盧維宏 張乃明 張麗 包立 孟令宇 韓政 秦太峰
摘要:【目的】分析施用增效肥料對(duì)設(shè)施栽培小白菜生長特性、抗逆生理及土壤酶活性的影響,為增效肥料在設(shè)施蔬菜上的推廣應(yīng)用提供參考依據(jù)。【方法】設(shè)脲酶抑制劑、生化黃腐酸、海藻酸及復(fù)合增效劑4個(gè)增效肥料試驗(yàn)處理(T1~T4),分別以不施肥(CK0)和不含增效劑的普通化肥(CK1)為對(duì)照,在設(shè)施栽培條件下,通過盆栽試驗(yàn),研究不同增效肥料基施后對(duì)小白菜可溶性蛋白、過氧化物酶(POD)、過氧化氫酶(CAT)、總超氧化物歧化酶(T-SOD)、丙二醛(MDA)含量等抗逆生理指標(biāo)及土壤有機(jī)碳含量和酶活性影響的差異,同時(shí)觀測各處理小白菜的農(nóng)藝性狀和生物量?!窘Y(jié)果】與CK1相比,施用增效肥料后小白菜各項(xiàng)農(nóng)藝性狀、產(chǎn)量和生物量指標(biāo)均得到改善,以生化黃腐酸增效肥料整體效果最佳,其株高、葉片SPAD值、葉長、葉寬、有效葉片數(shù)和產(chǎn)量分別提高15.0%、4.0%、18.1%、15.9%、9.8%和63.8%,根長、根鮮重和根干重分別增加23.3%、324.0%和5.9%,生物量提高51.5%,且葉長、產(chǎn)量、根長、根鮮重和生物量方面均達(dá)顯著差異水平(P<0.05,下同)。與CK1相比,脲酶抑制劑、生化黃腐酸、海藻酸及復(fù)合增效劑4種增效肥料處理小白菜的可溶性蛋白含量分別提高47.2%、49.1%、48.2%和51.5%,脲酶抑制劑、生化黃腐酸及復(fù)合增效劑分別提高小白菜POD活性7.8%、2.8%和3.1%,脲酶抑制劑、海藻酸及復(fù)合增效劑分別降低MDA含量2.2%、19.1%和36.6%,均達(dá)顯著差異水平。與CK1相比,脲酶抑制劑和海藻酸兩種增效肥料對(duì)土壤脲酶起抑制作用,抑制率分別達(dá)14.3%和2.8%,其余增效肥料均對(duì)土壤酶活性(除復(fù)合增效劑處理抑制CAT活性6.2%)和有機(jī)碳含量(除脲酶抑制劑處理下降10.2%外)產(chǎn)生一定的促進(jìn)效果,其中生化黃腐酸增效肥料效果最穩(wěn)定,土壤脲酶、蔗糖酶、CAT活性及土壤有機(jī)碳含量分別提高10.0%、93.7%、12.5%和7.4%,且均達(dá)顯著差異水平。【結(jié)論】增效肥料可改善設(shè)施栽培小白菜的部分抗性生理指標(biāo),提高其對(duì)逆境的耐受力和土壤有機(jī)碳及礦化速度,實(shí)現(xiàn)小白菜農(nóng)藝性狀、生物量和產(chǎn)量的提升。
關(guān)鍵詞: 增效肥料;小白菜;抗性生理指標(biāo);土壤酶活;土壤有機(jī)碳
中圖分類號(hào): S634.306.1? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2019)09-2022-07
Abstract:【Objective】To study the effects of different synergistic fertilizers on the growth characteristics, stress resistance physiology of pakchoi and soil enzyme activity in greenhouse cultivation, and provide references for the promotion of synergistic fertilizer application on facility vegetables. 【Method】Four experimental groups with urease inhibitor, biochemical fulvic acid, alginic acid and synergist compounds(T1-T4) were conducted, respectively, with CK0 without fertilization and CK1 with the ordinary fertilizer as control. Potted culture experiments were conducted to study the soluble protein, peroxidase(POD), catalase(CAT), total superoxide dismutase(T-SOD) and malondialdehyde(MDA) contents of pakchoi after application of different synergistic fertilizers. At the same time,the different effects on soil organic carbon content, representative enzyme activity were observed, and agronomic traits and biomass of pakchoi were also analyzed. 【Result】Compared with CK1, the agronomic traits, yield and biomass indicators of pakchoi were improved after applying the synergistic fertilizer. The overall effect of biochemical fulvic acid-enhancing fertilizer was the best, and plant height, leaf SPAD value, leaf length, leaf width, effective leaf number and yield increased by 15.0%, 4.0%, 18.1%, 15.9%, 9.8% and 63.8%, respectively. Root length, root fresh weight and root dry weight increased by 23.3%, 324.0% and 5.9%, respectively. And the biomass increased by 51.5%;five indexes(including leaf length, yield, root length, fresh weight and biomass) reached significant differences(P<0.05, the same below). Compared with CK1, the four kinds of synergistic fertilizers(urease inhibitor, biochemical fulvic acid, alginic acid and synergist compounds) increased the soluble protein content of? pakchoi by 47.2%, 49.1%, 48.2% and 51.5%, respectively, and the POD activity was increased respectively by 7.8%, 2.8% and 3.1% under urease inhibitor, biochemical fulvic acid and synergist compounds treatments. The MDA content decreased by 2.2%, 19.1% and 36.6%, respectively under urease inhibitor, alginic acid and? synergist compounds treatments, and all reached significant differences.Compared with CK1, except urease inhibitors and alginate synergistic fertilizer played an inhibitory effect on soil urease, and inhibition rate reached 14.3%, 2.8% respectively, the rest synergistic fertili-zers(except compound synergist treatment decreased the CAT activity by 6.2%) and organic carbon(except urease inhibitor treatment decreased by 10.2%) played a promoting effect on soil enzyme activity. The effect of biochemical fulvic acid synergistic fertilizer was the most stable, which increased soil urease content, sucrase content, CAT activity and soil organic carbon content by 10.0%, 93.7%, 12.5% and 7.4% respectively, and reached significant differences. 【Conclusion】Four kinds of synergistic fertilizers can improve the stress resistance indexes of pakchoi, increase its stress tolerance, soil organic carbon content and mineralization speed, and also improve agronomic traits, biomass and yield of pakchoi.
Key words: synergistic fertilizers; pakchoi; physiological index of resistance; soil enzyme activities; soil organic carbon
0 引言
【研究意義】化肥在糧食增產(chǎn)中發(fā)揮了極其重要的作用(張福鎖,2008;趙雪雁等,2019),據(jù)聯(lián)合國糧農(nóng)組織報(bào)道,化肥對(duì)全球糧食產(chǎn)量貢獻(xiàn)率達(dá)50%~60%(曾希柏等,2002),對(duì)我國糧食產(chǎn)量貢獻(xiàn)率也曾高達(dá)56.8%(王祖力和肖海峰,2008)。但過量施用化肥也造成了極大的面源污染和耕地質(zhì)量退化,對(duì)生態(tài)環(huán)境造成了威脅(郝小雨,2012;黃紹文等,2017)。我國目前單位面積農(nóng)田的化肥投入量約為世界平均水平的3.9倍,遠(yuǎn)遠(yuǎn)高于歐美等發(fā)達(dá)國家(Nathaniel et al.,2012),而蔬菜的施肥量更為偏高,設(shè)施和露地蔬菜的化肥用量分別是糧食作物的5.2和2.5倍(Huang and Jin,2008),但設(shè)施蔬菜的氮、磷、鉀養(yǎng)分利用率分別僅為24%、8%和46%(蔡祖聰,2019)。脲酶抑制劑、硝化抑制劑、腐植酸和海藻酸等作為化肥增效劑具有提升化肥利用率的作用(徐星凱等,2000;張運(yùn)紅等,2018;Liu et al.,2019),可實(shí)現(xiàn)降低化肥施用量和減緩農(nóng)業(yè)面源污染。因此,探討化肥增效劑在設(shè)施栽培中對(duì)作物和土壤的作用效應(yīng)顯得非常重要,對(duì)緩解設(shè)施土壤質(zhì)量退化和實(shí)現(xiàn)設(shè)施農(nóng)業(yè)可持續(xù)健康發(fā)展具有重要意義?!厩叭搜芯窟M(jìn)展】大量研究表明,肥料增效劑的合理使用可提升化肥利用率,減少化肥施用量,如徐星凱等(2000)在北方春小麥上采用尿素配施脲酶抑制劑和硝化抑制劑可顯著降低NO[-3]-N和NO[-2]-N的富集,促進(jìn)肥料氮的固持—礦化周轉(zhuǎn),提高氮的利用率;在南方水稻上的研究進(jìn)一步顯示,硝化抑制劑對(duì)氨氧化細(xì)菌具有明顯的抑制效果,推測這可能是緩解硝化反應(yīng)和提高氮素利用率的主要途徑(張文學(xué)等,2019;Chen et al.,2019)。王連祥和張學(xué)杰(2017)研究發(fā)現(xiàn)葉面噴施聚天門冬氨酸能提高黃瓜的維生素C和可溶性糖含量,降低硝酸鹽濃度,沖施則增加了土壤的堿解氮、速效磷、速效鉀和有機(jī)質(zhì)含量;而聚天門冬氨酸增效尿素對(duì)玉米的農(nóng)藝指標(biāo)、禿尖情況、氮肥利用率也均有明顯的改善效果(唐會(huì)會(huì)等,2019)。氨基酸(許猛等,2018a)、海藻酸(張運(yùn)紅等,2018)、腐植酸(Liu et al.,2019;Tavares et al.,2019)等作為肥料增效劑在前人的研究中也取得了類似的提高化肥利用率的結(jié)論,說明配施肥料增效劑對(duì)實(shí)現(xiàn)化肥的減量增效具有重要作用?!颈狙芯壳腥朦c(diǎn)】目前增效肥料的研究主要側(cè)重于減少養(yǎng)分流失、提高養(yǎng)分利用率、實(shí)現(xiàn)作物增產(chǎn)等方面(許猛等,2018b;Lam et al.,2019),而關(guān)于其對(duì)作物抗逆性和土壤效應(yīng)方面的研究相對(duì)不足。目前我國農(nóng)業(yè)面源污染和耕地土壤質(zhì)量退化等問題凸顯,尤其對(duì)于高產(chǎn)出高投入的長期連作設(shè)施栽培,土壤酸化、鹽漬化和重金屬累積問題等已成為制約農(nóng)業(yè)可持續(xù)發(fā)展的瓶頸。因此,探索增效肥料(含肥料增效劑)對(duì)作物的抗逆效應(yīng)及對(duì)土壤的作用效應(yīng)顯得尤為重要。【擬解決的關(guān)鍵問題】選用脲酶抑制劑、生化黃腐酸和海藻酸3種肥料增效劑,在設(shè)施栽培條件下研究增效劑配施化肥對(duì)小白菜的農(nóng)藝性狀、抗逆生理指標(biāo)和土壤代表酶活性影響的差異,以期為增效肥料的應(yīng)用和推廣提供參考依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
供試作物為不結(jié)球小白菜(Brassica chinensis L.),品種名早熟2號(hào)。供試土壤為紅壤,取自云南省昆明市盤龍區(qū)云南農(nóng)業(yè)大學(xué)校內(nèi)大田(東經(jīng)102°44′42″、北緯25°7′55″)耕層土壤,為第四紀(jì)黏土沉積物母質(zhì)發(fā)育,質(zhì)地黏重,土壤自然風(fēng)干后,除去石塊及植物殘?bào)w等雜物,全部粉碎過2 mm篩,混勻后儲(chǔ)存?zhèn)溆?。供試增效劑分別為脲酶抑制劑、生化黃腐酸和海藻酸,均由貴州西洋肥業(yè)有限公司生產(chǎn)。供試土壤pH 7.4,基礎(chǔ)養(yǎng)分為堿解氮21.5 mg/kg、速效磷10.6 mg/kg、速效鉀24.0 mg/kg、有機(jī)質(zhì)18.0 mg/kg。
1. 2 試驗(yàn)方法
試驗(yàn)以土培盆栽的方式進(jìn)行,共設(shè)6個(gè)處理,分別采用脲酶抑制劑、生化黃腐酸、海藻酸與基施復(fù)合肥(N-P2O5-K2O 15-15-15)配施。CK0:不施肥;CK1:基施復(fù)合肥750 kg/ha;T1:基施復(fù)合肥750 kg/ha+0.7%脲酶抑制劑;T2:基施復(fù)合肥750 kg/ha+3.0%生化黃腐酸;T3:基施復(fù)合肥750 kg/ha+0.3%海藻酸;T4:基施復(fù)合肥750 kg/ha+復(fù)合增效劑(0.7%脲酶抑制劑+3.0%生化黃腐酸+0.3%海藻酸)。每處理4次重復(fù)。增效劑的百分比(%)=增效劑干重/基肥重量×100。試驗(yàn)采用白色塑料盆,上內(nèi)直徑為20.0 cm,上外直徑為24.0 cm,高15.5 cm,盆底有孔,排水通氣良好。具體操作步驟為:每盆稱取風(fēng)干粉碎過2 mm篩土壤樣品2.5 kg,采用“下實(shí)上虛”的方式裝于盆中,稱取基肥基施復(fù)合肥0.8 g/kg干土;脲酶抑制劑、生化黃腐酸、海藻酸分別與粉碎后的基肥混合均勻后施入不同處理土壤;選用大小均勻且飽滿的小白菜種子,用清水浸泡在恒溫培養(yǎng)箱25 ℃下培養(yǎng)24 h,每盆播種20粒,均勻分散,待發(fā)芽后間苗培養(yǎng),每盆定植3株長勢一致的幼苗繼續(xù)培養(yǎng)。
試驗(yàn)在云南農(nóng)業(yè)大學(xué)云南省土壤培肥與污染修復(fù)工程實(shí)驗(yàn)室專用玻璃溫室大棚進(jìn)行,于2019年4月25日播種,4月30日間苗定植,5月25日收獲,期間定時(shí)定量澆水,基本控制為70%的田間持水量。收獲時(shí)把小白菜地上部分齊土剪下,剪取最上部新葉1片單獨(dú)4 ℃保持備用,其余部分帶回實(shí)驗(yàn)室備用。收獲后,取0~10 cm土壤樣品兩份,均去除根系后,一份4 ℃鮮土保存?zhèn)溆?,一份風(fēng)干磨碎分別過篩備用;之后用清水沖洗土壤至根系干凈后帶回實(shí)驗(yàn)室備用。
1. 3 測定項(xiàng)目及方法
測定收獲植株的株高、葉片數(shù)、最上部完全展開葉片的葉長和葉寬、葉綠素(SPAD值)、地上部分鮮重、根長、根系鮮重等農(nóng)藝性狀;然后在105 ℃下殺青,75 ℃下烘干至恒重后稱干重。葉片的可溶性蛋白含量采用考馬斯亮藍(lán)比色法測定(王學(xué)奎,2015),過氧化物酶(POD)、過氧化氫酶(CAT)和總超氧化物歧化酶(T-SOD)活性及和丙二醛(MDA)含量均采用南京建成生物工程研究所研制的試劑盒及其方法進(jìn)行檢測。
土壤基本理化性質(zhì)參照《土壤農(nóng)化分析》(鮑士旦,2000)測定。使用pH計(jì)測定土壤pH,即稱取10.0 g風(fēng)干土,加入25.0 mL蒸餾水,置于恒溫振蕩器中25 ℃、180 r/min條件下振蕩30 min,取出靜置1.0 h后取上清液測定;堿解擴(kuò)散法測定土壤堿解氮;NH4OAc浸提,火焰光度法測定土壤速效鉀;NaHCO3浸提,鉬銻抗比色法測定土壤速效磷。土壤脲酶、蔗糖酶分別采用靛酚藍(lán)比色法、3,5-二硝基水楊酸比色法測定;土壤CAT活性采用紫外分光光度法測定(楊蘭芳等,2011),其活性以每20 min內(nèi)每克土壤分解的過氧化氫的微摩爾數(shù)來表示。
1. 4 統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用Excel 2010和SPSS 19.0進(jìn)行整理、單因素方差分析和差異顯著性比較,所有數(shù)據(jù)均為4次觀測值的平均值。
2 結(jié)果與分析
2. 1 不同增效肥料對(duì)小白菜生長的影響
2. 1. 1 對(duì)小白菜農(nóng)藝性狀指標(biāo)的影響 如表1所示,施用增效肥料的小白菜農(nóng)藝性狀指標(biāo)整體上優(yōu)于未使用增效肥料處理,尤其是在株高、葉長、葉寬和產(chǎn)量指標(biāo)上。與CK0相比,施用增效肥料處理能促進(jìn)小白菜的長勢,除葉片SPAD值和平均葉片數(shù)兩項(xiàng)指標(biāo)外,其余指標(biāo)均達(dá)顯著差異水平(P<0.05,下同)。與CK1相比,配施2.5%生化黃腐酸的T2處理整體效果表現(xiàn)最好,6項(xiàng)農(nóng)藝指標(biāo)均最優(yōu),株高、葉綠素、葉長、葉寬、葉片數(shù)和單株重分別提高15.0%、4.0%、18.1%、15.9%、9.8%和63.8%,株高、葉長和產(chǎn)量3項(xiàng)指標(biāo)達(dá)到顯著差異水平;其次為施用復(fù)合增效劑的T4處理,除葉綠素指標(biāo)略微升高外,其余指標(biāo)(株高、葉長、葉寬、平均葉片數(shù)和產(chǎn)量)分別比CK1提高9.1%~60.7%,且株高、葉長和產(chǎn)量3項(xiàng)指標(biāo)達(dá)顯著差異水平。因此,對(duì)比脲酶抑制劑、生化黃腐酸、海藻酸3種改良劑及其復(fù)配后對(duì)小白菜生長的影響效果,以單獨(dú)配施生化黃腐酸的效果最好。
2. 1. 2 對(duì)小白菜根系指標(biāo)的影響 如表2所示,與CK1相比,以配施復(fù)合增效劑肥料的T4處理整體效果最好,小白菜的根長、根鮮重和根干重分別提高13.6%、595.6%和47.5%,且根鮮重和根干重均達(dá)顯著差異水平;其次為配施3.0%生化黃腐酸增效肥料的T2處理,上述3項(xiàng)根系指標(biāo)分別提高23.3%、324.0%和5.9%,且根長和根鮮重達(dá)顯著差異水平。說明設(shè)施栽培條件下,在紅壤土上施用增效肥料對(duì)小白菜的根系具有明顯促進(jìn)作用,對(duì)比不同配施增效肥料的效果,以復(fù)合增效劑及單獨(dú)施用生化黃腐酸的增效肥料對(duì)小白菜根系的作用效果較明顯。
2. 1. 3 對(duì)小白菜生物量的影響 經(jīng)過30 d的培養(yǎng),施用不同增效肥料對(duì)小白菜生物量(即地上部干物質(zhì)重量)的累積效果具有明顯差異。從圖1可看出,以同時(shí)配施復(fù)合增效劑的T4處理效果最好,其生物量較未施用增效劑肥料的CK1增加68.7%,其次為配施0.3%海藻酸的T3處理,比CK1提高60.6%;配施3.0%生化黃腐酸的T2處理則提高51.5%,配施0.7%脲酶抑制劑的T1處理提高22.8%。說明脲酶抑制劑、生化黃腐酸、海藻酸及三者復(fù)配后對(duì)小白菜的生物量累積均有明顯改善作用,后三者與CK0和CK1相比均已達(dá)顯著差異水平,且以復(fù)合增效劑的效果最佳。
2. 2 不同增效肥料對(duì)小白菜生理指標(biāo)的影響
由表3可看出,施用不同增效肥料后,對(duì)設(shè)施栽培條件下紅壤小白菜植株的可溶性蛋白、3種抗氧化酶的活性及MDA含量的影響以T4處理的整體效果較佳,與CK1相比,可溶性蛋白含量增加51.5%,POD活性增加3.1%,MDA含量降低36.6%,差異均達(dá)顯著水平,但對(duì)于CAT和T-SOD活性則起到了一定的負(fù)調(diào)控作用。與CK1相比,單獨(dú)配施脲酶抑制劑、生化黃腐酸和海藻酸的處理可顯著提高可溶性蛋白含量,分別增加47.2%、49.1%和48.2%;單獨(dú)配施脲酶抑制劑和生化黃腐酸對(duì)POD活性分別顯著提高7.8%和2.8%;單獨(dú)施用脲酶抑制劑和海藻酸分別顯著降低MDA含量2.2%和19.1%;而單獨(dú)施用3種增效劑均對(duì)CAT和T-SOD兩種酶的活性無促進(jìn)作用。
2. 3 不同增效肥料對(duì)土壤酶活性及有機(jī)碳的影響
如表4所示,配施3種增效肥料后,對(duì)土壤脲酶、蔗糖酶和CAT活性呈現(xiàn)不同程度的影響效果。單獨(dú)施用生化黃腐酸的T2處理整體效果最好,與CK1相比土壤脲酶、蔗糖酶和CAT活性分別提高10.0%、93.7%和12.5%;其次為配施復(fù)合增效劑的T4處理,土壤脲酶和蔗糖酶活性分別提高9.7%和73.4%,而CAT活性基本不受影響;單獨(dú)施用脲酶抑制劑的T1處理對(duì)土壤脲酶有顯著抑制效果,達(dá)14.3%,同時(shí)顯著提高蔗糖酶活性110.5%,但對(duì)CAT活性影響不顯著;單獨(dú)施用海藻酸的T3處理可顯著提高土壤蔗糖酶活性而對(duì)土壤脲酶和CAT活性影響不顯著,其中,對(duì)土壤脲酶起抑制作用,抑制率為2.8%。不同增效肥料對(duì)土壤有機(jī)碳的影響中,以配施3.0%生化黃腐酸的T2處理效果最佳,較CK1顯著提高5.3%。
3 討論
3. 1 施用增效肥料對(duì)小白菜生長的影響
本研究結(jié)果表明,設(shè)施栽培條件下,分別施用含有脲酶抑制劑、生化黃腐酸、海藻酸及復(fù)合增效劑的肥料,小白菜各項(xiàng)農(nóng)藝指標(biāo)均得到不同程度的改善,前人研究也取得類似的結(jié)果(呂波等,2018;田發(fā)祥等,2018)。其中,施用生化黃腐酸增效肥料的小白菜整體效果最佳,可能與生化黃腐酸的結(jié)構(gòu)中含有小分子基團(tuán)(如黃腐酸、氨基酸、有機(jī)質(zhì)和核酸等)有關(guān),小分子基團(tuán)能及時(shí)補(bǔ)充小白菜在設(shè)施條件下快速生長而出現(xiàn)的相對(duì)碳饑餓(李瑞波,2001;張宏偉等,2003),繼而促進(jìn)植株根系和地上部分的生長;而復(fù)合增效劑的整體效果稍差于生化黃腐酸和海藻酸兩種增效劑單獨(dú)施用的效果,可能與脲酶抑制劑和海藻酸的類脲酶抑制功能及生化黃腐酸的脲酶促進(jìn)功能相悖有關(guān)。MDA含量是作物逆境脅迫條件下細(xì)胞內(nèi)氧自由基產(chǎn)消失衡后對(duì)細(xì)胞膜系統(tǒng)傷害的重要標(biāo)志(張迪等,2018)。增效肥料施用后對(duì)小白菜抗逆指標(biāo)的分析結(jié)果表明,施用脲酶抑制劑、海藻酸及復(fù)合增效劑的增效肥料均可降低小白菜葉片中的MDA含量,與CK1相比分別降低2.2%、19.1%和36.6%,表明合理使用增效肥料具有緩解設(shè)施栽培中出現(xiàn)的高溫、干旱或土壤退化等逆境脅迫作用,提高作物的耐受能力。同時(shí),增效肥料處理也可提高小白菜葉片中抗逆滲透性物質(zhì)可溶性蛋白含量和POD活性(除T3處理外),與吳洪生等(2008)、舒正悅等(2018)研究結(jié)果一致。
3. 2 施用增效肥料對(duì)土壤酶活性的影響
土壤酶直接參與土壤中養(yǎng)分轉(zhuǎn)化、釋放及固定等多個(gè)生物學(xué)過程,是土壤生態(tài)系統(tǒng)代謝中的重要?jiǎng)恿υ?,同時(shí)能反映土壤微生物活性的高低,是評(píng)價(jià)土壤肥力的重要參數(shù)之一(閆湘等,2008)。脲酶作為水解酶能促進(jìn)土壤中尿素轉(zhuǎn)化成植物氮素營養(yǎng)主要來源的NH[+4]-N,脲酶活性用來表征土壤氮素情況(張俊麗等,2012)。本研究中施用脲酶抑制劑增效肥料對(duì)土壤脲酶活性的抑制率達(dá)14.3%,其原因是脲酶抑制劑本身通過抑制土壤脲酶活性繼而延緩?fù)寥栗0窇B(tài)氮轉(zhuǎn)化為銨態(tài)氮的速率來提高氮肥利用率,正因?yàn)槿绱穗迕敢种苿┛勺鳛榫忈屧鲂Х柿希ㄍ醭昧x等,2019);生化黃腐酸與復(fù)合增效劑均可促進(jìn)土壤脲酶活性,而脲酶活性的提高也是小白菜農(nóng)藝性狀及產(chǎn)量得以改善的重要原因;與施用普通肥料相比,海藻酸對(duì)土壤脲酶活性亦表現(xiàn)出抑制效果,可推斷海藻酸具有類脲酶抑制劑的功能。蔗糖酶由植物根系分泌產(chǎn)生,主要參與土壤有機(jī)質(zhì)礦化分解,是表征土壤生物化學(xué)活性的重要酶,試驗(yàn)中4種增效肥料均提高了土壤蔗糖酶活性,以生化黃腐酸增效肥料效果最優(yōu),這正與該處理土壤有機(jī)碳提升效果最佳具有密切關(guān)系。針對(duì)施用脲酶抑制劑后對(duì)土壤蔗糖酶和有機(jī)碳的作用上存在的偏差,與聶云鑫等(2019)研究表明施用脲酶硝化雙抑制劑可同時(shí)提高土壤蔗糖酶活性(24.6%~61.5%)和有機(jī)碳(1.98%~26.06%)相結(jié)合分析,可能與脲酶抑制劑本身的結(jié)構(gòu)有一定關(guān)系,配合硝化抑制劑的協(xié)同作用對(duì)土壤蔗糖酶和有機(jī)碳提升效果更好。
4 結(jié)論
增效肥料可改善設(shè)施栽培小白菜的部分抗性生理指標(biāo),提高其對(duì)逆境的耐受力和土壤有機(jī)碳及礦化速度,實(shí)現(xiàn)小白菜農(nóng)藝性狀、生物量和產(chǎn)量的提升。因此,增效肥料對(duì)設(shè)施蔬菜種植中實(shí)現(xiàn)減肥增效和改良土壤具有一定應(yīng)用價(jià)值。
參考文獻(xiàn):
鮑士旦. 2000. 土壤農(nóng)化分析[M]. 第3版. 北京:中國農(nóng)業(yè)出版社. [Bao S D. 2000. Soil agrochemical analysis[M]. The 3rd Edition. Beijing:China Agriculture Press.]
蔡祖聰. 2019. 我國設(shè)施栽培養(yǎng)分管理中待解決的科學(xué)和技術(shù)問題[J]. 土壤學(xué)報(bào),56(1):36-43. [Cai Z C. 2019. Scientific and technological issues of nutrient management under greenhouse cultivation in China[J]. Acta Pedologica Sinica,56(1):36-43.]
郝小雨. 2012. 設(shè)施菜田養(yǎng)分平衡特征與優(yōu)化調(diào)控研究[D]. 北京:中國農(nóng)業(yè)科學(xué)院. [Hao X Y. 2012. Study on nutrient balance and optimized management in soil-greenhouse vegetable system[D]. Beijing:Chinese Academy of Agricultural Sciences.]
黃紹文,唐繼偉,李春華,張懷志,袁碩. 2017. 我國蔬菜化肥減施潛力與科學(xué)施用對(duì)策[J]. 植物營養(yǎng)與肥料學(xué)報(bào),23(6):1480-1493. [Huang S W,Tang J W,Li C H,Zhang H Z,Yuan S. 2017. Reducing potential of chemical fertili-zers and scientific fertilization countermeasure in vegetable production in China[J]. Journal of Plant Nutrition and Fertilizer,23(6):1480-1493.]
李瑞波. 2011. BFA的肥料增效功能及其意義[J]. 腐植酸,1:31-35. [Li R B. 2011. Synergistic effect of BFA on fertilizer and its significance[J]. Humic Acid,(1):31-35.]
呂波,王宇函,夏浩,姚子涵,姜存?zhèn)}. 2018. 不同改良劑對(duì)黃棕壤和紅壤上白菜生長及土壤肥力影響的差異[J]. 中國農(nóng)業(yè)科學(xué),51(22):4306-4315. [Lü B,Wang Y H,Xia H,Yao Z H,Jiang C C. 2018. Effects of biochar and other admendments on the cabbage growth and soil fertility in yellow-brown soil and red soil[J]. Scientia Agricultura Sinica,51(22):4306-4315.]
聶云鑫,徐衛(wèi)紅,陳序根,李彥華,遲蓀琳,李桃,馮德玉,賀章咪. 2019. 脲酶硝化雙抑制劑緩釋肥對(duì)土壤養(yǎng)分含量及土壤酶活性的影響[J]. 中國農(nóng)學(xué)通報(bào),35(11):65-71. [Nie Y X,Xu W H,Chen X G,Li Y H,Chi S L,Li T,F(xiàn)eng D Y,He Z M. 2019. Effects of slow-release fertili-zer containing urease inhibitor and nitrification inhibitor on nutrients contents and enzymes activities in soil[J]. Chinese Agricultural Science Bulletin,35(11):65-71.]
舒正悅,王景燕,龔偉,唐海龍,趙昌平,周星宇. 2018. 淹水對(duì)水肥耦合管理竹葉花椒幼苗滲透性物質(zhì)含量的影響[J]. 應(yīng)用于環(huán)境生物學(xué)報(bào),24(5):1139-1145. [Shu Z Y,Wang J Y,Gong W,Tang H L,Zhao C P,Zhou X Y. 2018. Effects of waterlogging on osmotic adjustment substance contents of Zanthoxylum armatum seedlings upon coupling of water and fertilizer management[J]. Chinese Journal of Applied & Environmental Biology,24(5):1139-1145.]
唐會(huì)會(huì),許艷麗,王慶燕,馬正波,李光彥,董會(huì),董志強(qiáng). 2019. 聚天門冬氨酸螯合氮肥減量基施對(duì)東北春玉米的增效機(jī)制[J]. 作物學(xué)報(bào),45(3):431-442. [Tang H H,Xu Y L,Wang Q Y,Ma Z B,Li G Y,Dong H,Dong Z Q. 2019. Increasing spring maize yield by basic application of PASP chelating nitrogen fertilizer in northeast China[J]. Acta Agronomica Sinica,45(3):431-442.]
田發(fā)祥,謝運(yùn)河,柳賽花,劉昭兵,紀(jì)雄輝. 2018. 不同氮肥抑制劑對(duì)湖南早稻生產(chǎn)的影響[J]. 湖南農(nóng)業(yè)科學(xué),(11):46-49. [Tian F X,Xie Y H,Liu S H,Liu Z B,Ji X H. 2018. Effects of different inhibitors on early rice production in Hunan[J]. Hunan Agricultural Sciences,(11):46-49.]
王趁義,陳仙仙,黃兆瑋,付佳佳,汪少奇. 2019. 第四類脲酶抑制劑對(duì)土壤脲酶活性和微生物量的影響[J]. 水土保持通報(bào),39(2):149-154. [Wang C Y,Chen X X,Huang Z W,F(xiàn)u J J,Wang S Q. 2019. Effects of fourth-type urease inhibitors on soil urease activity and microbial growth[J]. Bulletin of Soil and Water Conservation,39(2):149-154.]
王連祥,張學(xué)杰. 2017. 聚天門冬氨酸在黃瓜上的應(yīng)用效果[J]. 磷肥與復(fù)肥,32(3):26-28. [Wang L X,Zhang X J. 2017. Application effect of polyaspartic acid on cucumber[J]. Phosphate & Compound Fertilizer,32(3):26-28.]
王學(xué)奎. 2015. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 第2版. 北京:高等教育出版社. [Wang X K. 2015. Experimental principles and techniques of plant physiology and bioche-mistry[M]. The 2nd Edition. Beijing:Higher Education Press.]
王祖力,肖海峰. 2008. 化肥施用對(duì)糧食產(chǎn)量增長的作用分析[J]. 農(nóng)業(yè)經(jīng)濟(jì)問題,(8):65-68. [Wang Z L,Xiao H F. 2008. Analysis on the role of fertilization on grain yield growth[J]. Issues in Agricultural Economy,(8):65-68.]
吳洪生,尹曉明,劉東陽,凌寧,包蔚,應(yīng)蓉蓉,朱毅勇,郭世偉,沈其榮. 2008. 鐮刀菌酸毒素對(duì)西瓜幼苗根細(xì)胞跨膜電位及葉細(xì)胞有關(guān)抗逆酶的抑制[J]. 中國農(nóng)業(yè)科學(xué),41(9):2641-2650. [Wu H S,Yin X M,Liu D Y,Ling N,Bao W,Ying R R,Zhu Y Y,Guo S W,Shen Q R. 2008. Inhibition of root cell transmembrane potential and leaf anti-stress enzymes of watermelon seedlings by fusaric acid[J]. Scientia Agricultura Sinica,41(9):2641-2650.]
許猛,袁亮,李偉,李艷婷,李娟,趙秉強(qiáng). 2018a. 復(fù)合氨基酸肥料增效劑對(duì)NaCl脅迫下小白菜種子萌發(fā)和苗期生長的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),24(4):992-1000. [Xu M,Yuan L,Li W,Li Y T,Li J,Zhao B Q. 2018a. Effects of a fertilizer synergist containing compound amino acids on seed germination and seedling growth of pakchoi under NaCl stress[J]. Journal of Plant Nutrition and Ferti-lizers,24(4):992-1000.]
許猛,袁亮,李偉,李艷婷,趙秉強(qiáng),趙來明. 2018b. 復(fù)合氨基酸肥料增效劑對(duì)新疆棉花生長、產(chǎn)量和養(yǎng)分利用的影響[J]. 中國土壤與肥料,(4):87-92. [Xu M,Yuan L,Li W,Li Y T,Zhao B Q,Zhao L M. 2018b. Effects of the compound amino acid fertilizer synergist on growth and nutrients use of cotton in Xinjiang[J]. Soil and Fertilizer Sciences in China,(4):87-92.]
徐星凱,周禮愷,Cleemput O V. 2000. 脲酶抑制劑/硝化抑制劑對(duì)土壤中尿素氮轉(zhuǎn)化及形態(tài)分布的影響[J]. 土壤學(xué)報(bào),37(3):339-345. [Xu X K,Zhou L K,Cleemput O V. 2000. Effect of urease/nitrification inhibitors on the distribution of transformed urea-N forms in soil[J]. Acta Pedologica Sinica,37(3):339-345.]
閆湘,金繼云,何萍,梁鳴早. 2008. 提高肥料利用率技術(shù)研究進(jìn)展[J]. 中國農(nóng)業(yè)科學(xué),41(2):450-459. [Yan X,Jin J Y,He P,Liang M Z. 2008. Recent advances in technology of increasing fertilizer use efficiency[J]. Scientia A-gricultura Sinica,41(2):450-459.]
楊蘭芳,曾巧,李海波,閆靜靜. 2011. 紫外分光光度法測定土壤過氧化氫酶活性[J]. 土壤通報(bào),42(1):207-210. [Yang L F,Zeng Q,Li H B,Yan J J. 2011. Measurement of catalase activity in soil by ultraviolet spectrophotometry[J]. Chinese Journal of Soil Science,42(1):207-210.]
曾希柏,陳同斌,胡清秀,林忠輝. 2002. 中國糧食生產(chǎn)潛力和化肥增產(chǎn)效率的區(qū)域分異[J]. 地理學(xué)報(bào),57(5):539-546. [Zeng X B,Chen T B,Hu Q X,Lin Z H. 2002. Grain productivity and its potential as related to fertilizer consumption among different counties of China[J]. Acta Geographica Sinica,57(5):539-546.]
張迪,呂思琪,張婉婷,姜佰文. 2018. 錳脅迫對(duì)不同基因型玉米幼苗抗氧化酶活性及丙二醛含量的影響[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),49(12):27-35. [Zhang D,Lü S Q,Zhang W T,Jiang B W. 2018. Effect of manganese stresses on antioxidant enzyme activities and malondialdehyde contents in different maize genotypes[J]. Journal of Northeast Agricultural University,49(12):27-35.]
張福鎖. 2008. 我國肥料產(chǎn)業(yè)與科學(xué)施肥戰(zhàn)略研究報(bào)告[M]. 北京:中國農(nóng)業(yè)大學(xué)出版社. [Zhang F S. 2008. Chinese fertilizer industry and scientific fertilizer strategy research report[M]. Beijing:China Agricultural University Press.]
張宏偉,陳志良,寧平,唐愛民,陳港,謝國輝. 2003. 腐植酸共聚物土壤改良劑對(duì)土壤化學(xué)性能的影響[J]. 水土保持通報(bào),23(6):36-38. [Zhang H W,Chen Z L,Ning P,Tang A M,Chen G,Xie G H. 2003. Effects of humic acid copolymers on soil chemical properties in amended soil[J]. Bulletin of Soil and Water Conservation,23(6):36-38.]
張俊麗,高博,溫曉霞,陳月星,楊生婷,李露,廖允成. 2012. 不同施氮措施對(duì)旱作玉米地土壤酶活性及CO2排放量的影響[J]. 生態(tài)學(xué)報(bào),32(19):6147-6154. [Zhang J L,Gao B,Wen X X,Chen Y X,Yang S T,Li L,Liao Y C. 2012. Effects of different fertilizers on soil enzyme activities and CO2 emission in dry-land of maize[J]. Acta Ecologica Sinica,32(19):6147-6154.]
張運(yùn)紅,和愛玲,楊占平,鄭春風(fēng),張潔梅,杜君,駱曉聲,潘曉瑩,薛毅芳. 2018. 土壤改良劑對(duì)鎘污染土壤小麥抗性、光合特性及產(chǎn)量的影響[J]. 河南農(nóng)業(yè)科學(xué),47(12):57-63. [Zhang Y H,He A L,Yang Z P,Zheng C F,Zhang J M,Du J,Luo X S,Pan X Y,Xue Y F. 2018. Effects of soil amendments on resistance,photosynthetic characteristics and yield of wheat in cadmium-contaminated soils[J]. Journal of Henan Agricultural Sciences,47(12):57-63.]
張文學(xué),王少先,夏文建,孫剛,劉增兵,李祖章,劉光榮. 2019. 脲酶抑制劑與硝化抑制劑對(duì)稻田土壤硝化、反硝化功能菌的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),25(6):897-909. [Zhang W X,Wang S X,Xia W J,Sun G,Liu Z B,Li Z Z,Liu G R. 2019. Effects of urease inhibitor and nitrification inhibitor on functional nitrifier and denitrifier in paddy soil[J]. Journal of Plant Nutrition and Fertili-zers,25(6):897-909.]
趙雪雁,劉江華,王蓉,王曉琪. 2019. 基于市域尺度的中國化肥施用與糧食產(chǎn)量的時(shí)空耦合關(guān)系[J]. 自然資源學(xué)報(bào),34(7):1471-1482. [Zhao X Y,Liu J H,Wang R,Wang X Q. 2019. Spatial-temporal coupling relationship between chemical fertilizer application and grain yield in China at city scale[J]. Journal of Natural Resources,34(7):1471-1482.]
Chen X X,Wang C Y,F(xiàn)u J J,Huang Z W,Wang S Q. 2019. Research status and progress of inhibitory effects and inhibitory mechanism of complex-type urease inhibitors—A review[J]. Communication in Soil Science and Plant Analysis,50(6):1-10.
Huang S W,Jin J Y. 2008. Status of heavy metals in agricultural soils as affected by different patterns of land use[J]. Environmental Monitoring and Assessment,139(1-3):317-327.
Lam S K,Suter H,Bai M,Walker C,Mosier A R,Grinsven H V,Chen D L. 2019. Decreasing ammonia loss from an Australian pasture with the use of enhanced efficiency fertilizers[J]. Agriculture,Ecosystems and Environment,283:1-6. https://doi.org/10.1016/j.agee.2019.05.012.
Liu X,Zhang M,Li Z W,Zhang C,Wan C L,Zhang Y,Lee D J. 2019. Inhibition of urease activity by humic acid extracted from sludge fermentation liquid[J]. Bioresource Technology,290:1-6.
Nathaniel D M,James S G,Matt J,Deepak K R,Navin R,Jonathan A F. 2012. Closing yield gap through nutrient and water management[J]. Nature,490(7419):254-257.
Tavares O C H,Santos L A,de Araújo O J L,Bucher C P C,García A C,Arruda L N,de Souza S R,F(xiàn)ernandes M S. 2019. Humic acid as a biotechnological alternative to increase N-NO[-3] or N-NH[+4] uptake in rice plants[J]. Biocatalysis and Agricultural Biotechnology,20:1-9. https://doi.org/10.1016/j.bcab.2019.101226.
(責(zé)任編輯 鄧慧靈)