn)迫在眉睫.
吸附是控制有機(jī)污染物在固體顆粒上的環(huán)境行為和風(fēng)險(xiǎn)的重要過(guò)程.土壤是有機(jī)污染物存在最多的環(huán)境介質(zhì),有機(jī)污染物在土壤中的吸附過(guò)程影響其遷移、轉(zhuǎn)化和降解等環(huán)境行為.滇池是中國(guó)西南地區(qū)最大的淡水湖,水質(zhì)被評(píng)為劣 V 類,鳳眼蓮曾經(jīng)在滇池過(guò)量繁殖生長(zhǎng),這些植物腐爛后成為滇池底泥的一部分.此外,還有大量工廠廢水和周圍居民生活用水排入使滇池底泥含有大量的有機(jī)質(zhì).有較高有機(jī)質(zhì)含量的底泥稱為泥炭土,其結(jié)構(gòu)特殊且具有豐富的官能團(tuán). 研究表明泥炭土對(duì)有機(jī)污染物、重金屬都有很強(qiáng)的吸附優(yōu)勢(shì)[18],和對(duì)照土壤相比,泥炭土對(duì)銅和鋅的吸附量分別增加了50倍和67倍[19].與表層土以及其他的土壤相比,滇池泥炭土含碳量越高,對(duì)有機(jī)污染物的吸附越強(qiáng)[20].滇池泥炭土除含碳量高外,其他的性質(zhì)如豐富的官能團(tuán)含量、芳香性等如何影響污染物的吸附并不清楚,該泥炭土吸附有機(jī)污染物的信息有限,研究滇池泥炭土的吸附特征對(duì)于理解有機(jī)污染物的環(huán)境行為以及滇池污染水體治理有重要的意義.因此,本研究選擇磺胺甲惡唑(SMX)、卡馬西平(CBZ)和雙酚A(BPA)等污染物,用滇池泥炭土(>20%C)以及不同濃度NaOH溶液處理的泥炭土研究污染物的吸附特征.本論文旨在揭示堿處理前后的泥炭土的性質(zhì)對(duì)有機(jī)污染物吸附的影響,探討不同污染物在泥炭土上的吸附機(jī)理,該研究能為人工合成有機(jī)污染物在土壤中的環(huán)境行為提供基礎(chǔ)數(shù)據(jù),并為其風(fēng)險(xiǎn)評(píng)估提供重要信息.
實(shí)驗(yàn)用的泥炭土采自云南滇池,土壤樣品經(jīng)手動(dòng)剔除雜物,自然風(fēng)干后磨細(xì),過(guò)60目篩后裝于棕色瓶中儲(chǔ)存待用.用不同濃度的NaOH溶液(0.01,0.05, 0.1mol/L)浸泡100g的泥炭土,浸泡12h后離心30min.然后將每個(gè)樣品用超純水洗,直至pH值為6.0~7.0,冷凍干燥后備用.處理的土樣分別標(biāo)記為泥0.01、泥0.05、泥0.10.
本實(shí)驗(yàn)選用的吸附質(zhì)SMX、CBZ和BPA的物理化學(xué)性質(zhì)均列于表1中.用元素分析儀(MicroCube Elementar, Germany)檢測(cè)泥炭土以及不同濃度NaOH溶液處理的泥炭土樣品的C、H、N、S 等4種元素含量,并計(jì)算C/H的原子比,結(jié)果列于表2中.
用200mg/L的NaN3(抑制實(shí)驗(yàn)過(guò)程中微生物的生長(zhǎng)和減少微生物對(duì)有機(jī)物的降解)和1168mg/L 的NaCl(控制吸附平衡過(guò)程中的離子強(qiáng)度)背景液配制濃度分別為64mg/L的SMX、CBZ和BPA溶液.根據(jù)預(yù)備實(shí)驗(yàn)結(jié)果,確定SMX的固液比為100:1; CBZ的固液比為50:1;BPA的固液比為5:1,這些固液比可保證3種物質(zhì)達(dá)到吸附平衡時(shí)的吸附率為20%~80%.根據(jù)固液比稱取一定量的土壤樣品于4mL的樣品瓶中,分別加入不同濃度的SMX、CBZ和BPA溶液,用背景液稀釋0~64mg/L范圍內(nèi)的8個(gè)濃度點(diǎn)(濃度分別為0,1,2,4,8、16,32,64mg/L),每個(gè)濃度點(diǎn)有兩個(gè)平行樣做對(duì)照.樣品瓶用聚四氟乙烯墊片的蓋子蓋上后,避光放置在25±0.5°C、60r/min的震蕩器中震蕩7d,吸附平衡后,在離心機(jī)中用2000r/min的轉(zhuǎn)速離心15min,靜置后取1mL上清液于液相瓶中,用高效液相色譜儀(HPLC,1200series)分別檢測(cè)上清液中3種吸附質(zhì)的紫外吸收峰.檢測(cè)條件為:SMX流動(dòng)相配比為40%乙腈:60%超純水:0.08%醋酸;BPA流動(dòng)相配比為60%超純水:40%乙腈;CBZ的流動(dòng)相配比為65%甲醇:35%超純水.SMX、CBZ和BPA檢測(cè)波長(zhǎng)分別為 265nm、265nm和280nm,柱溫為25℃,流速為 1mL/min,進(jìn)樣量為10 μL.檢測(cè)后計(jì)算出相應(yīng)的液相和固相平衡濃度,從而得到吸附等溫線.
表1 有機(jī)污染物的物理化學(xué)性質(zhì)
注:a:pa為酸離解常數(shù);b:logow為正辛醇-水分配系數(shù).
表2 泥炭土的元素組成和C/H原子比
本實(shí)驗(yàn)用Sigmaplot 10.0數(shù)據(jù)統(tǒng)計(jì)軟件對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行擬合,用Freundlich模型和Langmuir模型擬合吸附等溫線,兩個(gè)模型的方程為:
Freundlich模型(FM): lge= lgF+lge(1)
Langmuir模型 (LM):e=e/(+e) (2)
式中:e為固相平衡濃度;e為液相平衡濃度;F為 Freundlich親和系數(shù),為非線性指數(shù)(無(wú)量綱);和為L(zhǎng)angmuir模型的擬合參數(shù).
由表2可見(jiàn),NaOH處理的泥炭土的C、H、N、S 4種元素含量及C/H的值隨著NaOH濃度的增加而增加.用0.1mol/L NaOH處理的泥炭土的4種元素含量最大,一般常用C/H比值表征吸附劑的芳香性大小,其值越大則芳香性越強(qiáng)[21].NaOH處理后的泥炭土的C/H值最高為0.73%,相對(duì)于原泥炭土增加了約20%,說(shuō)明處理后的泥炭土芳香化程度提高且0.1mol/L NaOH是提高泥炭土芳香性的最適堿濃度.此外,隨著NaOH濃度的增加,泥炭土的C含量從20.6%增加到32.2%,這可能是因?yàn)閴A處理相當(dāng)于一個(gè)熱解的過(guò)程,土壤中的一部分結(jié)構(gòu)被碳化,碳鏈結(jié)構(gòu)發(fā)生脫水反應(yīng),飽和脂肪鏈結(jié)構(gòu)通過(guò)熱解后被轉(zhuǎn)化為不飽和脂肪烴和芳香環(huán)結(jié)構(gòu),從而使泥炭土的芳香化程度增強(qiáng)[22].因此,泥炭土的性質(zhì)與堿濃度直接相關(guān).
本研究采用Freundlich模型(圖1)和Langmuir模型(圖2)對(duì)SMX、CBZ和BPA三種物質(zhì)在泥炭土及NaOH溶液處理的泥炭土上的吸附等溫線進(jìn)行擬合,模型擬合參數(shù)列于表3和表4中.Freundlich模型可調(diào)可決系數(shù)adj2的值為0.982~0.998,logF、兩個(gè)擬合參數(shù)誤差較小,穩(wěn)定性好,說(shuō)明Freundlich模型擬合吸附等溫線具有較好的擬合優(yōu)度.而Langmuir模型的adj2的值為0.984~0.998,但擬合參數(shù)和誤差較大,且從圖2可以看到用該模型不好比較3種物質(zhì)在不同吸附劑上的吸附規(guī)律.因此,本研究后續(xù)的d值計(jì)算以及其他的討論均用Freundlich模型.
圖1 SMX(A)、CBZ(B)和BPA(C)在泥炭土及NaOH處理后的泥炭土上的吸附等溫線,這些等溫用Freundlich模型擬合
圖2 SMX(A)、CBZ(B)和BPA(C)在泥炭土及NaOH處理后的泥炭土上的吸附等溫線,這些等溫線用Langmuir模型擬合
表3 SMX、CBZ和BPA在泥炭土上的Freundlich模型擬合參數(shù)表
表4 SMX、CBZ和BPA在泥炭土上的Langmuir模型擬合參數(shù)表
隨著NaOH濃度的增加,SMX的吸附依次降低(圖1A),尤其是NaOH濃度從0.05mol/L增加到0.10mol/L的過(guò)程中,SMX的吸附量顯著減少.值反映的是吸附等溫線的非線性程度,值越遠(yuǎn)離1.0,表示吸附的非線性特征越強(qiáng)[23].SMX的值隨著NaOH濃度的增加而增大,越接近于1.0,表明其非線性程度隨著堿濃度的增加而減弱.而值越小,SMX在泥炭土上的吸附越強(qiáng).對(duì)于CBZ和BPA, 泥炭土的吸附比NaOH處理的3種泥炭土的吸附高,而它們?cè)贜aOH處理的3種土上的吸附隨著NaOH濃度的增加無(wú)明顯差別(圖1B、1C),說(shuō)明NaOH處理對(duì)CBZ和BPA在泥炭土上的吸附無(wú)影響.和SMX、CBZ相比,堿處理后BPA的值最小(表3),說(shuō)明其非線性程度最強(qiáng),這可能是由于BPA在空間結(jié)構(gòu)上的不對(duì)稱性導(dǎo)致(表1).
研究表明有機(jī)污染物在土壤中的吸附機(jī)理包括π-π電子供受體作用(EDA)、氫鍵、陽(yáng)離子交換、靜電作用等.有機(jī)物的吸附會(huì)受到其官能團(tuán)數(shù)量和位置的影響,一般官能團(tuán)的數(shù)量越多,吸附能力越強(qiáng)[24].比如,Yang等[25]研究指出苯酚或苯胺的吸附親和力隨著取代基在給定位置數(shù)量的增加而增強(qiáng),不同官能團(tuán)形成氫鍵的能力也不同,一般是-NO3> Cl-> -CH3.SMX、CBZ、BPA 3種物質(zhì)結(jié)構(gòu)中均含有多種官能團(tuán),如-OH、-NO2、-SO2等,這些官能團(tuán)可以和泥炭土中的含氧官能團(tuán)形成氫鍵.與BPA(兩個(gè)-OH)相比,SMX和CBZ的分子結(jié)構(gòu)更為復(fù)雜,且含有的官能團(tuán)種類和數(shù)量較多,如—NO2、—SO2、—C=O等.因此,SMX和CBZ更易與泥炭土形成氫鍵,并且由于兩種物質(zhì)電負(fù)性較大,致使它們形成的氫鍵較牢靠.比較SMX、CBZ和BPA的吸附發(fā)現(xiàn),BPA在泥炭土上的吸附明顯大于SMX和CBZ(圖3),這表明除氫鍵以外,還有其他作用控制這3種物質(zhì)在泥炭土上的吸附.
SMX和CBZ是兩性化合物,在溶液中能夠以陽(yáng)離子、陰離子和兩性分子3種形態(tài)存在.當(dāng)溶液pH值小于pa1時(shí),化合物主要是陽(yáng)離子形態(tài);當(dāng)溶液pH值在pa1和pa2之間時(shí),化合物中性分子形態(tài)的比例會(huì)增加;當(dāng)溶液pH > pa2時(shí),化合物的中性分子形態(tài)會(huì)逐漸減少,主要是陰離子形態(tài)[26].SMX、CBZ和BPA的pa值分別是1.70/5.70、1.00/13.9、10.1,實(shí)驗(yàn)中SMX、CBZ和BPA在堿處理前后泥炭土上吸附平衡時(shí)的pH值分別為5.4±0.2、6.0±0.2和5.9±0.2,在這些pH值條件下SMX和CBZ主要是兩性分子形態(tài),而B(niǎo)PA主要是分子形態(tài).3種物質(zhì)在泥炭土以及不同濃度NaOH處理的泥炭土上的吸附順序?yàn)?BPA > CBZ > SMX(圖3),BPA表面含有兩個(gè)酚羥基,所以有很高的極性,在水中的溶解度是這三種物質(zhì)中最高的.因此,BPA可以和泥炭土中極性官能團(tuán)發(fā)生很強(qiáng)的作用,這可能是引起B(yǎng)PA吸附比其他兩種物質(zhì)高的原因.這個(gè)結(jié)果也證明了污染物的性質(zhì)對(duì)其在泥炭土中的吸附有重要的影響.其他研究也表明BPA由于含有兩個(gè)酚羥基使其與土壤有較強(qiáng)的極性作用,從而影響其在土壤中的吸附[27].對(duì)于兩性分子形態(tài)的CBZ和SMX,CBZ的溶解度為112mg/L,而SMX的溶解度為365mg/L,CBZ與泥炭土之間的憎水性作用比SMX的強(qiáng),從而導(dǎo)致CBZ的吸附高.另外,Tolls等研究也表明陽(yáng)離子交換和憎水性作用是獸用藥品在土壤中吸附的重要吸附機(jī)理[28].
分別對(duì)SMX、CBZ和BPA在e= 0.1s(圖4A)和e= 0.01s(圖4B)時(shí)計(jì)算的d值進(jìn)行比較,在泥炭土以及不同濃度NaOH處理后的泥炭土上,3種物質(zhì)的d值順序?yàn)榫鵅PA > CBZ > SMX,而且CBZ和BPA的d值相差不大,SMX與它們兩者的d值相差很大,這個(gè)結(jié)果和吸附等溫線的結(jié)果一致.BPA空間結(jié)構(gòu)為立體的蝴蝶狀,其苯環(huán)上加入了兩個(gè)甲基和兩個(gè)羥基(表1),這一特殊結(jié)構(gòu)可能導(dǎo)致BPA在泥炭土上出現(xiàn)某種特異性吸附,這使得其d值最高.比如BPA作為電子供體,可能以π-π電子供受體作用吸附在泥炭土上,這個(gè)結(jié)果進(jìn)一步說(shuō)明3種物質(zhì)的結(jié)構(gòu)性質(zhì)對(duì)其吸附起到重要的作用.
圖4 SMX、CBZ、BPA的單點(diǎn)吸附系數(shù)(lgKd)值比較,單點(diǎn)吸附系數(shù)在0.01Cs (Kd1, A) 和 0.1Cs (Kd2, B)下計(jì)算得到
研究表明用不同濃度的NaOH處理土壤時(shí), NaOH的濃度越高,土壤經(jīng)過(guò)處理后的比表面積和孔隙體積會(huì)變大,使得土壤整個(gè)結(jié)構(gòu)會(huì)更加緊湊,芳香化程度更高[29].該研究中用不同濃度NaOH溶液處理泥炭土的C/H的值隨著堿濃度的增加而增加,說(shuō)明其芳香化程度增大(表1),從而導(dǎo)致泥炭土表面的憎水性增強(qiáng).對(duì)于SMX、CBZ和BPA,吸附結(jié)果都是堿處理前的泥炭土吸附比處理后的吸附高,說(shuō)明憎水性作用不是3種物質(zhì)在泥炭土上吸附的控制機(jī)理.對(duì)于這3種離子型污染物,堿處理泥炭土并沒(méi)有增加其吸附. SMX、CBZ和BPA的溶解度分別為365,112,380mg/L,BPA的溶解度不是最小的但其吸附最高,這也說(shuō)明憎水性作用不是這3種物質(zhì)的主導(dǎo)機(jī)理.我們前面的研究也表明,離子型污染物在固體顆粒上的吸附機(jī)理復(fù)雜,憎水性特征、形態(tài)變化以及溶解度特征等是控制離子型污染物吸附的關(guān)鍵因素.因此,其吸附過(guò)程不能像憎水性污染物一樣用溶解度簡(jiǎn)單描述[30].
土壤有機(jī)質(zhì)中含有豐富的官能團(tuán),而且大多數(shù)的官能團(tuán)都呈現(xiàn)一定的極性,特別是腐殖酸中的羧基、酚羥基、羰基、甲氧基和氨基等[31].土壤中腐殖酸的官能團(tuán)-COOH、-OH、-CH2-OH等通過(guò)解離會(huì)使土壤表面帶有大量的負(fù)電荷[32].前面的分析表明BPA在實(shí)驗(yàn)pH值下為分子形態(tài)(不帶電),而SMX和CBZ呈兩性分子形態(tài)(正電荷/負(fù)電荷).和BPA相比,SMX、CBZ在NaOH處理后的泥炭土中的吸附低,這表明負(fù)電荷的SMX、CBZ與負(fù)電荷的泥炭土之間的靜電排斥作用導(dǎo)致這樣的吸附結(jié)果.毛真等[33]研究發(fā)現(xiàn)一般土壤的有機(jī)碳含量越高,土壤比表面積越低,推斷可能是因?yàn)橥寥乐械挠袡C(jī)質(zhì)使分散的粉粒聚合為較大的顆粒所致.并且其實(shí)驗(yàn)所用的泥炭土中由于殘留了較多的由動(dòng)植物殘?bào)w形成的腐殖質(zhì),故表征結(jié)果顯示其有機(jī)碳含量明顯高于其他土壤,而泥炭土對(duì)SMX的吸附也最低.本研究通過(guò)NaOH處理后泥炭土有機(jī)碳含量增加,但其比表面積可能降低,因此對(duì)3種有機(jī)物的吸附降低,這表明泥炭土有機(jī)碳含量是影響有機(jī)污染物吸附過(guò)程的重要因素.此外,和原始泥炭土相比,堿處理后的泥炭土C含量增加,而B(niǎo)PA的吸附等溫線非線性程度增強(qiáng).其他研究表明土壤的有機(jī)質(zhì)含量降低會(huì)增加BPA吸附等溫線的非線性程度[34],因此,不同性質(zhì)土壤有機(jī)碳含量對(duì)污染物吸附的影響存在差異.
3.1 本研究中的泥炭土及不同濃度NaOH處理的泥炭土對(duì)SMX、CBZ和BPA的吸附等溫線用Freundlich模型擬合有較好的擬合優(yōu)度,BPA吸附等溫線的非線性程度最強(qiáng),這可能是由于其在空間結(jié)構(gòu)上的不對(duì)稱性導(dǎo)致.用不同濃度NaOH溶液處理泥炭土,C/H值隨著堿濃度的增加而增大,說(shuō)明堿處理使泥炭土芳香化程度增強(qiáng).對(duì)于SMX、CBZ和BPA,吸附都是堿處理前的泥炭土吸附比處理后的吸附高,說(shuō)明憎水性作用不是3種物質(zhì)吸附的主導(dǎo)機(jī)理.
3.2 SMX、CBZ和BPA的結(jié)構(gòu)和官能團(tuán)對(duì)其在泥炭土上的吸附起到重要作用. BPA蝴蝶狀結(jié)構(gòu)及苯環(huán)上含有兩個(gè)羥基可能導(dǎo)致其在泥炭土上出現(xiàn)特異性吸附,這使得其吸附系數(shù)最高;在實(shí)驗(yàn)pH值條件下,BPA主要是分子形態(tài),而CBZ和SMX主要是兩性分子形態(tài).這3種物質(zhì)在泥炭土及NaOH處理的泥炭土上的吸附順序?yàn)锽PA > CBZ > SMX,BPA含有兩個(gè)酚羥基使其極性很強(qiáng),因此,和泥炭土的強(qiáng)極性作用導(dǎo)致其吸附最高,而CBZ的吸附比SMX的高是由于CBZ與泥炭土的強(qiáng)憎水性作用導(dǎo)致.
3.3 泥炭土含有的-COOH、-OH等官能團(tuán)解離后使其表面帶負(fù)電,在實(shí)驗(yàn)條件下,帶負(fù)電的SMX、CBZ與泥炭土之間的靜電排斥作用導(dǎo)致兩者在NaOH處理后的泥炭土上的吸附低.NaOH處理后泥炭土的有機(jī)碳含量增加但比表面積可能降低,從而使這3種污染物的吸附降低.因此,泥炭土官能團(tuán)、有機(jī)碳含量等是影響SMX、CBZ和BPA在其上吸附的重要因素.
[1] Cheng W, Li J, Wu Y, et al. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: a case study [J]. Journal of hazardous materials, 2016,304:18-25.
[2] Wang N, Guo X, Xu J, et al. Sorption and transport of five sulfonamide antibiotics in agricultural soil and soil–manure systems [J]. Journal of Environmental Science and Health, Part B, 2015,50(1):23-33.
[3] Chen K L, Liu L C, Chen W R. Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils [J]. Environmental Pollution, 2017,231:1163-1171.
[4] Wang N, Guo X Y, Shan Z J, et al. Prioritization of veterinary medicines in China's environment [J]. Human and Ecological Risk Assessment: An International Journal, 2014,20(5):1313-1328.
[5] Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils-a review [J]. Journal of plant nutrition and soil science, 2003,166(2): 145-167.
[6] Zhang D, Pan B, Zhang H, et al. Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes [J]. Environmental Science & Technology, 2010, 44(10):3806-3811.
[7] Demoling L A, B??th E, Greve G, et al. Effects of sulfamethoxazole on soil microbial communities after adding substrate [J]. Soil Biology & Biochemistry, 2009,41(4):840-848.
[8] Wang J, Gao M, Ding F, et al. Organo-vermiculites modified by heating and gemini pyridinium surfactants: Preparation, characterization and sulfamethoxazole adsorption [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018,546:143-152.
[9] Marc L F, Premasis S, Sebastian Z, et al. Metabolism of 14C-labelled and non-labelled sulfadiazine after administration to pigs [J]. Analytical & Bioanalytical Chemistry, 2007,388(8):1733-1745.
[10] Liu Y, Liu X, Zhang G, et al. Adsorptive removal of sulfamethazine and sulfamethoxazole from aqueous solution by hexadecyl trimethyl ammonium bromide modified activated carbon [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019,564:131-141.
[11] Deng W, Li N, Zheng H, et al. Occurrence and risk assessment of antibiotics in river water in Hong Kong [J]. Ecotoxicology and Environmental Safety, 2016,125:121-127.
[12] Tobergte D R, Curtis S. Scrutinizing pharmaceuticals and personal care products in wastewater treatment [J]. Journal of Chemical Information and Modeling, 2013,53:0-9.
[13] Fiedler S, Dame T, Graw M. Do cemeteries emit drugs? A case study from southern Germany [J]. Environmental Science and Pollution Research, 2018,25(6):5393-5400.
[14] Dwivedi K, Morone A, Chakrabarti T, et al. Evaluation and optimization of Fenton pretreatment integrated with granulated activated carbon (GAC) filtration for carbamazepine removal from complex wastewater of pharmaceutical industry [J]. Journal of environmental chemical engineering, 2018,6(3):3681-3689.
[15] Rodríguez R V, López A L. Endocrine Disrupting compounds in surface water and their degradation by advanced oxidation process with ozone [M]. Water Resources in Mexico. Springer, Berlin, Heidelberg, 2012:279-297.
[16] Pahigian J M, Zuo Y. Occurrence, endocrine-related bioeffects and fate of bisphenol A chemical degradation intermediates and impurities: A review [J]. Chemosphere, 2018,207:469-480.
[17] Qiu W, Chen J, Li Y, et al. Oxidative stress and immune disturbance after long-term exposure to bisphenol A in juvenile common carp (Cyprinus carpio) [J]. Ecotoxicology and environmental safety, 2016, 130:93-102.
[18] 裴志國(guó).Cu和Pb對(duì)兩種苯酚化合物與甲磺隆在土壤和泥炭中吸附行為的影響及其機(jī)理研究 [D]. 北京:中國(guó)科學(xué)院生態(tài)環(huán)境研究中心, 2006. Pei Z G. Effects of Cu and Pb on adsorption behaviors and their mechanisms of two phenol compounds and methyl sulfon in soils and peat [D]. Beijing: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2006.
[19] Abata M, McLaughlin M J, Kirby J K, et al. Adsorption and desorption of copper and zinc in tropical peat soils of Sarawak, Malaysia [J]. Geoderma, 2012,175-176:58-63.
[20] 吳 敏,寧 平,劉書言.土壤有機(jī)質(zhì)對(duì)諾氟沙星的吸附特征 [J]. 環(huán)境化學(xué), 2013,32(1):112-117.Wu M, Ning P, Liu S Y. Adsorption characteristics of norfloxacin in soil organic matter fractions [J]. Environmental Chemistry, 2013,32(1):112-117.
[21] Chen B L, Zhou D D, Zhu L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures [J]. Environmental Science & Technology, 2008,42(14):5137-5143.
[22] Gunasekara A S, Simpson M I,Xing B S. Identification and characterization of sorption domains in soil organic matter using structurally modified humic acids [J]. Environmental Science and Technology, 2003,37(5):852-858.
[23] 陳 淼,唐文浩,葛成軍,等.氧氟沙星在熱帶土壤中的吸附行為研究 [J]. 廣東農(nóng)業(yè)科學(xué), 2015,42(10):146-152.Chen M, Tang W H, Ge C J, et al. Adsorption behavior of ofloxacin in tropical soil [J]. Guangdong Agricultural Sciences, 2015,42(10):146-152.
[24] Zhang D, Pan B, Wu M, et al. Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions [J]. Environmental Pollution, 2011,159(10):2616-2621.
[25] Yang W, Lu Y, Zheng F, et al. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube [J]. Chemical Engineering Journal, 2012,179(1):112-118.
[26] 郭欣妍,王 娜,許 靜,等.5種磺胺類抗生素在土壤中的吸附和淋溶特性 [J]. 環(huán)境科學(xué)學(xué)報(bào), 2013,33(11):3083-3091. Guo X Y, Wang N, Xu J, et al.Adsorption and leaching behavior of sulfonamides in soils [J]. Acta Scientiae Circumstantiae, 2013,33(11): 3083-3091.
[27] Wang B, Zeng D, Chen Y, et al. Adsorption behaviors of phenanthrene and bisphenol A in purple paddy soils amended with straw-derived DOM in the West Sichuan Plain of China [J]. Ecotoxicology and environmental safety, 2019,169:737-746.
[28] Tolls J. Sorption of veterinary pharmaceuticals in soils: a review [J]. Environmental Science & Technology, 2001,35(17):3397.
[29] 吳 敏,寧 平,李今今.底泥制備的生物炭對(duì)卡馬西平的吸附解吸研究 [J]. 昆明理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2012,37(3):69-73. Wu M. Ning P, Li J J. Sorption/desorption behavior of carbamazepine in biochars derived from sediment of Dianchi Lake [J]. Journal of Kunming University of Science and Technology (Science and Technology), 2012,37(3):69-73.
[30] Peng H B, Pan B, Wu M, et al. Adsorption of ofloxacin on carbon nanotubes: Solubility, pH and cosolvent effects [J]. Journal of Hazardous Materials, 2012,211-212(2):342-348.
[31] 張 嬌,耿永娟,朱世富,等.有機(jī)質(zhì)對(duì)土壤吸附性能的影響研究 [J]. 青島理工大學(xué)學(xué)報(bào), 2007,28(6):78-81.Zhang J, Geng Y J, Zhu S F, et al. Study on abdsorption of methylence blue from aqueous solution onto soil with different organic matter contents [J]. Journal of Qingdao Technological University, 2007,28(6):78-81.
[32] Tang Y L, Wang R C, Huang J F. Relations between red edge characteristics and agronomic parameters of crops [J]. Pedosphere, 2004,14(4):467-474.
[33] 毛 真,吳 敏,張 迪,等.磺胺甲惡唑在土壤上的吸附及其與Ca2+、Mg2+、Zn2+的共吸附 [J]. 環(huán)境化學(xué), 2013,32(4):640-645. Mao Z, Wu M, Zhang D, et al. Adsorption behavior of sulfamethoxazole on soils and its co-adsorption with Ca2+, Mg2+or Zn2+[J]. Environmental Chemistry, 2013,32(4):640-645.
[34] 楊慧敏,李云桂,武彩霞,等.川西北沙化土壤對(duì)雙酚A的吸附特征 [J]. 中國(guó)環(huán)境科學(xué), 2018,38(4):1424-1432. Yang H M, Li Y G, Wu C X, et al. The characteristic sorption of bisphenol A on sandy soil in northwest Sichuan [J]. China Environmental Science, 2018,38(4):1424-1432.
致謝:本研究潘波教授提供了重要的實(shí)驗(yàn)條件,在此表示感謝.
Adsorption of two antibiotics and bisphenol A on Dianchi peat.
GAO Peng1, NIU Yi-fan2, REN Xin2, YANG Dong2, PENG Hong-bo2*
(1.Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China;2.Faculty of Agriculture and Food, Kunming University of Science & Technology, Kunming 650500, China)., 2019,39(10):4239~4246
The Dianchi peat soil was collected from Dianchi Lake in Kunming, Yunnan, China. The peat soil was treated by different concentrations of NaOH solutions, and effect of alkali solution for the properties of peat soil and the sorption characteristics of contaminants was evaluated. Adsorption mechanisms of two antibiotics, sulfamethoxazole (SMX), carbamazepine (CBZ), and bisphenol A (BPA) on peat soils before/after NaOH treated were discussed. Effects of the properties for contaminants as well as the peat soils on their sorption characteristics were investigated. Adsorption isotherms for SMX, CBZ and BPA were well fitted by the Freundlich model, and the fitting results showed that the Freundlich nonlinearity factorvalues of BPA were the lowest among these three contaminants, which may be due to its asymmetric structural characteristics. As the concentration of NaOH increased, adsorption of these three contaminants on peat soils was BPA > CBZ > SMX. BPA has two phenolic hydroxyl groups and thus it could interact with peat soils by polar interaction, this may result in the highest sorption of it on peat soils. Adsorption of CBZ was higher than that of SMX was due to the hydrophobic interactions between CBZ/SMX and peat soils. Adsorption of SMX, CBZ and BPA on peat soils treated by NaOH solutions was not increased, this suggested that the sorption processes and mechanisms of ionic compounds on peat soils were complex, many factors such as functional groups and solubility of contaminants, the contents of organic carbon and functional groups of peat soils affected the sorption. The butterfly structure and two hydroxyl groups of BPA may lead to its specific adsorption on peat soil, which resulted in the highest adsorption coefficient. The organic carbon content of peat soil increased but the specific surface area may decrease after NaOH treated, and thus reducing the adsorption of these three contaminants. Therefore, adsorption of these three ionic compounds on the peat soils was affected by various factors, including the functional groups and solubility of adsorbates, the organic carbon content and functional groups of peat soils in this study.
organic contaminants;absorption;peat soils;adsorption mechanism
X131.3
A
1000-6923(2019)10-4239-08
高 鵬(1987-),男,青海省西寧人,碩士,工程師,主要從事污水處理工作和污染物的控制技術(shù)研究.
2019-03-20
國(guó)家自然科學(xué)基金委員會(huì)青年項(xiàng)目(41807370);2018年昆明理工大學(xué)高層次人才引進(jìn)項(xiàng)目;云南省土壤固碳與污染控制重點(diǎn)實(shí)驗(yàn)室;昆明理工大學(xué)土壤環(huán)境與生態(tài)安全省創(chuàng)新團(tuán)隊(duì)(2018HC065)
* 責(zé)任作者, 講師, mzxb817@163.com