国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

耕作方式和秸稈還田對(duì)砂姜黑土碳庫(kù)及玉米小麥產(chǎn)量的影響

2019-10-12 02:20葉新新王冰清劉少君李軍利柴如山熊啟中李虹穎郜紅建
關(guān)鍵詞:碳庫(kù)黑土耕作

葉新新,王冰清,劉少君,馬 超,李軍利,柴如山,熊啟中,李虹穎,郜紅建

耕作方式和秸稈還田對(duì)砂姜黑土碳庫(kù)及玉米小麥產(chǎn)量的影響

葉新新1,王冰清1,劉少君1,馬 超1,李軍利1,柴如山1,熊啟中1,李虹穎2※,郜紅建1

(1. 安徽農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院 農(nóng)田生態(tài)保育與污染防控安徽省重點(diǎn)實(shí)驗(yàn)室,合肥 230036;2. 安徽省農(nóng)業(yè)科學(xué)院土壤肥料研究所,合肥 230001)

長(zhǎng)期秸稈還田免耕覆蓋措施導(dǎo)致沿淮區(qū)域砂姜黑土耕層變淺、下表層(10~30 cm)容重增加、土壤養(yǎng)分不均衡等問題凸顯,限制了小麥-玉米周年生產(chǎn)力的提高。耕作和秸稈還田措施合理的搭配組合是解決這一問題的有效方法。通過8 年的小麥-玉米一年兩熟田間試驗(yàn),設(shè)置4個(gè)處理:1)玉米季免耕-小麥季免耕秸稈不還田(N);2)玉米季深耕-小麥季深耕秸稈不還田(D);3)玉米季秸稈免耕覆蓋還田+小麥秸稈免耕覆蓋還田(NS);4)玉米季秸稈免耕覆蓋還田+小麥季秸稈深耕還田(DS)。通過分析作物收獲后不同土壤深度(0~60 cm)總有機(jī)碳(TOC)、顆粒態(tài)碳(POC)、微生物生物量碳(MBC)、易氧化態(tài)碳(KMnO4-C)、可溶性有機(jī)碳(DOC)和土壤碳庫(kù)管理指數(shù)(CPMI),并結(jié)合小麥-玉米的周年產(chǎn)量變化,以期獲得培肥砂姜黑土的最佳模式。研究結(jié)果表明:1)相對(duì)于長(zhǎng)期免耕措施(N),DS處理能夠提高0~30 cm 土層TOC、POC、MBC、KMnO4-C等組分含量和CPMI;而NS措施僅提高土壤表層(0~10 cm)TOC、活性有機(jī)碳組分含量和CPMI;2)DS處理顯著提升了小麥-玉米的周年生產(chǎn)力,其麥玉的周年產(chǎn)量均值分別比N、D和NS處理高出14.7%、12.9%和8.5%;3)MBC和KMnO4-C對(duì)于耕作和秸稈還田措施都是較為敏感指示因子。總的來(lái)說,玉米季小麥秸稈覆蓋還田+小麥季玉米秸稈深耕還田(DS)是改善沿淮地區(qū)砂姜黑土土壤碳庫(kù)、提高小麥-玉米周年產(chǎn)量的一種有效農(nóng)田管理模式。

作物;耕作;秸稈;土壤碳庫(kù);作物產(chǎn)量

0 引 言

沿淮地區(qū)是安徽省以至全國(guó)重要的糧食生產(chǎn)基地,但該區(qū)域仍有60%的農(nóng)田屬于中低產(chǎn)田,其主要土壤類型是砂姜黑土,約占全省旱地總面積的40%[1-2]。小麥-玉米一年兩熟是沿淮地區(qū)砂姜黑土的主要種植模式[3]。近年來(lái)采用的免耕秸稈覆蓋模式可提高該地區(qū)砂姜黑土保蓄能力和水分有效性,而長(zhǎng)期免耕措施會(huì)導(dǎo)致土壤緊實(shí)、養(yǎng)分層化加劇以及耕層變淺[4];傳統(tǒng)耕作措施雖能降低土壤容重和緊實(shí)度,但長(zhǎng)期實(shí)施不利于土壤有機(jī)碳累積[5]。由于該區(qū)域不合理的農(nóng)田管理措施導(dǎo)致了一系列土壤質(zhì)量問題逐漸凸顯,已經(jīng)成為制約小麥-玉米持續(xù)高產(chǎn)、穩(wěn)產(chǎn)的新問題[6]。因此,進(jìn)一步優(yōu)化耕作和作物秸稈管理措施對(duì)于提高該區(qū)域土壤肥力狀況和作物產(chǎn)量至關(guān)重要。

土壤耕作和秸稈還田措施是影響農(nóng)田土壤碳庫(kù)周轉(zhuǎn)、土壤肥力和作物產(chǎn)量的關(guān)鍵因素[7-8]。大量研究表明,免耕秸稈覆蓋能夠提高砂姜黑土土壤總氮、總鉀、堿解氮和速效鉀含量,提高土壤有機(jī)質(zhì)含量和碳庫(kù)管理指數(shù)[9-10];但是由于免耕措施會(huì)增加土壤容重和緊實(shí)度,不能打破砂姜黑土耕層的原狀土,導(dǎo)致作物出苗率較低,進(jìn)而降低作物產(chǎn)量[11]。深耕可減少砂姜黑土土壤壓實(shí),增加作物水分吸收,改善作物根系生長(zhǎng)條件,提高作物產(chǎn)量[12],但會(huì)加劇土壤有機(jī)質(zhì)分解并降低土壤肥力。有研究表明,秸稈還田措施可以提高土壤中總有機(jī)碳(TOC)、顆粒態(tài)碳(POC)和微生物生物量碳(MBC)等有機(jī)碳組分的含量,改善土壤肥力[13-14]。因此,將不同的耕作措施和秸稈還田進(jìn)行合理的組合和配置,形成適宜推廣的周年輪耕模式,可減輕單一耕作方式的弊端[15]。目前,有關(guān)耕作與秸稈還田周年組合措施對(duì)沿淮地區(qū)砂姜黑土小麥-玉米種植體系中不同深度土壤碳庫(kù)的變化和分布以及作物產(chǎn)量的影響,缺乏較為系統(tǒng)研究。本文利用在沿淮地區(qū)小麥-玉米周年生產(chǎn)條件下8 a長(zhǎng)期田間定位試驗(yàn),研究耕作方式、秸稈還田方式及二者周年組合方式對(duì)不同深度土壤總有機(jī)碳、活性有機(jī)碳組分含量和分布以及小麥-玉米周年產(chǎn)量的影響,探明適合于該區(qū)域的最佳農(nóng)田管理措施,為沿淮區(qū)域砂姜黑土地力提升和作物高產(chǎn)提供理論依據(jù)。

1 材料與方法

1.1 試驗(yàn)區(qū)概況

試驗(yàn)地點(diǎn)位于中國(guó)安徽省阜陽(yáng)市臨泉縣(32°56′N,115°11′E)。該地區(qū)屬暖溫帶半濕潤(rùn)氣候,年平均氣溫為16.2 ℃,年平均降水量為830 mm。試驗(yàn)地土壤類型屬于典型的砂姜黑土。試驗(yàn)開始時(shí)土壤基本理化性質(zhì):耕層土壤有機(jī)質(zhì)10.3 g/kg,全氮0.96 g/kg,有效磷47.3 mg/kg,速效鉀133.5 mg/kg,pH值6.8。

1.2 試驗(yàn)設(shè)計(jì)與田間管理

田間試驗(yàn)開始于2009年6月,設(shè)置4個(gè)處理:1)玉米季免耕-小麥季免耕秸稈不還田(N);2)玉米季深耕-小麥季深耕秸稈不還田(D);3)玉米季秸稈免耕覆蓋還田+小麥秸稈免耕覆蓋還田(NS);4)玉米季秸稈免耕覆蓋還田+小麥季秸稈深耕還田(DS)。試驗(yàn)采用隨機(jī)區(qū)組設(shè)計(jì),小麥-玉米一年兩熟種植制度,3次重復(fù),小區(qū)面積為600 m2(60 m×10 m)。

夏季玉米,每年6月種植,10月收獲,品種為天泰16,種植密度67 500 株/hm2,株距24.7 cm,行距60 cm;冬季小麥每年10月種植,第二年6月收獲,品種為煙農(nóng)19,播種量為187.5 kg/hm2,行距23 cm。耕作深度為30 cm。小麥每年化學(xué)肥料施用量分別為N 225 kg/hm2(尿素,46%),P2O590 kg/hm2(過磷酸鈣,12%)和K2O 90 kg/hm2(氯化鉀,60%),玉米每年化學(xué)肥料施用量為N 240 kg/hm2(尿素,46%),P2O590 kg/hm2(過磷酸鈣,12%)和K2O 90 kg/hm2(氯化鉀,60%)。70%的氮肥、全部磷肥和鉀肥均作為基肥施用,其余30%氮肥用于小麥的拔節(jié)期和玉米的大喇叭口期施用。收集的小麥玉米秸稈粉碎成3~5 cm。小麥秸稈均勻地平鋪在地表,施入量為6 000 kg/hm2;玉米秸稈通過深耕措施(鏵式犁翻地1遍,再用旋耕機(jī)旋地2遍)施入土壤,均勻分布在0~30 cm 土壤深度,施入量為7 500 kg/hm2。

1.3 土壤樣品的采集

2017年6月小麥?zhǔn)斋@后,按“Z”形布點(diǎn)法采集土壤樣品,在每個(gè)小區(qū)內(nèi)采集9個(gè)土壤樣品混合,每個(gè)點(diǎn)位采集6個(gè)土層(0~10,10~20,20~30,30~40,40~50,50~60 cm)。每個(gè)土壤混合樣品分為2份,一份用于測(cè)定土壤總有機(jī)碳、活性有機(jī)碳、可溶性有機(jī)碳等指標(biāo),另一份樣品于4℃冰箱中保存用于測(cè)定土壤微生物量碳等指標(biāo)。

1.4 土壤樣品分析測(cè)試方法

采用常規(guī)分析方法測(cè)定土壤理化性質(zhì)[16];采用氯仿熏蒸-K2SO4提取法測(cè)定土壤MBC含量[16];采用高錳酸鉀氧化法(333 mmol/L KMnO4溶液)測(cè)定土壤活性有機(jī)碳(易氧化態(tài)碳,KMnO4-C)含量,土壤非活性有機(jī)碳含量=土壤總有機(jī)碳含量-土壤活性有機(jī)碳含量[17];采用0.5 M K2SO4浸提法測(cè)定土壤DOC含量[18];采用六偏磷酸鈉分散-重鉻酸鉀-濃硫酸外加熱氧化法測(cè)定土壤POC含量[19]。

1.5 數(shù)據(jù)計(jì)算與分析

土壤碳庫(kù)管理指數(shù)采用Blair等[20]提出的方法計(jì)算,選取免耕秸稈不還田處理(N處理)作為參照土壤,計(jì)算方法如下:

碳庫(kù)指數(shù)(CPI)=樣品土壤總有機(jī)質(zhì)含量/參照土壤總有機(jī)質(zhì)含量;

碳庫(kù)活度(L)=樣品土壤活性有機(jī)質(zhì)含量/樣品土壤非活性有機(jī)質(zhì)含量;

活度指數(shù)(LI)=樣品土壤碳庫(kù)活度(L)/對(duì)照土壤碳庫(kù)活度(L0);

土壤碳庫(kù)管理指數(shù)(CPMI)=CPI×LI×100

土壤碳庫(kù)管理指數(shù)計(jì)算的數(shù)據(jù)來(lái)自2017年6月采集土壤樣品分析測(cè)定數(shù)據(jù)。

采用Microsoft Excel 2007進(jìn)行數(shù)據(jù)處理和圖形繪制,SPSS 18.0 軟件進(jìn)行不同處理間各指標(biāo)的差異性及相關(guān)性的統(tǒng)計(jì)分析。

2 結(jié)果與分析

2.1 土壤總有機(jī)碳TOC的變化

在0~10 cm土層,NS處理土壤TOC含量顯著高于其他3種處理(<0.05)。在10~30 cm的土層中,DS處理土壤TOC含量最高,NS處理土壤TOC含量明顯降低(圖1)。在10~20 cm的土層,DS處理土壤TOC含量分別比N、D和NS處理高22.3%、26.3%和27.8%;在20~30 cm土層,相應(yīng)的值分別為31.9%、25.4%和28.9%。在40~60 cm土層,4種處理的土壤TOC含量沒有顯著差異。

注:N:玉米-小麥免耕秸稈不還田;D:玉米-小麥深耕秸稈不還田;NS:玉米-小麥免耕覆蓋還田;DS:玉米免耕覆蓋還田+小麥深耕還田;*表示同一深度不同處理間差異顯著,ns表示同一深度不同處理間差異不顯著,不同小寫字母代表同一深度處理間差異顯著,P<0.05,下同。

2.2 土壤活性碳組分的變化

由圖2a可知,土壤顆粒態(tài)碳POC含量受耕作方式和秸稈還田的影響顯著。在0~10 cm土層,秸稈還田處理(NS和DS)土壤POC含量顯著高于非秸稈還田處理(N和D)。土壤POC含量隨深度增加而減少,NS處理更顯著。在10~20 cm土層,DS處理具有最高的POC含量,其次是N處理,最后是NS和D處理。在20~30 cm土層,DS處理具有最高的POC含量,其含量較N、D和NS處理分別增加了44.1%、29.3%和24.1%。然而,在40~60 cm土層中,4種處理的土壤POC含量差異均未達(dá)到顯著水平(圖2a)。

在0~10 cm土層,NS處理土壤中KMnO4-C含量最高,比N、D和DS處理分別增加了51.6%、74.1%和20.5%。在10~30 cm土層,DS處理的KMnO4-C含量顯著高于其他3個(gè)處理,并且這3個(gè)處理間KMnO4-C含量無(wú)顯著差異。在土層40~60 cm中,4種處理的KMnO4-C含量沒有出現(xiàn)顯著性差異(圖2b)。

在0~30 cm土層中,耕作和秸稈還田措施顯著影響土壤MBC含量(圖2c)。在0~20 cm土層中,秸稈還田處理(NS和DS)土壤MBC含量顯著高于無(wú)秸稈還田處理(N和D);在20~30 cm土層中,耕作處理(DS和D)土壤MBC含量顯著高于免耕處理(NS和N)(圖2c)。

在0~10 cm土層的秸稈還田處理(NS和DS)DOC含量顯著高于無(wú)秸稈還田處理(N和D)。在10~60 cm的土層,4種處理DOC含量沒有顯著差異(圖2d)。

圖2 不同處理下0~60 cm土層POC、KMnO4-C、MBC和DOC含量(2017年6月)

2.3 土壤碳庫(kù)管理指數(shù)

NS處理顯著提高了0~10 cm土層土壤CPMI,其值較N、D和DS處理提高65.6%、90.5%和23.9%;在10~30 cm土層,DS處理的CPMI最高,其次是D處理,最后是N和NS處理(表1)。該結(jié)果也表明NS處理主要提高的是0~10 cm土層土壤CPMI,而DS處理主要提高10~30 cm土層土壤CPMI。

表1 不同處理0-30 cm土壤深度中土壤碳庫(kù)管理指數(shù)

注:同一深度不同小寫字母代表處理間差異達(dá)顯著水平,<0.05.

Note: Different lowercase letters in the same depth mean significant difference,<0.05.

2.4 土壤活性碳組分與TOC的相關(guān)性

表2是土壤活性碳組分與TOC在土壤深度0~10、10~20和20~30 cm的相關(guān)性分析。除DOC外,在0~10 cm和10~20 cm土壤深度,TOC與其余土壤活性碳組分存在顯著或極顯著相關(guān)性。然而,在20~30 cm土層TOC與POC和DOC均沒有明顯的相關(guān)性。

表2 0~30 cm土層土壤活性碳組分與TOC的相關(guān)性(n=18)

注:*<0.05,**<0.01.

Note:*<0.05,**<0.01.

2.5 小麥-玉米周年產(chǎn)量

圖3顯示的是2010-2017年間不同處理?xiàng)l件下小麥-玉米的周年總產(chǎn)量。8 a時(shí)間內(nèi),小麥-玉米的周年總產(chǎn)量是逐年波動(dòng)的。2010-2013年,不同處理間產(chǎn)量沒有顯著差異。在2013年以后,DS處理的增產(chǎn)效果最好(<0.05),其次是NS處理,秸稈不還田的兩個(gè)處理(N與D)產(chǎn)量最低。DS處理的麥玉的周年總產(chǎn)量均值最大,其值分別比N、D和NS處理高出14.7%、12.9%和8.5%。與其他3種處理相比較,周年耕作和秸稈還田組合措施(DS)作物產(chǎn)量顯著提高。秸稈還田措施可以持續(xù)補(bǔ)充土壤有機(jī)質(zhì),并且秸稈腐解礦化可以為作物的生長(zhǎng)提供大量的營(yíng)養(yǎng)元素,促進(jìn)作物的生長(zhǎng)。但是,砂姜黑土耕作層淺,犁底層厚而堅(jiān)實(shí),土壤通透性差;連續(xù)周年免耕秸稈還田措施會(huì)增加土壤的容重和緊實(shí)度,從而影響作物的出苗及其后期的正常生長(zhǎng)。DS處理可以降低砂姜黑土根際層的土壤容重,提高土壤孔隙度,增加土壤肥力和養(yǎng)分,促進(jìn)作物增產(chǎn)。

圖3 2010-2017年間不同處理方式下小麥-玉米的周年總產(chǎn)量

3 討 論

秸稈還田和耕作方式對(duì)土壤TOC、POC、MBC和KMnO4-C的垂直分布有明顯的影響。本研究中,在0~10 cm土層,NS和DS處理的土壤TOC、POC、MBC和KMnO4-C含量顯著高于N和D處理,這表明秸稈覆蓋可以增加土壤表層TOC、POC、MBC和KMnO4-C含量。NS處理的TOC、POC、MBC和KMnO4-C含量隨著土壤深度的增加呈現(xiàn)顯著下降的趨勢(shì),這是由于深層土壤缺少作物秸稈的輸入[21]。DS處理,與其他3種處理相比,顯著提高了10~30 cm土層中TOC、POC、MBC和KMnO4-C含量。這是由于深埋的作物殘茬和秸稈經(jīng)過腐解所形成的有機(jī)化合物,可以提高深層土壤TOC含量[22],并作為穩(wěn)定團(tuán)聚體的粘合劑保護(hù)團(tuán)聚體內(nèi)碳以顆粒態(tài)有機(jī)質(zhì)的形式存在[23]。同時(shí),由于土壤微生物可以充分利用作物秸稈作為其生長(zhǎng)的碳源,增加了土壤MBC的含量[24]。因此,組合管理措施(DS)增加了0~30 cm土層TOC、POC、MBC和KMnO4-C含量。

在0~10 cm土層,秸稈還田處理(DS和NS)土壤DOC含量顯著高于其他2個(gè)處理,該結(jié)果與Linn等[25]的研究結(jié)果一致,土壤表層較高的DOC含量可能是由于作物秸稈長(zhǎng)期分解所造成[26]。然而,在10~30 cm土層中,四個(gè)處理間土壤DOC含量沒有顯著差異。這可能是由于秸稈在下表層土壤的施入所產(chǎn)生和消耗DOC大體相同[27],從而導(dǎo)致10~30 cm土層DOC含量在四個(gè)處理間沒有顯著差異。

CPMI可以對(duì)土壤碳庫(kù)動(dòng)態(tài)變化起到很好的指示作用[28]。Blair等[20]研究表明CPMI具體數(shù)值不重要,但是其與參照土壤數(shù)值間的差異反映了不同土壤管理措施對(duì)土壤碳庫(kù)影響的綜合評(píng)價(jià)??偟膩?lái)說,本研究中NS處理顯著提高了表層土壤(0~10 cm)CPMI數(shù)值,而DS處理顯著提高了耕作層土壤(0~30 cm)CPMI數(shù)值。該結(jié)果表明,與無(wú)秸稈還田措施相比,秸稈還田措施能夠明顯提高表層土壤(0~10 cm)CPMI數(shù)值,其中以NS的效果最為明顯。然而,在10~30 cm土層,DS處理具有最高的CPMI數(shù)值,這主要與作物殘茬和秸稈的深埋有關(guān)。

相關(guān)分析表明,TOC與土壤活性碳組分(MBC和KMnO4-C)在0~30 cm土層存在明顯的相關(guān)性,這說明土壤中MBC和KMnO4-C含量大小與TOC含量的高低有關(guān),可以作為土壤質(zhì)量變化的指示因子[29]。

經(jīng)過8 a耕作和秸稈還田的組合措施,DS處理可以顯著提高該區(qū)域小麥-玉米的周年產(chǎn)量,這與DS處理可以改善了耕作層土壤肥力(TOC含量),提升耕作層土壤碳庫(kù)組分含量(POC、MBC和KMnO4-C含量),從而提高作物養(yǎng)分利用效率有關(guān)。李瑋等[30]研究發(fā)現(xiàn)秸稈還田措施改善了砂姜黑土土壤肥力,并且玉米產(chǎn)量的增加與土壤總有機(jī)質(zhì)、活性有機(jī)質(zhì)含量和碳庫(kù)管理指數(shù)的提升有極顯著相關(guān)性(<0.01)。有研究表明,在秸稈還田的基礎(chǔ)上,小麥季深耕處理(30 cm)可以降低砂姜黑土土壤容重,增加土壤有機(jī)碳含量,進(jìn)而提高小麥籽粒產(chǎn)量[12]。因此,周年的耕作和秸稈還田聯(lián)用措施是提升該區(qū)域小麥-玉米周年生產(chǎn)力的重要農(nóng)業(yè)管理措施。

4 結(jié) 論

耕作方式和秸稈還田措施對(duì)沿淮砂姜黑土總有機(jī)碳含量、活性有機(jī)碳組分、碳庫(kù)管理指數(shù)及小麥-玉米周年生產(chǎn)力均產(chǎn)生顯著影響。相對(duì)于長(zhǎng)期免耕措施(N),玉米免耕覆蓋還田+小麥深耕還田(DS)處理能夠提高0~30 cm土層活性有機(jī)碳組分含量和CPMI(土壤碳庫(kù)管理指數(shù));而玉米-小麥免耕覆蓋還田(NS)措施僅提高土壤表層(10~30 cm)活性有機(jī)碳組分含量和CPMI。KMnO4-C和MBC適合作為敏感指示因子來(lái)評(píng)估該區(qū)域耕層土壤碳庫(kù)的早期變化。同時(shí),經(jīng)過8 a周年耕作和秸稈還田措施的合理搭配,DS處理顯著提升了小麥-玉米的周年生產(chǎn)力。因此,根據(jù)沿淮區(qū)域季節(jié)氣候的特點(diǎn),將耕作方式和秸稈還田措施有效的組合搭配是不同土層土壤碳庫(kù)變化的主要作用力。本研究中,DS處理是有效改善沿淮區(qū)域中低產(chǎn)砂姜黑土土壤碳庫(kù)、提高麥玉周年產(chǎn)量的農(nóng)田管理模式。

[1] 馬超,周靜,劉滿強(qiáng),等. 秸稈促腐還田對(duì)土壤養(yǎng)分及活性有機(jī)碳的影響[J]. 土壤學(xué)報(bào),2013,50(5):917-921.

Ma Chao, Zhou Jing, Liu Manqiang, et al. Effects of incorporation of pretreated straws into field on soil nutrients and labile organic carbon in Shajiang Black Soil[J]. Acta Pedologica Sinica, 2013, 50(5): 917-921. (in Chinese with English abstract)

[2] 夏建國(guó),魏朝富,朱鐘麟,等. 中國(guó)中低產(chǎn)田土改造研究綜述. 中國(guó)農(nóng)學(xué)通報(bào),2005,21(4):212-218.

Xia Jianguo, Wei Chaofu, Zhu Zhonglin, et al. Research review on the improvement of low-medium yielding farmlands in China[J]. Chinese Agricultural Science Bulletin, 2005, 21(4): 212-218. (in Chinese with English abstract)

[3] 馬玉穎,張煥朝,項(xiàng)興佳,等. 長(zhǎng)期施肥對(duì)砂姜黑土叢枝菌根真菌群落的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2018,29(10):3398-3406.

Ma Yuying, Zhang Huanchao, Xiang Xingjia, et al. Effects of long-term fertilization on arbuscular mycorrhizal fungal community in lime concretion black soil[J].Chinese Journal of Applied Ecology, 2018, 29(10): 3398-3406. (in Chinese with English abstract)

[4] 王曉波,車威,紀(jì)榮婷,等.秸稈還田和保護(hù)性耕作對(duì)砂姜黑土有機(jī)質(zhì)和氮素養(yǎng)分的影響[J].土壤,2015,47(3):483-489.

Wang Xiaobo, Che Wei, Ji Rongting, et al.Effects of straw returning and conservation tillage patterns on the contents of organic matter and nitrogen nutrient in the lime concretion black soil[J]. Soils, 2015, 47(3): 483-489. (in Chinese with English abstract)

[5] 李太魁,馬政華,寇長(zhǎng)林,等. 不同耕作方式對(duì)砂姜黑土理化性質(zhì)和小麥產(chǎn)量的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2017,33(36):20-24.

Li Taikui, Ma Zhenghua, Kou Changlin, et al.Effect of different tillage methods on soil properties and wheat yield in Shajiang black soil[J]. Chinese Agricultural Science Bulletin, 2017, 33(36): 20-24.(in Chinese with English abstract)

[6] 鄭學(xué)博,張祥志,崔鍵,等. 秸稈全量還田條件下配施化肥對(duì)沿淮砂姜黑土培肥及玉米產(chǎn)量的影響[J]. 土壤,2012,44(6):972-976.

Zheng Xuebo, Zhang Xiangzhi, Cui Jian, et al. Effects of combined chemical fertilizer with return of total wheat straw on soil nutrient and maize yield in Shajiang black soil region along Huai River[J]. Soils, 2012, 44(6): 972-976. (in Chinese with English abstract)

[7] 高學(xué)振,張叢志,張佳寶,等. 生物炭、秸稈和有機(jī)肥對(duì)砂姜黑土改性效果的對(duì)比研究[J]. 土壤,2016,48(3):468-474.

Gao Xuezhen, Zhang Congzhi, Zhang Jiabao, et al. Comparison of biochar, straw and manure in improving Shajiang black soil[J]. Soils, 2016, 48(3): 468-474. (in Chinese with English abstract)

[8] 李榮,侯賢清,賈志寬,等. 北方旱作區(qū)土壤輪耕技術(shù)研究進(jìn)展[J]. 西北農(nóng)業(yè)學(xué)報(bào),2015,24(3):1-7.

Li Rong, Hou Xianqing, Jia Zhikuan, et al. Research advance in soil rotational tillage on dry farming areas in Northern China[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(3): 1-7. (in Chinese with English abstract)

[9] 謝迎新,靳海洋,李夢(mèng)達(dá),等. 周年耕作方式對(duì)砂姜黑土農(nóng)田土壤養(yǎng)分及作物產(chǎn)量的影響[J].作物學(xué)報(bào),2016,42(10):1560-1568.

Xie Yingxin, Jin Haiyang, Li Mengda, et al.Effect of annual tillage practices on soil nutrient and crop yield in lime concretion black soil farmland[J]. Acta Agronomica Sinica, 2016, 42(10): 1560-1568 (in Chinese with English abstract)

[10] 王丹丹,周亮,黃勝奇,等. 耕作方式與秸稈還田對(duì)表層土壤活性有機(jī)碳組分與產(chǎn)量的短期影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2013,32(4):735-740.

Wang Dandan, Zhou Liang, Huang Shengqi, et al. Short-termeffects of tillage practices and wheat-straw returned to the field on topsoil labile organic carbon fractions and yields in Central China[J]. Journal of Agro-Environment Science, 2013, 32(4): 735-740. (in Chinese with English abstract)

[11] 孟慶陽(yáng),王永華,靳海洋,等. 耕作方式與秸稈還田對(duì)砂姜黑土土壤酶活性及冬小麥產(chǎn)量的影響[J]. 麥類作物學(xué)報(bào),2016,36(3):341-346.

Meng Qingyang, Wang Yonghua, Jin Haiyang, et al.Effect of tillage and straw returning on soil enzyme activity and yield of winter wheat in lime concretion black soil[J]. Journal of Triticeae Crops, 2016, 36(3): 341-346. (in Chinese with English abstract)

[12] 謝迎新,靳海洋,孟慶陽(yáng),等. 深耕改善砂姜黑土理化性狀提高小麥產(chǎn)量[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):167-173.

Xie Yingxin, Jin Haiyang, Meng Qingyang, et al. Deep tillage improving physical and chemical properties of soil and increasing grain yield of winter wheat in lime concretion black soil farmland[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 167-173. (in Chinese with English abstract)

[13] 文廷剛,王維新,杜小鳳,等.砂姜黑土區(qū)秸稈還田與肥料配施對(duì)夏玉米生育和產(chǎn)量的影響[J].中國(guó)農(nóng)學(xué)通報(bào),2015,31(17):156-162.

Wen Tinggang, Wang Weixin, Du Xiaofeng, et al.Effects of wheat straw returned to field and combined fertilizer application on growth and yield of summer maize in lime concretion black soil area[J].Chinese Agricultural Science Bulletin, 2015, 31(17): 156-162. (in Chinese with English abstract)

[14] 李碩,李有兵,王淑娟,等. 關(guān)中平原作物秸稈不同還田方式對(duì)土壤有機(jī)碳和碳庫(kù)管理指數(shù)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2015,26(4):1215-1222.

Li Shuo, Li Youbing, Wang Shujuan, et al. Effects of different straw-returning regimes on soil organic carbon and carbon pool management index in Guanzhong Plain, Northwest China[J]. Chinese Journal of Applied Ecology, 2015, 26(4): 1215-1222. (in Chinese with English abstract)

[15] 王玉玲,李軍. 利于小麥–玉米輪作田土壤理化性狀和作物產(chǎn)量的耕作方式研究[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(5):1139-1150.

Wang Yuling, Li Jun. Study of tillage patterns suitable for soil physicochemical properties and crop yields in wheat/maize fields[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1139-1150. (in Chinese with English abstract)

[16] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國(guó)農(nóng)業(yè)科技出版社,2000.

[17] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J].Soil Biology and Biochemistry,1987, 19(6): 703-707.

[18] 徐香茹,蔡岸冬,徐明崗,等. 長(zhǎng)期施肥下水稻土有機(jī)碳固持形態(tài)與特征[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(4):753-760.

Xu Xiangru, Cai Andong, Xu Minggang, et al. Characteristics of organic carbon stabilization in paddy soil under long-term different fertilization[J]. Journal of Agro-Environment Science, 2015, 34(4): 753-760. (in Chinese with Englishabstract)

[19] 韓琳,張玉龍,金爍,等. 灌溉模式對(duì)保護(hù)地土壤可溶性有機(jī)碳與微生物量碳的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2010,43(8):1625-1633.

Han Lin, Zhang Yulong, Jin Shuo, et al. Effect of different irrigation patterns on soil dissolved organic carbon and microbial biomass carbon in protected field[J]. Scientia Agricultura Sinica, 2010, 43(8): 1625-1633. (in Chinese with English abstract)

[20] Blair G J, Lefroy R D B. Soil C fractions based on their degree of oxidation and the development of a C management index for agricultural systems[J]. Australian Journal Agricultural Research, 1995, 46: 1459-1466.

[21] Dikgwatlhe S B, Chen Z D, Lal R, et al. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the North China Plain[J]. Soil and Tillage Research, 2014, 144: 110-118.

[22] Wang Q Y, Wang Y, Wang Q, et al. Impacts of 9 years of a new conservational agricultural management on soil organic carbon fractions[J]. Soil and Tillage Research, 2014, 143: 1-6.

[23] Piao L, Qi H, Li C F, et al. Optimized tillage practices and row spacing to improve grain yield and matter transport efficiency in intensive spring maize[J]. Field Crops Research, 2016, 198: 258-268.

[24] 胡乃娟,韓新忠,楊敏芳,等. 秸稈還田對(duì)稻麥輪作農(nóng)田活性有機(jī)碳組分含量、酶活性及產(chǎn)量的短期效應(yīng)[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(2):371-377.

Hu Naijuan, Han Xinzhong, Yang Minfang, et al. Short-term influence of straw return on the contents of soil organic carbon fractions, enzyme activities and crop yields in rice-wheat rotation farmland[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 371-377. (in Chinese with English abstract)

[25] Linn DM, Doran JW. Effect of water-filled pore space on carbon dioxide and nitrousoxide production in tilled and non tilled soils[J]. Soil Science Society of America Journal, 1984, 48: 1267-1272.

[26] 呂盛,王子芳,高明,等. 秸稈不同還田方式對(duì)紫色土微生物量碳、氮、磷及可溶性有機(jī)質(zhì)的影響[J]. 水土保持學(xué)報(bào),2017,5(31):266-272.

Lü Sheng, Wang Zifang, Gao Ming, et al. Effects of different straw returning methods on soil microbial biomass carbon, nitrogen, phosphorus and soluble organic matter in purple soil[J]. Journal of Soil and Water Conservation, 2017, 5(31): 266-272. (in Chinese with English abstract)

[27] 張娟霞,劉偉剛,寧媛,等. 長(zhǎng)期秸稈還田與施氮后土壤活性碳、氮的變化[J]. 水土保持學(xué)報(bào),2018,3(32):212-217.

Zhang Juanxia, Liu Weigang, Ning Yuan, et al. Changes of active carbon and nitrogen in soil after long-term straw returning and nitrogen application[J]. Journal of Soil and Water Conservation, 2018, 3(32): 212-217. (in Chinese with English abstract)

[28] 田慎重,王瑜,寧堂原,等. 轉(zhuǎn)變耕作方式對(duì)長(zhǎng)期旋免耕農(nóng)田土壤有機(jī)碳庫(kù)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(17):98-105.

Tian Shenzhong, Wang Yu, Ning Tangyuan, et al. Effect of tillage method changes on soil organic carbon pool in farmland under long-term rotary tillage and no tillage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 98-105. (in Chinese with English abstract)

[29] Mi W H, Wu L H, Brookes P C, et al. Changes in soil organic carbon fractions under integrated management systems in a low-productivity paddy soil given different organic amendments and chemical fertilizers[J].Soil and Tillage Research, 2016, 163: 64-70.

[30] 李瑋,喬玉強(qiáng),陳歡,等. 秸稈還田配施氮肥對(duì)砂姜黑土有機(jī)質(zhì)組分與碳庫(kù)管理指數(shù)的影響[J].生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2014,30(4):475-480.

Li Wei, Qiao Yuqiang, Chen Huan, et al. Soil organic matter composition and carbon pool management index in Shajiang black soil as affected by straw incorporation coupled with fertilization[J]. Journal of Ecology and Rural Environment, 2014, 30(4): 475-480.(in Chinese with English abstract)

Influence of tillage and straw retention on soil carbon pool and maize-wheat yield in Shajiang black soil

Ye Xinxin1, Wang Bingqing1, Liu Shaojun1, Ma Chao1, Li Junli1, Chai Rushan1, Xiong Qizhong1, Li Hongying2※, Gao Hongjian1

(1.,,,230036,;2.,,230001,)

Long-term no-tillage mulching with straw retention have led to the shallowness of plough layer, the increase of bulk density at the depth of 10-30 cm layer, and the imbalance of soil nutrients in Shajiang black soil along Huai River, which have limited the improvement of productivity of summer maize () and winter wheat (). Tillage practice and residue management play important roles in carbon pool and crop yields in soils. The reasonable combination of tillage with straw retention is an effective method to solve this problem. After 8-years field experiment in wheat - maize cropping systems, four treatments were set up, 1) no-tillage with straw removal for summer maize and winter wheat (N); 2) tillage with straw removal for summer maize and winter wheat (D); 3) no-tillage with straw mulching for summer maize and winter wheat (NS); and (4) no-tillage with straw mulching for summer maize and plough tillage with straw incorporation for winter wheat (DS). Soil samples were taken from the 0-10, 10-20, 20-30, 30-40, 40-50 cm and 50-60 cm soil depths. Soil total organic carbon (TOC), particulate organic C (POC), microbial biomass C (MBC), potassium permanganate-oxidizable C (KMnO4-C) and dissolved organic C (DOC) were measured. Carbon pool management index (CPMI) was also calculated. These indexes and the year-round yield of maize and wheat were comprehensively analyzed to gain the optimal mode for enriching the Shajiang black soil. Our tesults showed that DS treatment increased the contents of TOC, POC, MBC, KMnO4-C and CPMI at the depth of 0-30 cm layer, compared with N treatment, but NS treatment only enhanced the contents of above-mentioned indexes at the depth of 0-10 cm layer. The tillage operation incorporated the maize residue (straw, stubble, and root) to a greater soil depth in DS treatment, which meant that DS had a higher subsoil TOC, POC, MBC, KMnO4-C and CPMI content (10–30 cm) than the other treatments. There were no significant (<0.05) differences in TOC, POC, MBC, KMnO4-C contents in the 30–60 cm layers among the four treatments. In addition, the total yields for summer maize and winter wheat in four treatments fluctuated widely from year to year. Treatment DS significantly (<0.05) inceased the year-round crop yield, and the mean crop yield of DS was 14.7%, 12.9% and 8.5% greater than that of N, D and NS over 8 years. Moreover, microbial biomass carbon and KMnO4-C was significantly (<0.05) affected by the tillage and straw retention and was sensitive to different management practices. Total organic carbon was positively correlated with MBC and KMnO4-C, suggesting they were suitable as an early indicator of soil quality. The significant crop yield improvement observed in DS was attributed to the combined effect of tillage practice and crop residue management on improving the soil fertility and enhancing the labile carbon pool in the Shajiang black soil, which promoted the growth of summer maize and winter wheat. Generally, treatment DS was an sustainable and effective management practice to improve the soil carbon pool and enhance the year-round yield of summer maize and winter wheat in Shajiang black soil along Huai River.

crops; tillage; straw; soil carbon pool; crop yield

2018-12-19

2019-03-29

國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0301302)、安徽省重點(diǎn)研究和開發(fā)計(jì)劃(1804h07020148)和安徽省重大科技專項(xiàng)(18030701188)資助

葉新新,博士,副教授,主要從事土壤培肥和養(yǎng)分高效利用研究。Email:xxye@ahau.edu.cn

李虹穎,博士,助理研究員,主要從事植物營(yíng)養(yǎng)與土壤肥料研究。Email:nmglihongying@126.com

10.11975/j.issn.1002-6819.2019.14.014

S-3

A

1002-6819(2019)-14-0112-07

葉新新,王冰清,劉少君,馬 超,李軍利,柴如山,熊啟中,李虹穎,郜紅建.耕作方式和秸稈還田對(duì)砂姜黑土碳庫(kù)及玉米小麥產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(14):112-118. doi:10.11975/j.issn.1002-6819.2019.14.014 http://www.tcsae.org

Ye Xinxin, Wang Bingqing, Liu Shaojun, Ma Chao, Li Junli, Chai Rushan, Xiong Qizhong, Li Hongying, Gao Hongjian. Influence of tillage and straw retention on soil carbon pool and maize-wheat yield in Shajiang black soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 112-118. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.14.014 http://www.tcsae.org

猜你喜歡
碳庫(kù)黑土耕作
自然資源部:加強(qiáng)黑土耕地保護(hù)
添加木本泥炭和膨潤(rùn)土對(duì)侵蝕退化黑土理化性質(zhì)的影響*
基于Sentinel-2遙感影像的黑土區(qū)土壤有效磷反演
基于數(shù)字孿生的農(nóng)業(yè)耕作監(jiān)控系統(tǒng)
保護(hù)性耕作試驗(yàn)監(jiān)測(cè)數(shù)據(jù)分析
腐植酸:盯住東北三省5650 萬(wàn)畝黑土地保護(hù)性耕作發(fā)力
耕作與施肥方式對(duì)油菜產(chǎn)量和養(yǎng)分吸收利用的影響
寒地黑土無(wú)公害水產(chǎn)品健康養(yǎng)殖發(fā)展思路
長(zhǎng)期定位試驗(yàn)下砒砂巖與沙復(fù)配土的碳庫(kù)管理指數(shù)
玉米秸稈與秸稈生物炭對(duì)2種黑土有機(jī)碳含量及碳庫(kù)指數(shù)的影響