夏云清 唐華平 譚青 朱廣輝
摘? ?要:針對混動電動輪自卸車(HMDT)電制動勵磁控制非線性和負載干擾較大的時變不確定性,對整車穩(wěn)定性特別是電池壽命的影響,提出一種反饋精確線性化控制與滑??刂葡嘟Y(jié)合的非線性變結(jié)構(gòu)控制(NVSC)勵磁控制策略.建立電制動勵磁控制SISO二階非線性模型,對模型精確線性化處理;應(yīng)用滑模變結(jié)構(gòu)控制設(shè)計了轉(zhuǎn)速閉環(huán)勵磁控制器,考慮礦山惡劣工況下為了削弱系統(tǒng)抖振、保證車速和制動電流穩(wěn)定,設(shè)計了Luenberger負載干擾狀態(tài)觀測器.MATLAB仿真與實驗結(jié)果表明:NVSC控制器相比PID控制除了具有動態(tài)性能好、響應(yīng)快等優(yōu)點外,在負載干擾波動下,電機轉(zhuǎn)速和制動回饋電流保持穩(wěn)定,系統(tǒng)魯棒性好,保證了HMDT電池壽命和整車穩(wěn)定.
關(guān)鍵詞:混動電動輪自卸車;勵磁控制;非線性變結(jié)構(gòu)控制;狀態(tài)觀測器
中圖分類號:TP 13? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼:A
Nonlinear Variable Structure Excitation Control for Electric Brake
of Hybrid Motor Dump Truck
XIA Yunqing1,2,TANG Huaping1?覮,TAN Qing1,ZHU Guanghui2
(1. School of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China;
2. Xiangtan Electric Machinery Co Ltd,Xiangtan 411101,China )
Abstract: As the uncertainty of the nonlinearity and load disturbance of the electric brake excitation control of Hybrid Motor Dump Truck (HMDT) impacts on vehicle stability, especially on battery life, a nonlinear variable structure excitation control strategy with feedback precision linearization control and sliding mode control was proposed. This paper established the Simple Input Simple Output(SISO) second-order nonlinear model of electric brake excitation control, and the nonlinear problem was transformed into a linear problem by the precise linearization of the nonlinear model. Then, the speed closed-loop excitation controller was designed with sliding mode variable structure control. At the same time, in order to weaken the system buffeting, ensure system stability under the bad working condition of the mine, and ensure stable speed and braking current, the Luenberger load disturbance state observer was designed. MATLAB simulation results show that, compared with PID controller, NVSC controller has the advantages of dynamic performance and quick response. Under load disturbance fluctuation, the motor speed and braking feedback current are stable and the system is robust, which guarantees the battery life and HMDT stability.
Keywords:Hybrid Motor Dump Truck(HMDT);excitation control;Nonlinear Variable Structure Control(NVSC);state observer
大噸位(≮100T)混合動力電動輪自卸車(hybrid motor dump truck,HMDT)在國內(nèi)外屬于新型車型,不同于電制動回饋能量由制動電阻消耗的傳統(tǒng)電動輪自卸車,HMDT的電制動回饋電流為車載電池系統(tǒng)充電,電池系統(tǒng)再適時為車輛提供補充功率,并以此循環(huán). 一般電制動勵磁控制是指對制動工況下牽引電動機的勵磁進行閉環(huán)調(diào)節(jié),并保證車輛有足夠的制動力和制動過程平緩,限制制動電流以保護牽引電動機并實現(xiàn)對車速的理想控制[1-3].
而HMDT的電制動勵磁控制系統(tǒng)還需考慮過大的充電電流引起電池過熱,影響電池壽命[4],由于電動輪自卸車噸位大,電制動功率相差6~7倍的變化與礦山3%~18%坡道的變化等惡劣工況,都會引起負載干擾較大的時變不確定性,HMDT電制動勵磁控制系統(tǒng)如果不能及時響應(yīng)和抑制突增干擾,極易引起制動電流(充電電流)過載.
h(x) = x1? ?(8)
求李括號adr-1f? ? g來檢驗系統(tǒng)是否滿足精確線性化條件,因該系統(tǒng)為二階系統(tǒng),需求李括號adf g.
函數(shù)g(x)的雅可比矩陣:
可得到李括號adf g:
D = [g,adf g]? ? ? (12)
矩陣D的行列式:
det D = [k3(x1 - w*) + k4x2 - k5]2? ? ?(13)
上式中k3、k4和k5均不等于0,又因系統(tǒng)定義域Ω內(nèi)電機角速度w≠0,即x1 - w*≠0,det D≠0,可知矩陣D在定義域Ω上的秩n = 2,且其秩n等于系統(tǒng)階數(shù),則向量場{g(x),adf g(x)}滿足對合性要求,因此系統(tǒng)滿足所有精確線性化條件.
通過微分幾何反饋精確線性化設(shè)計方法,利用李導數(shù)構(gòu)造一個微分同胚z = ?準(x)和反饋變換v = Lf nh(x) + Lg dfn-1h(x)u,使非線性系統(tǒng)(5)化為完全線性可控的布魯諾夫斯基標準型.
Lf 2h(x) = k1 x1 + k2 x2 + kL? ? ?(15)
Lg Lf h(x) = k3(x1 - w*) + k4x2 + k5? ? ? (16)
由式(13)可知,Lg Lf h(x)≠0,則原系統(tǒng)控制量
通過反饋精確性化處理,原系統(tǒng)(5)的控制量可以通過反饋變換得到的線性系統(tǒng)(14)的新控制量表示,可通過對線性系統(tǒng)(14)進行滑模變結(jié)構(gòu)控制設(shè)計,最終求取原系統(tǒng)的控制律.
2.3? ?滑模變結(jié)構(gòu)控制器設(shè)計
滑模變結(jié)構(gòu)控制對系統(tǒng)外界干擾和參數(shù)攝動具有強魯棒性,但滑??刂迫秉c是系統(tǒng)在切換面附近的振蕩運動會引起抖振[18].本文通過設(shè)計干擾觀測器來準確測量負載干擾,保證系統(tǒng)穩(wěn)定,實現(xiàn)魯棒控制;同時減小系統(tǒng)切換增益,相當于低通濾波器來消除系統(tǒng)抖振.
2.3.1? ?控制律設(shè)計
對于線性可控型系統(tǒng)(14),取線性切換函數(shù):
u = c1 z1 + c2 z2? ? ? (18)
取有效減小抖振現(xiàn)象的指數(shù)趨近律:
式中:Q > 0;k > 0.
將上述代入式(17)可知原電制動勵磁控制非線性滑模變結(jié)構(gòu)系統(tǒng)的控制律:
因此,通過調(diào)節(jié)控制增益Q、k可以保證變結(jié)構(gòu)控制的快速性及有效削弱系統(tǒng)抖振.
2.3.2? ?負載干擾狀態(tài)觀測器設(shè)計
由式(21)知,電制動勵磁控制滑模變結(jié)構(gòu)系統(tǒng)控制律中包含無法測量的負載干擾TL,再加上礦山惡劣工況,負載干擾TL變化更無規(guī)律,嚴重影響控制系統(tǒng)的穩(wěn)定,需設(shè)計負載干擾狀態(tài)觀測器來實時測量TL大小.
電機的轉(zhuǎn)速和轉(zhuǎn)矩可通過傳感器測量,即可設(shè)計Luenberger全狀態(tài)觀測器間接重構(gòu)負載干擾TL.
車輛在礦山運行速度較慢,大部分為低頻負載,可認為負載干擾TL變化較慢,即
同時,也要考慮負載變化較快的工況.根據(jù)統(tǒng)計,負載干擾TL可按線性或周期性變化,有dTL /dt=常數(shù)或ωLsinωL t,ωL是負載變化的角頻率,可實際測量,然后可按負載干擾TL變化較慢一樣處理.
根據(jù)公式(1),又有:
綜合式(22)和(23),有如下線性定常系統(tǒng):
系統(tǒng)的狀態(tài)變量X = [w? TL ]T,輸入變量u = TM,輸出變量y = w,其中A = -B? ?-J -1? 0? ? ? 0,B = [J -1? 0]T,C = [1? ?0]T.
由于(C,AC)的秩等于2,即系統(tǒng)的(A,C)完全能觀,則設(shè)計的全狀態(tài)干擾觀測器存在,且可以任意觀測器極點配置[19].
可建立干擾狀態(tài)觀測器模型:
式 中:為狀態(tài)x的重構(gòu);Ke為觀測器的增益矩陣;e是觀測器系統(tǒng)誤差.選取觀測器的極點(λ1,λ1),可求出合適的矩陣Ke使誤差向量e(t)能以足夠快的速度趨近于原點,從而實現(xiàn)狀態(tài)x到重構(gòu).
因為系統(tǒng)的階數(shù)較低,可采用直接代入法來求解矩陣Ke[20],將矩陣直接代入期望的特征多項式,見式(27),通過對式中λ的同次冪系數(shù)的比較,可求解矩陣Ke.
λI - (A - KeC) = (λ - λ1)(λ - λ2)? ? (27)
通過矩陣Ke可得到負載干擾TL的重構(gòu)L,再把實時測量的不確定負載干擾L代入系統(tǒng)控制律式(21)中,系統(tǒng)可及時響應(yīng)干擾.這種帶干擾狀態(tài)觀測器的非線性滑模變結(jié)構(gòu)系統(tǒng)避免了負載干擾對系統(tǒng)的影響,可減小趨近律控制增益幅值,進一步削弱系統(tǒng)抖振,保證系統(tǒng)具有良好的控制效果和很強的魯棒性.
3? ?仿真與實驗
為了驗證本文所設(shè)計的電制動NVSC勵磁控制系統(tǒng)的正確性,以某型號礦用自卸車為研究對象,先在MATLAB/Simulink中進行HMDT電制動勵磁控制仿真,再依托某礦車整車廠搭建了實物實驗平臺,實驗平臺采用的是TMS320F28335主控芯片,采用電機對拖的方式來模擬電制動的負載,采用鈦酸鋰電池作為儲能裝置.電機及系統(tǒng)仿真參數(shù)如表1所示. 搭建的系統(tǒng)仿真模型如圖2所示,搭建的實驗平臺如圖3所示,其控制系統(tǒng)如圖4所示.
[7]? ? 譚建豪,章兢. 基于遺傳算法的154T電動車牽引勵磁PID控制器的設(shè)計[J]. 湖南大學學報(自然科學版),2007,34(1): 33—37.
TAN J H,ZHANG J. Design of towing excitation PID controllers for 154T motor dump trucks based on genetic algorithms[J]. Journal of Hunan University (Natural Sciences),2007,34(1):33—37. (In Chinese)
[8]? ? ABLAY G. Variable structure controllers for unstable processes[J]. Journal of Process Control,2015,32:10—15.
[9]? ? CUI M,LIU W,LIU H,et al. Extended state observer-based adaptive sliding mode control of differential-driving mobile robot with uncertainties[J]. Nonlinear Dynamics,2016,83(1/2):667—683.
[10]? 王鎮(zhèn)道,張樂,彭子舜. 基于PSO優(yōu)化算法的模糊PID勵磁控制器設(shè)計[J]. 湖南大學學報(自然科學版),2017,44(8):106—109.
WANG Z D,ZHANG L,PENG Z S. Design of fuzzy PID excitation control based on PSO optimization algorithm[J]. Journal of Hunan University(Natural Sciences), 2017, 44(8): 106—109. (In Chinese)
[11]? SAADAOUI O,KHLAIEF A,ABASSI M,et al. A sliding-mode observer for high-performance sensorless control of PMSM with initial rotor position detection[J]. International Journal of Control,2017,90 (2):377—392.
[12]? ABEYWARDANA D B W,HREDZAK B,AGELIDIS V G. A fixed-frequency sliding mode controller for a boost-inverter-based battery-supercapacitor hybrid energy storage system[J]. IEEE Transactions on Power Electronics,2016,32(1):668—680.
[13]? 許敘遙,林 輝. 基于動態(tài)滑??刂频挠来磐诫姍C位置速度一體化設(shè)計[J]. 電工技術(shù)學報,2014,29(5):77—84.
XU X Y,LIN H. Integrated design for permanent magnet synchronous motor servo systems based on dynamic sliding mode control[J]. Journal of Electrotechnics,2014,29(5):77—84. (In Chinese)
[14]? 崔家瑞,高江峰,張波,等. 永磁同步電機滑模變結(jié)構(gòu)魯棒控制[J]. 電機與控制學報,2016,20(5):84—90.
CUI J R,GAO J F,ZHANG B,et al. Robust control of synchronous motor based on sliding mode variable structure[J]. Electric Machines and Control,2016,20(5):84—90. (In Chinese)
[15] BOLDEA I,TUTELEA L,SERBAN I. Variable speed electric generators and their control: an emerging technology[J]. Journal of Electrical Engineering,2002,l (3):20—28.
[16]? AHMED A A ,AHMAD R B,YAHYA A,et al. Variable structure system with sliding mode controller[J]. Procedia Engineering ,2013,53 (7):441—452.
[17]? 曹玲芝,謝曉磊,任菊萍. 基于非線性滑模面的永磁同步電機變結(jié)構(gòu)控制[J]. 微電機,2015,48(3):48—53.
CAO L Z,XIE X L,REN J P. Sliding mode variable structure control of permanent magnet synchronous machine based on nonlinear sliding surface[J]. Micromotor,2015,48(3):48—53.(In Chinese)
[18]? OLIVIER H,VINCENT A,BERNARD B. Lyapunov stability and performance analysis of the implicit discrete sliding mode control[J]. IEEE Transactions on Automatic Control,2016,61 (10): 3016—3030.
[19]? 李政,胡廣大,崔家瑞,等. 永磁同步電機調(diào)速系統(tǒng)的積分型滑模變結(jié)構(gòu)控制[J]. 中國電機工程學報,2014,34(3):431—438.
LI Z,HU G D,CUI J R,et al. Sliding-mode variable structure control with integral action for permanent magnet synchronous motor[J]. Proceedings of the CSEE,2014,34(3):431—438.(In Chinese)
[20]? 程鵬,王艷東. 現(xiàn)代控制理論基礎(chǔ)[M]. 北京:北京航空航天大學出版社,2010:59-76.
CHENG P,WANG Y D. Foundation of modern control theory[M]. Beijing: Beihang University Press,2010:59-76. (In Chinese)