施肖堃 盧園萍 蔡志欣 郭仲杰 陳美元 廖劍華
摘?要:【目的】通過(guò)多個(gè)雙孢蘑菇菌株不同發(fā)育階段的差異轉(zhuǎn)錄組分析,為進(jìn)一步驗(yàn)證雙孢蘑菇發(fā)育相關(guān)基因及探討其分子機(jī)理奠定基礎(chǔ)?!痉椒ā繉?duì)雙孢蘑菇主栽品種As2796及其親本02、8213,其回交子代W192,以及國(guó)外野生菌株ARP159、國(guó)內(nèi)野生菌株AgLH830共6個(gè)具有重要代表性的菌株子實(shí)體原基期、幼菇期、采摘期、開(kāi)傘期等4個(gè)不同發(fā)育階段共24個(gè)樣品進(jìn)行轉(zhuǎn)錄組測(cè)序,并與雙孢蘑菇參考基因組序列進(jìn)行比對(duì),根據(jù)比對(duì)結(jié)果進(jìn)行各基因在不同樣品中的表達(dá)量分析及差異表達(dá)基因識(shí)別,發(fā)掘新基因與共同基因的差異表達(dá),并進(jìn)行各數(shù)據(jù)庫(kù)的基因功能注釋?!窘Y(jié)果】結(jié)果共鑒定到10 660個(gè)轉(zhuǎn)錄本,發(fā)掘新基因677個(gè),其中237個(gè)得到功能注釋。與原基期相比,6個(gè)菌株在幼菇期、采摘期和開(kāi)傘期分別有49、82、73個(gè)共同差異表達(dá)基因,其中有13個(gè)是相同的基因?!窘Y(jié)論】發(fā)現(xiàn)了一批在雙孢蘑菇子實(shí)體不同發(fā)育階段具有顯著差異表達(dá)的基因,篩選出不同菌株不同階段的共有差異基因,對(duì)雙孢蘑菇子實(shí)體發(fā)育中重要的差異基因進(jìn)行了注釋與探討。
關(guān)鍵詞:雙孢蘑菇;子實(shí)體發(fā)育;轉(zhuǎn)錄組測(cè)序;差異表達(dá)基因
中圖分類號(hào):S 646.11文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1008-0384(2019)07-775-07
Abstract: 【Objective】Transcriptome analysis was conducted on Agaricus bisporus at 4 developmental stages to identify the genes associated with and decipher the molecular mechanism involving the fungal development. 【Method】From 6 representative strains of A. bisporus including main cultivar As2796, its parents 02 and 8213, its backcrossing offspring W192, foreign wild strain ARP159, and domestic wild strain AgLH830, at primordium, young, harvesting, and opening stages, 24 fruiting body specimens were collected for transcriptome sequence analysis. By aligning them against the reference genome sequence of A. bisporus, the genes that were differentially expressed were identified. Both unique and common differentially expressed genes (DEGs) were clearly exposed to be annotated using the databases to determine their specific functions. 【Result】 Among the 10 660 transcripts obtained, 677 genes were unique with 237 functionally annotated. The tested A. bisporus shared 49 common DEGs between primordium and young stages, 82 between primordium and harvest stages, and 73 between primordium and pileus opening stages. And, 13 genes were found commonly present in the various strains. 【Conclusion】 Both unique and common DEGs in A. bisporus at the 4 developmental stages were identified and annotated in the study.
Key words: Agaricus bisporus; fruiting body development; transcriptome sequencing; differentially expressed gene
0?引言
【研究意義】轉(zhuǎn)錄組研究是發(fā)掘功能基因的重要途徑,通過(guò)樣本間基因表達(dá)差異比較,進(jìn)而鑒定與特殊性狀相關(guān)的候選基因,然后通過(guò)生物信息學(xué)方法和后續(xù)的實(shí)驗(yàn)對(duì)候選基因進(jìn)行功能分析和驗(yàn)證,有利于在動(dòng)植物疾病、功能基因組、育種等領(lǐng)域取得重要的科學(xué)發(fā)現(xiàn)[1-2]。轉(zhuǎn)錄組測(cè)序(RNA-Seq)是一種高效、快捷的轉(zhuǎn)錄組研究手段,通過(guò)高通量測(cè)序技術(shù)對(duì)樣品中mRNA反轉(zhuǎn)錄形成的cDNA進(jìn)行測(cè)序,統(tǒng)計(jì)相關(guān)讀段(Reads)可計(jì)算出不同基因的表達(dá)量,該技術(shù)已被廣泛應(yīng)用于生物學(xué)、醫(yī)學(xué)等研究領(lǐng)域?!厩叭搜芯窟M(jìn)展】轉(zhuǎn)錄組測(cè)序在食用菌研究中也有應(yīng)用,例如楊芳等[3]通過(guò)對(duì)雞樅菌的轉(zhuǎn)錄組進(jìn)行測(cè)序,分析發(fā)現(xiàn)了可能參與降解纖維素和木質(zhì)素等相關(guān)酶類編碼基因;Chen等[4]結(jié)合香菇基因組和轉(zhuǎn)錄組數(shù)據(jù)分析香菇木質(zhì)素降解相關(guān)基因和轉(zhuǎn)錄因子的表達(dá)情況,揭示了該菌降解木質(zhì)纖維素的遺傳物質(zhì)基礎(chǔ)。Fu等[5]通過(guò)比較白靈菇不同發(fā)育時(shí)期的轉(zhuǎn)錄組數(shù)據(jù),發(fā)現(xiàn)了一系列與子實(shí)體形成相關(guān)的基因。
【本研究切入點(diǎn)】前期對(duì)雙孢蘑菇子實(shí)體不同發(fā)育與后熟時(shí)期開(kāi)展了系列差異蛋白質(zhì)組分析[6-9],在此基礎(chǔ)上,本研究擬對(duì)雙孢蘑菇Agaricus bisporus (J.E.Lange) Imbach國(guó)內(nèi)主栽品種As2796及其親本02、8213,回交子代W192,以及國(guó)外野生菌株ARP159,國(guó)內(nèi)野生菌株AgLH830共6個(gè)具有重要代表性的菌株子實(shí)體原基期、幼菇期、采摘期、開(kāi)傘期[8]4個(gè)不同發(fā)育階段的樣品進(jìn)行轉(zhuǎn)錄組測(cè)序分析?!緮M解決的關(guān)鍵問(wèn)題】通過(guò)同一菌株不同發(fā)育階段及不同菌株同一發(fā)育階段間的差異比較,挖掘高產(chǎn)、優(yōu)質(zhì)等特性相關(guān)的基因,分析國(guó)內(nèi)外菌株的異同點(diǎn),發(fā)現(xiàn)與雙孢蘑菇子實(shí)體生長(zhǎng)、發(fā)育相關(guān)基因與通路,用于指導(dǎo)育種工作。
1?材料與方法
1.1?供試菌株
供試菌株As2796、02、8213、W192、ARP159、AgLH830由福建省農(nóng)業(yè)科學(xué)院食用菌研究所保藏并提供。供試樣品為該6個(gè)菌株子實(shí)體原基期、幼菇期、采摘期、開(kāi)傘期4個(gè)不同發(fā)育階段的樣品,共24個(gè)樣品。
1.2?試驗(yàn)方法
1.2.1?子實(shí)體取樣
常規(guī)栽培獲得的雙孢蘑菇子實(shí)體按照之前的方法[8]進(jìn)行不同發(fā)育階段的采樣,經(jīng)液氮速凍后于-80℃保存?zhèn)溆谩?/p>
1.2.2?總RNA提取
待測(cè)子實(shí)體樣品加液氮研磨成粉末,用真菌總RNA提取試劑盒(Fungal Total RNA Extraction Kit,OMEGA公司產(chǎn)品)按照試劑盒說(shuō)明書(shū)進(jìn)行總RNA提取。
1.2.3?轉(zhuǎn)錄組測(cè)序
提取的總RNA送交北京百邁客生物科技有限公司進(jìn)行轉(zhuǎn)錄組測(cè)序。包括樣品檢測(cè)、文庫(kù)構(gòu)建、上機(jī)測(cè)序、測(cè)序數(shù)據(jù)處理及質(zhì)量控制等步驟,均按照之前的方法[10-11]進(jìn)行。
1.2.4?生物信息學(xué)分析
測(cè)序數(shù)據(jù)的生物信息學(xué)分析包括與參考基因組的序列比對(duì)、可變剪接分析、新基因發(fā)掘、差異表達(dá)基因識(shí)別、差異表達(dá)基因功能注釋和富集分析等,均按照文獻(xiàn)[10]進(jìn)行?;虮磉_(dá)量計(jì)算采用FPKM(reads per kb per million reads)方法[12]。
2?結(jié)果與分析
2.1?測(cè)序數(shù)據(jù)產(chǎn)出統(tǒng)計(jì)
24個(gè)樣品數(shù)據(jù)產(chǎn)出統(tǒng)計(jì)見(jiàn)表1。經(jīng)過(guò)測(cè)序質(zhì)量控制,共得到128.98 Gb Clean Data,各樣品Q30堿基百分比均不小于86.06%。利用TopHat 2[13]軟件將Clean Reads與參考基因組進(jìn)行序列比對(duì),獲得測(cè)序樣品特有的序列特征信息及在參考基因組或基因上的位置信息。根據(jù)比對(duì)結(jié)果,各樣品的Reads與雙孢蘑菇指定參考基因組的比對(duì)效率在69.21%~85.44%。2.2?新基因發(fā)掘
選擇雙孢蘑菇參考基因組序列,使用Cufflinks軟件對(duì)匹配的Reads進(jìn)行拼接,并與參考基因組(https://genome.jgi.doe.gov/Agabi_varbisH97_2/Agabi_varbisH97_2.home.html)注釋信息進(jìn)行比較,共發(fā)掘677個(gè)新基因。使用BLAST[14]軟件將發(fā)掘的新基因與COG[15],GO[16],KEGG[17],Swiss-Prot[18],NR[19]等數(shù)據(jù)庫(kù)進(jìn)行序列比對(duì),在各數(shù)據(jù)庫(kù)獲得相應(yīng)注釋信息的新基因數(shù)量見(jiàn)表2,總共有237個(gè)基因獲得注釋。
2.3?差異表達(dá)分析
根據(jù)比對(duì)結(jié)果計(jì)算得到各基因表達(dá)量,使用EBSeq[20]進(jìn)行差異分析,獲得測(cè)序樣品之間包括上調(diào)基因和下調(diào)基因在內(nèi)的差異表達(dá)基因集,其數(shù)目統(tǒng)計(jì)見(jiàn)表3。可以看出以原基期為參照,不同菌株在后3個(gè)發(fā)育階段中基因上調(diào)或下調(diào)表達(dá)趨勢(shì)并不一致,以下調(diào)表達(dá)為主。對(duì)差異表達(dá)基因進(jìn)行GO、COG、KEGG、Swiss-Prot、NR等數(shù)據(jù)庫(kù)的功能注釋,大多數(shù)的差異基因獲得了相應(yīng)的注釋信息(表4)。
2.4?菌株間共有差異基因分析
對(duì)雙孢蘑菇6個(gè)菌株子實(shí)體4個(gè)不同發(fā)育階段的差異表達(dá)基因進(jìn)行分析,發(fā)現(xiàn)與原基期相比,6個(gè)菌株在幼菇期、采摘期和開(kāi)傘期分別有49、82、73個(gè)共同差異表達(dá)基因,并對(duì)其進(jìn)行功能注釋和富集分析。圖1~3顯示了原基期與幼菇期49個(gè)共同差異基因的分析結(jié)果,其中COG分類注釋結(jié)果表明差異基因主要集中在氨基酸轉(zhuǎn)運(yùn)與代謝、次級(jí)代謝產(chǎn)物合成、轉(zhuǎn)運(yùn)與分解等11個(gè)功能類別,GO富集結(jié)果顯示它們主要參與代謝過(guò)程、催化活性等14項(xiàng)生物學(xué)過(guò)程、細(xì)胞組分或分子功能,而KEGG富集分析則表明這些差異基因主要參與脂肪酸代謝、類固醇與葉酸生物合成等途徑。
進(jìn)一步統(tǒng)計(jì)表明,上述來(lái)自6個(gè)菌株不同發(fā)育階段的49、82、73個(gè)共同差異表達(dá)基因中有13個(gè)基因是相同的,這些基因與原基期相比的上下調(diào)差異表達(dá)貫穿于子實(shí)體后續(xù)階段的發(fā)育過(guò)程。表5列出了這些基因的ID、長(zhǎng)度及在As2796子實(shí)體4個(gè)發(fā)育階段中的相對(duì)表達(dá)量,在其他5個(gè)菌株中的表達(dá)量趨勢(shì)也是一致的。與原基期比較,只有1個(gè)基因(Gene ID:estExt_fgenesh2_kg.C_10275)是上調(diào)表達(dá)的,該基因在Swiss-Prot注釋為可能是aminodeoxychorismate synthase(氨基脫氧分支酸合成酶)。其余的12個(gè)基因在后3個(gè)階段中是下調(diào)表達(dá)的,在Swiss-Prot數(shù)據(jù)庫(kù)中分別注釋為transcriptional enhancer factor(轉(zhuǎn)錄增強(qiáng)因子) 、Long-chain-fatty-acid-CoA ligase(長(zhǎng)鏈脂肪酸輔酶A連接酶)、O-methylsterigmatocystin oxidoreductase(甲基柄曲霉素氧化還原酶)、Zinc/cadmium resistance protein(鋅/鈣抗性蛋白)等。
3?討?論
本次轉(zhuǎn)錄組測(cè)序共24個(gè)樣品,即6個(gè)代表性雙孢蘑菇菌株的子實(shí)體原基期、幼菇期、采摘期、開(kāi)傘期等4個(gè)不同發(fā)育階段的樣品,通過(guò)生物信息學(xué)分析及進(jìn)一步的比較,發(fā)現(xiàn)了一批在雙孢蘑菇子實(shí)體不同發(fā)育階段具有顯著差異表達(dá)的基因,部分基因的相對(duì)表達(dá)量差異甚至高達(dá)千倍以上。
課題組前期已單獨(dú)分析了雙孢蘑菇As2796子實(shí)體發(fā)育的轉(zhuǎn)錄組,對(duì)差異基因進(jìn)行了注釋并篩選出了4個(gè)發(fā)育階段中基因相對(duì)表達(dá)量連續(xù)下調(diào)至痕量水平以及從痕量水平連續(xù)上調(diào)表達(dá)的差異基因[10]。吳小梅等[21]之前也對(duì)雙孢蘑菇一個(gè)菌株子實(shí)體發(fā)育的3個(gè)時(shí)期樣品進(jìn)行了轉(zhuǎn)錄組測(cè)序分析,列出了3個(gè)發(fā)育階段相對(duì)表達(dá)量大于15倍的18個(gè)差異基因。本文使用6個(gè)代表性菌株進(jìn)行子實(shí)體發(fā)育不同階段的轉(zhuǎn)錄組分析,獲得了不同菌株間同個(gè)階段的共同差異基因,以及不同菌株不同階段的共有差異基因,從上述分析的不同角度對(duì)雙孢蘑菇子實(shí)體發(fā)育中重要的差異基因進(jìn)行了注釋與探討。這些顯著的差異表達(dá)基因以及在6個(gè)菌株不同發(fā)育階段的共同差異表達(dá)基因是否與雙孢蘑菇生長(zhǎng)發(fā)育、產(chǎn)量、質(zhì)量等相關(guān),值得后期進(jìn)行更深入的篩選與驗(yàn)證分析。
參考文獻(xiàn):
[1]PLAZA D F, LIN C W, van der VELDEN N S J, et al.Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development[J]. BMC Genomics, 2014, 15(1):492-509.
[2]TEICHERT I, WOLFF G, KCK U, et al. Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development[J]. BMC Genomics, 2012, 13(1):511-529.
[3]楊芳,許波,李俊俊,等. 雞樅菌轉(zhuǎn)錄組分析揭示其對(duì)木質(zhì)纖維素的降解功能[J]. 微生物學(xué)報(bào), 2012, 52(4):466-477.
YANG F, XU B, LI J J, et al. Transcriptome analysis of Termitomyces albuminosus reveals the biodegradation of lignocellulose[J]. Acta Microbiologica Sinica, 2012, 52(4):466-477.(in Chinese)
[4]CHEN L F, GONG Y H, CAI Y L, et al. Genome sequence of the edible cultivated mushroom Lentinula edodes (Shiitake) reveals insights into lignocellulose degradation[J]. PloS One, 2016, 11(8), e0160336.
[5]FU Y P,DAI Y T,YANG C T,et al.Comparative transcriptome analysis identified candidate genes related to Bailinggu mushroom formation and genetic markers for genetic analyses and breeding[J].Scientific Reports, 2017,7(1):9266.
[6]陳美元. 雙孢蘑菇子實(shí)體原基與菇蕾蛋白質(zhì)表達(dá)變化分析[J],食用菌學(xué)報(bào),2012, 19(3):15-20.
CHEN M Y. Differential Expression of Proteins During the Primordium and Button Stages of Agaricus bisporus[J]. Acta Edulis Fungi, 2012, 19(3):15-20.(in Chinese)
[7]陳美元,廖劍華,李洪榮,等. 雙孢蘑菇子實(shí)體發(fā)育后期差異表達(dá)蛋白質(zhì)分析[J],菌物學(xué)報(bào),2013, 32(5):855-861.
CHEN M Y, LIAO J H, LI H R, et al. Analysis of differentially expressed proteins in later developing stage fruitbody of Agaricus bisporus[J]. Mycosystema, 2013, 32(5):855-861.(in Chinese)
[8]陳美元,廖劍華,李洪榮,等.雙孢蘑菇子實(shí)體發(fā)育差異蛋白質(zhì)組分析[J],菌物學(xué)報(bào),2015, 34(6):1153-1164.
CHEN M Y, LIAO J H, LI H R, et al. Developmental proteomics analysis of the button mushroom Agaricus bisporus[J]. Mycosystema, 2015, 34(6):1153-1164.(in Chinese)
[9]CHEN M Y, LIAO J H, LI H R, et al. iTRAQ-MS/MS proteomic analysis reveals differentially expressed proteins during post-harvest maturation of the white button mushroom Agaricus bisporus[J]. Current Microbiology, 2017, 74(5):641-649.
[10]施肖堃,蔡志欣,郭仲杰,等. 雙孢蘑菇As2796子實(shí)體發(fā)育轉(zhuǎn)錄組測(cè)序分析[J],福建農(nóng)業(yè)學(xué)報(bào),2018, 33 (3):282-287.
SHI X K, CAI Z X, GUO Z J, et al. Analysis of Agaricus bisporus Fruitbody Development by Transcriptome Sequencing[J]. Fujian Journal of Agricultural Sciences, 2018, 33 (3):282-287.(in Chinese)
[11]蔡丹鳳,蔡志欣,陳美元,等. 茯苓菌落褐變的轉(zhuǎn)錄組測(cè)序分析[J],廣州中醫(yī)藥大學(xué)學(xué)報(bào),2017, 34(2):245-249.
CAI D F, CAI Z X, CHEN M Y, et al. Analysis of Poria cocos Mycelia Browning by Transcriptome Sequencing[J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2017, 34(2):245-249.(in Chinese)
[12]MORTAZAVI A, WILLIAMS B A, McCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods, 2008, 5(7):621-628.
[13]KIM D, PERTEA G, TRAPNELL C, et al. TopHat2:accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[J]. Genome Biology,2013, 14:R36.
[14]ALTSCHUL S F, MADDEN T L, ZHANG J, et al. Gapped BLAST and PSI BLAST:A New Generation of Protein Database Search Programs[J]. Nucleic Acids Research,1997, 25(17):3389-3402.
[15]TATUSOV R L, GALPERIN M Y, NATALE D A. The COG database:a tool for genome scale analysis of protein functions and evolution[J]. Nucleic Acids Research,2000, 28(1):33-36.
[16]ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology:tool for the unification of biology[J]. Nature Genetics, 2000, 25(1):25-29.
[17]KOONIN E V, FEDOROVA N D,JACKSON J D,et al.A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes[J].Genome Biology, 2004,5(2):77.
[18]APWEILER R, BAIROCH A, WU C H, et al. UniProt:the universal protein knowledgebase[J]. Nucleic acids research, 2004, 32:115-119.
[19]DENG Y Y, LI J Q, WU S F, et al. Integrated nr Database in Protein Annotation System and Its Localization[J]. Computer Engineering, 2006, 32(5):71-74.
[20]HANSEN K D, WU Z J, IRIZARRY R A, et al. Sequencing technology does not eliminate biological variability[J]. Nature Biotechnology, 2011, 29(7):572-573.
[21]吳小梅,張昕,李南羿. 雙孢蘑菇子實(shí)體不同發(fā)育時(shí)期的轉(zhuǎn)錄組分析[J]. 菌物學(xué)報(bào), 2017, 36(2):193-203.
WU X M, ZHANG X, LI N Y. Transcriptome analysis of Agaricus bisporus fruiting at different stages[J]. Mycosystema, 2017, 36(2):193-203.(in Chinese)
(責(zé)任編輯:黃愛(ài)萍)