常澤輝,李建業(yè),李文龍,侯 靜,鄭宏飛
太陽(yáng)能干燥裝置槽式復(fù)合拋物面聚光器熱性能分析
常澤輝1,李建業(yè)1,李文龍1,侯 靜2,鄭宏飛3
(1. 內(nèi)蒙古工業(yè)大學(xué)能源與動(dòng)力工程學(xué)院,呼和浩特 010051;2. 內(nèi)蒙古建筑職業(yè)技術(shù)學(xué)院機(jī)電與暖通工程學(xué)院,呼和浩特 010070;3. 北京理工大學(xué)機(jī)械與車輛學(xué)院,北京 100081)
直接式太陽(yáng)能干燥系統(tǒng)在運(yùn)行過(guò)程中,存在物料表面受熱易硬化而阻礙其內(nèi)部水分蒸發(fā)的問(wèn)題,鑒于此,該文設(shè)計(jì)一種新型槽式復(fù)合拋物面聚光集熱太陽(yáng)能干燥系統(tǒng),其由槽式復(fù)合拋物面聚光集熱器、物料托盤(pán)、風(fēng)機(jī)、空氣管、控制系統(tǒng)等組成。利用光學(xué)仿真軟件對(duì)系統(tǒng)中槽式復(fù)合拋物面聚光器進(jìn)行光線追跡,計(jì)算分析不同入射偏角對(duì)聚光器光學(xué)效率、聚光效率等的影響機(jī)理。在此基礎(chǔ)上,搭建太陽(yáng)能槽式復(fù)合拋物面聚光集熱干燥性能測(cè)試系統(tǒng),在實(shí)際天氣條件下,對(duì)聚光集熱單元性能展開(kāi)測(cè)試研究。結(jié)果表明,當(dāng)入射光徑向偏角為10°時(shí),聚光器理論光學(xué)效率可達(dá)到70.38%,晴天太陽(yáng)光正入射運(yùn)行、空氣流速為6.5 m/s時(shí),接收體出口空氣溫度最高為37.2 ℃,比徑向入射偏角為10°時(shí)提高了7.8%;加裝玻璃蓋板可有效提高聚光器光熱轉(zhuǎn)換效率,晴天時(shí)其最大轉(zhuǎn)換效率為55%左右,比無(wú)玻璃蓋板時(shí)最大效率提高了約120%。研究結(jié)果可為主動(dòng)式太陽(yáng)能聚光集熱干燥系統(tǒng)的進(jìn)一步應(yīng)用提供了參考。
干燥;太陽(yáng)能;效率;復(fù)合拋物面;性能
干燥是高耗能的單元操作[1],可以利用太陽(yáng)能對(duì)煙草、茶葉、咖啡、胡椒等進(jìn)行干燥,在延長(zhǎng)農(nóng)產(chǎn)品保存時(shí)效的同時(shí),可以節(jié)省對(duì)化石能源的消耗。但傳統(tǒng)露天晾曬干燥易受到天氣、動(dòng)物、細(xì)菌等的侵?jǐn)_[2-5]。Sharma等[6]提出了直接式太陽(yáng)能物料干燥器的概念[7]。但直接式太陽(yáng)能干燥器在運(yùn)行過(guò)程中存在物料表面由于高溫硬化而阻礙其內(nèi)部水分蒸發(fā)的問(wèn)題[8]。為了提高太陽(yáng)能干燥器的性能,尤其是縮短干燥時(shí)間、避免物料表面過(guò)熱、降低投資成本等,研究學(xué)者對(duì)主動(dòng)式、被動(dòng)式以及混合式太陽(yáng)能干燥系統(tǒng)展開(kāi)了研究和探索[9-20]。
王偉華等[21]優(yōu)化了南美白對(duì)蝦太陽(yáng)能干燥工藝過(guò)程,研究了太陽(yáng)能干燥溫度、風(fēng)速和干燥量等對(duì)物料干燥能耗的影響特性,并基于試驗(yàn)數(shù)據(jù)進(jìn)行了裝置的中試。Dissa等[22]搭建了4層托盤(pán)芒果太陽(yáng)能干燥器,在實(shí)際天氣條件下對(duì)其進(jìn)行了試驗(yàn)研究,建立了物料熱質(zhì)平衡方程式,分析了有效擴(kuò)散系數(shù)、干燥速率、干燥效率等對(duì)系統(tǒng)性能的影響。Wafa等[23]在撒哈拉地區(qū)研究了帶有儲(chǔ)熱單元的主動(dòng)式太陽(yáng)能干燥器,其中直接太陽(yáng)能干燥室位于間接太陽(yáng)能干燥室的上方,結(jié)果表明,采用直接太陽(yáng)能干燥室熱效率可以提高11.8%,并給出了適用于不同月份的計(jì)算模型。Hamdi等[24]采用理論分析和試驗(yàn)測(cè)試的方法研究了日光溫室葡萄干燥系統(tǒng),在測(cè)試條件下,太陽(yáng)能集熱器效率在29.63%~88.52%之間,可在128 h內(nèi),將葡萄的含水率降至0.22 g/g,并將試驗(yàn)數(shù)據(jù)與計(jì)算結(jié)果進(jìn)行了比對(duì)分析。
肉孜·阿木提等[25]測(cè)試了可對(duì)太陽(yáng)方位角和高度角跟蹤的太陽(yáng)能、電能混合干燥裝置的性能,結(jié)果表明,該裝置集熱量可達(dá)11 964 kJ/h,與傳統(tǒng)干燥方法相比,干燥時(shí)間縮短了52%。Ganapathy等[26]對(duì)一種由平板太陽(yáng)能集熱器供熱的雙程振蕩谷物干燥器展開(kāi)了研究,其每天可生產(chǎn)達(dá)到要求的谷物為45 kg,最高熱效率為38.61%。Hao等[27]提出一種由平板太陽(yáng)能集熱器供能的混合式干燥器,建立了數(shù)學(xué)模型對(duì)系統(tǒng)熱力參數(shù)展開(kāi)分析,結(jié)果表明,計(jì)算結(jié)果與測(cè)試結(jié)果吻合較好,系統(tǒng)最大集熱效率為50.8%,熱損失系數(shù)在2.5~6.2 W/(K·m2)之間變化。
傳統(tǒng)太陽(yáng)能干燥系統(tǒng)在建造過(guò)程中需要占據(jù)大量土地資源,以提高收集的太陽(yáng)熱能品位。加之太陽(yáng)能集熱面積與散熱面積相等而導(dǎo)致系統(tǒng)熱利用效率不高。為了克服上述技術(shù)缺陷,太陽(yáng)能聚光集熱技術(shù)受到了研究人員的關(guān)注[28-29]。凌德力等[30]采用槽式聚光系統(tǒng)供熱,實(shí)現(xiàn)了煙絲干燥的溫度匹配,得到了氣流溫度、速度及入口煙絲含水率等因素對(duì)煙絲干燥特性的影響。而槽式拋物聚光集熱器需要實(shí)時(shí)對(duì)日跟蹤,導(dǎo)致太陽(yáng)能干燥系統(tǒng)建造和維護(hù)成本高昂。鑒于此,本文設(shè)計(jì)了一種由槽式復(fù)合拋物面聚光器(compound parabolic concentrator,CPC)驅(qū)動(dòng)的太陽(yáng)能干燥系統(tǒng),該聚光器不需要實(shí)時(shí)對(duì)日跟蹤,易于對(duì)接收體進(jìn)行隔熱保溫、同時(shí)還可以吸收部分散射光[31-32]。
本文首先利用光學(xué)仿真軟件對(duì)所設(shè)計(jì)太陽(yáng)能干燥系統(tǒng)中槽式復(fù)合拋物面聚光集熱器的光學(xué)效率、聚光效率等進(jìn)行模擬計(jì)算。在此基礎(chǔ)上,搭建槽式復(fù)合拋物面聚光集熱太陽(yáng)能干燥性能測(cè)試系統(tǒng),通過(guò)測(cè)試不同運(yùn)行天氣條件下聚光器試驗(yàn)數(shù)據(jù),分析太陽(yáng)輻照度、入射偏角及玻璃蓋板等對(duì)聚光集熱性能的影響,以期得到提高太陽(yáng)能干燥系統(tǒng)熱利用效率和減小占地面積的有效途徑。
槽式復(fù)合拋物面聚光太陽(yáng)能干燥系統(tǒng)主要結(jié)構(gòu)參數(shù)如表1所示。
表1 太陽(yáng)能干燥系統(tǒng)結(jié)構(gòu)參數(shù)
Tab.1 Structure parameters of solar drying system
槽式復(fù)合拋物面聚光太陽(yáng)能干燥系統(tǒng)結(jié)構(gòu)如圖1a所示,系統(tǒng)外聚光集熱單元實(shí)物如圖1b所示。其中,集熱單元與干燥單元相分離,適合于小型分布式太陽(yáng)能干燥應(yīng)用。
系統(tǒng)采用空氣強(qiáng)制循環(huán)換熱運(yùn)行,入射太陽(yáng)光經(jīng)槽式復(fù)合拋物面聚光器匯聚到接收體上。接收體為圓柱單層玻璃管,內(nèi)置黑色平板吸收體,玻璃管內(nèi)空氣受熱生成熱空氣,經(jīng)熱空氣管進(jìn)入干燥單元,在浮升力和風(fēng)壓作用下穿過(guò)托盤(pán),同時(shí)對(duì)放置于上、下層托盤(pán)上的物料進(jìn)行脫水干燥。增濕降溫后的空氣通過(guò)排氣管排到系統(tǒng)外,補(bǔ)充的冷空氣經(jīng)位于排氣管中央的冷空氣管進(jìn)入系統(tǒng),同時(shí)吸收系統(tǒng)所排出空氣的廢熱,實(shí)現(xiàn)冷空氣的預(yù)熱和對(duì)排氣的回?zé)?。之后在風(fēng)機(jī)驅(qū)動(dòng)下進(jìn)入聚光器焦斑處的接收體內(nèi),完成空氣的溫升。其中,干燥系統(tǒng)向陽(yáng)的豎直墻體和屋頂均為雙層保溫透光玻璃板,可對(duì)干燥過(guò)程進(jìn)行熱量補(bǔ)充,其他墻面均作保溫處理。
相對(duì)于傳統(tǒng)太陽(yáng)能干燥系統(tǒng),槽式復(fù)合拋物面聚光太陽(yáng)能干燥系統(tǒng)具有如下特點(diǎn):1)采用復(fù)合拋物面聚光器,在相同干燥溫度要求下,可以有效減少太陽(yáng)能集熱器數(shù)量,減少太陽(yáng)能干燥系統(tǒng)占地面積,提高系統(tǒng)適用性;2)干燥系統(tǒng)采用主動(dòng)式空氣加熱和被動(dòng)式晾曬干燥方式相結(jié)合,提高了空氣介質(zhì)運(yùn)行溫度和循環(huán)速度,減少了干燥過(guò)程所需時(shí)間;3)集熱單元散熱面積僅為圓柱接收體外表面,小于集熱面積,且與玻璃蓋板形成溫室效應(yīng),減少了系統(tǒng)散熱損失。
將先進(jìn)太陽(yáng)能聚光集熱技術(shù)與物料干燥技術(shù)高效耦合,既可以優(yōu)化傳統(tǒng)物料干燥工藝,又可以節(jié)省太陽(yáng)能集熱器占地面積。本文選擇槽式復(fù)合拋物面聚光器作為太陽(yáng)能集熱裝置,其具有低倍聚光、對(duì)跟蹤精度要求低、可吸收部分散射光、反射鏡面受積灰影響小以及建造成本低等特點(diǎn)。
復(fù)合拋物面聚光器是由美國(guó)科學(xué)家Winston首先提出[33],為了減小聚光器對(duì)跟蹤精度的要求,本文聚光器在傳統(tǒng)復(fù)合拋物面聚光器基礎(chǔ)上,對(duì)組成聚光器的兩條拋物線和沿軸向遠(yuǎn)離軸兩側(cè)進(jìn)行平移,然后繞和點(diǎn)向外側(cè)旋轉(zhuǎn)后截?cái)啵瑫r(shí)利用平面鏡、和底部拋物反射面將聚光器進(jìn)行閉合,其結(jié)構(gòu)如圖2所示。
圖2中光線¢和¢分別表示正入射到組成聚光器右側(cè)反射面上下2個(gè)邊緣點(diǎn)的入射光線,經(jīng)過(guò)聚光器后反射到圓柱接收體上,則其他入射到反射面上光線均匯聚于接收體上。光線¢表示進(jìn)入聚光器入光口到底部拋物反射面上的正入射光線,經(jīng)反射后匯聚于接收體上,內(nèi)置黑色吸收板的圓柱玻璃接收體位于聚光器焦斑位置。為了便于后期推廣應(yīng)用,接收體選用市售直徑為0.1 m的玻璃管,入光口玻璃蓋板寬度選用0.7 m,則其幾何聚光比約為2.23。
注:AB、CD為拋物反射面;BE、DF為平面鏡;EOF為底部拋物反射面;AC為入光口。
用于太陽(yáng)能干燥的槽式復(fù)合拋物面聚光器應(yīng)保證在工作過(guò)程中,固定放置時(shí)能夠?qū)⒁欢ㄈ肷淦堑墓饩€匯聚到接收體上。定義入射光線與聚光器入光口對(duì)稱軸之間的夾角為入射偏角,將入射偏角分解為沿徑向入射偏角和軸向入射偏角,分別對(duì)應(yīng)槽式復(fù)合拋物面聚光器東西放置時(shí)的太陽(yáng)高度角和方位角(如圖1所示)。
復(fù)合拋物面聚光器幾何光學(xué)效率是指在不考慮入射光的衰減,而僅考慮由于逸出或被遮擋所造成光線損失時(shí)聚光器所具有的光學(xué)效率。將入射光線看作多條等距平行光線組成的矩陣,接收體表面的光線數(shù)量占進(jìn)入聚光器入光口光線數(shù)量的比例即為幾何光學(xué)效率。接收體表面能流密度占進(jìn)入聚光器入光口光線能流密度的比例即為聚光效率,計(jì)算公式如下:
式中0為聚光器聚光效率;n為聚光器光學(xué)效率;(,) 為徑向入射偏角為和軸向入射偏角為時(shí)接收體表面能流密度,W/m2;(0,0) 為正入射時(shí)進(jìn)入聚光器入光口光線能流密度,W/m2;(,) 為徑向入射偏角為和軸向入射偏角為時(shí)接收體表面接收到光線數(shù)量,(0,0) 為正入射時(shí)進(jìn)入聚光器入光口光線數(shù)量。
利用光學(xué)仿真軟件LightTools的光線追跡功能可以對(duì)聚光器幾何光學(xué)效率和聚光效率進(jìn)行計(jì)算。按照聚光器和接收體實(shí)物實(shí)際尺寸建模,導(dǎo)入到LightTools中。為了提高對(duì)聚光器光學(xué)性能的計(jì)算精度,從設(shè)定的面光源輸出的光線設(shè)置為等距平行100′100光束,輻射能量為600 W/m2,與室外測(cè)試時(shí)平均太陽(yáng)輻照度相近。聚光器反射面設(shè)置為鏡面反射,反射率為0.8,與實(shí)物所使用的反射鋁板反射率相同。正入射時(shí),聚光器內(nèi)光線追跡傳播如圖3a所示,進(jìn)入入光口的光線經(jīng)反射均被圓柱接收體所接收。當(dāng)徑向入射偏角為10°時(shí),聚光器內(nèi)光線追跡傳播如圖3b所示,入射到聚光器右側(cè)光線經(jīng)反射后部分被接收體接收,未被接收的光線經(jīng)左側(cè)反射面反射后逸出聚光器。
圖3 復(fù)合拋物面聚光器不同入射偏角的光線追跡
2.3.1 徑向入射偏角對(duì)聚光器光學(xué)性能的影響
槽式復(fù)合拋物面聚光器對(duì)入射光線聚焦能力會(huì)隨著太陽(yáng)的運(yùn)動(dòng)軌跡變化而變化,其中入射偏角也是造成聚光器光學(xué)效率和聚光效率變化的影響因素之一。對(duì)固定放置聚光器光學(xué)性能隨徑向入射偏角(對(duì)應(yīng)太陽(yáng)高度角跟蹤)變化展開(kāi)研究,可以獲取聚光器對(duì)跟蹤精度的要求。
設(shè)定光線徑向入射偏角從0°~10°變化,變化間距為1°,其對(duì)聚光器光學(xué)效率和聚光效率影響如圖4所示。
圖4 徑向入射偏角對(duì)聚光器性能影響
從圖4可以看出,聚光器光學(xué)效率和聚光效率均隨著光線徑向入射偏角的增大而降低,二者變化趨勢(shì)一致。光線正入射時(shí),聚光器光學(xué)效率為99.68%,聚光效率為82.61%,比入射偏角為10°時(shí)增加41.23%。當(dāng)徑向入射偏角為10°時(shí),聚光器光學(xué)效率為70.38%,聚光效率為58.49%。表明所設(shè)計(jì)的聚光器不需要實(shí)時(shí)跟蹤太陽(yáng)運(yùn)動(dòng)軌跡。
2.3.2 透光口對(duì)聚光器光學(xué)性能的影響
槽式復(fù)合拋物面聚光器屬于內(nèi)聚光型聚光器,接收體端頭安裝固定在聚光器的2個(gè)端面,為了保證聚光器的使用強(qiáng)度,端面一般為不透光金屬板。為了提高聚光器運(yùn)行時(shí)間和聚光性能,可以在聚光器端面開(kāi)設(shè)透光口,研究聚光器性能隨軸向入射偏角(對(duì)應(yīng)太陽(yáng)方位角跟蹤)變化規(guī)律對(duì)于聚光器的應(yīng)用具有實(shí)際意義。在聚光器端面開(kāi)設(shè)高度為95 mm的透光口,則其光學(xué)效率與端面未開(kāi)透光口聚光器光學(xué)效率隨軸向入射偏角變化如圖5所示。
圖5 軸向入射偏角對(duì)聚光器性能影響
從圖5中可以看出,端面有、無(wú)透光口聚光器的光學(xué)效率均隨軸向入射偏角增大而直線下降。當(dāng)軸向入射偏角為10°時(shí),端面有透光口聚光器光學(xué)效率為30.7%,是端面無(wú)透光口聚光器光學(xué)效率的2.49倍,表明在端面開(kāi)設(shè)透光口可以有效提高槽式復(fù)合拋物面聚光器性能。對(duì)于如何平衡端面透光口開(kāi)設(shè)面積和接收體使用強(qiáng)度要求之間的關(guān)系還需要進(jìn)一步開(kāi)展研究。
由聚光器光學(xué)仿真計(jì)算結(jié)果可知,本文中槽式復(fù)合拋物面聚光器在提高接收體能流密度的同時(shí),不需要實(shí)時(shí)對(duì)日跟蹤,這是其他類型太陽(yáng)能聚光集熱裝置所無(wú)法實(shí)現(xiàn)的。為了驗(yàn)證光學(xué)理論計(jì)算結(jié)果,在實(shí)際天氣條件下,對(duì)槽式復(fù)合拋物面聚光器在太陽(yáng)能干燥系統(tǒng)中的實(shí)用性進(jìn)行測(cè)試及分析。
測(cè)試系統(tǒng)中的槽式復(fù)合拋物面聚光器為自制,兩側(cè)端面開(kāi)有透光口,入光口覆蓋超白鋼化玻璃,圍護(hù)采用反射鋁板,反射率為0.8,長(zhǎng)度為2.0 m,其他參數(shù)與光學(xué)仿真模型完全一致。為防止過(guò)熱且考慮到系統(tǒng)建造成本,接收體選用內(nèi)置有黑色吸收板的單層玻璃管,直徑為0.1 m,長(zhǎng)度為2.2 m,玻璃透光率>0.9。
測(cè)試中,主要研究天氣條件、入射偏角、玻璃蓋板等對(duì)聚光器性能的影響。在玻璃管接收體進(jìn)、出口處沿徑向等距布置3個(gè)K型熱電偶,取其平均值作為循環(huán)空氣在接收體內(nèi)進(jìn)、出口溫度值,測(cè)試值由多通道溫度記錄儀(Sin-R6000C,杭州聯(lián)測(cè)自動(dòng)化技術(shù)有限公司,杭州)實(shí)時(shí)監(jiān)測(cè),空氣流速由熱線式風(fēng)速計(jì)(TES-1340,泰仕電子工業(yè)有限公司,臺(tái)灣)測(cè)量,系統(tǒng)中風(fēng)機(jī)選用耐高溫離心風(fēng)機(jī)(DZ160,廣州市鑫風(fēng)風(fēng)機(jī)有限公司,廣州),環(huán)境溫度、太陽(yáng)輻照度以及環(huán)境風(fēng)速由太陽(yáng)能發(fā)電監(jiān)測(cè)站系統(tǒng)(TRM-FD1,錦州陽(yáng)光氣象科技有限公司,錦州)實(shí)時(shí)監(jiān)測(cè),測(cè)溫用熱電偶測(cè)試精度為±0.5 ℃。
試驗(yàn)中,槽式復(fù)合拋物面聚光器在運(yùn)行過(guò)程中瞬時(shí)光熱轉(zhuǎn)換效率可由下式計(jì)算:
式中Q為玻璃管接收體集熱量,W;sun為聚光器入光口處太陽(yáng)輻照度,W/m2;為聚光器入光口面積,m2;為接收體內(nèi)空氣質(zhì)量流量,kg/s;c為對(duì)應(yīng)加熱溫度下空氣比熱容,J/kg·K;in,out為接收體進(jìn)出口空氣溫度值,K。
測(cè)試前,對(duì)所使用的熱線式風(fēng)速計(jì)、總輻射表、K型熱電偶、風(fēng)速計(jì)等儀器進(jìn)行了測(cè)試校核。測(cè)試地點(diǎn)選在內(nèi)蒙古呼和浩特市南郊(N40°50¢,E111°42¢),測(cè)試時(shí)間為2018年10月6日-2018年10月20日,空氣流速為6.5 m/s。
為了與光學(xué)理論分析結(jié)果進(jìn)行對(duì)比,對(duì)徑向入射偏角與聚光器性能的關(guān)聯(lián)進(jìn)行分析,盡量避免軸向入射偏角的影響,測(cè)試時(shí)間選擇在中午11:00-12:30,而此時(shí)間段對(duì)于內(nèi)蒙古呼和浩特地區(qū)正是太陽(yáng)光正入射聚光器的有效時(shí)間范圍,所以本文選擇此時(shí)間段進(jìn)行試驗(yàn)測(cè)試。
3.2.1 天氣條件、入射偏角對(duì)聚光器性能影響
測(cè)試時(shí),采用對(duì)比分析法對(duì)2組相同槽式復(fù)合拋物面聚光器在不同天氣、不同入射偏角條件下接收體出口空氣溫度進(jìn)行分析。測(cè)試日分別選擇多云天(2018年10月14日)和晴天(2018年10月16日),2組聚光器均東西放置,吸收板與正午太陽(yáng)入射光平行。一組聚光器接收正入射(即徑向入射偏角為0°)太陽(yáng)光,另一組聚光器的徑向入射偏角為10°,天氣條件及2組聚光器內(nèi)接收體出口空氣溫度隨時(shí)間變化曲線如圖6,圖7所示。
從圖6、圖7可以看出,在晴天或多云天運(yùn)行中,正入射時(shí)玻璃管接收體出口空氣溫度大于入射偏角為10°時(shí)接收體出口空氣溫度。多云天時(shí),接收體出口空氣溫度要小于晴天時(shí)接收體出口空氣溫度,這主要是由于多云天太陽(yáng)直接輻射值小于晴天太陽(yáng)直接輻射值。晴天正入射時(shí)接收體最大出口空氣溫度為37.2 ℃,比入射偏角為10°時(shí)接收體對(duì)應(yīng)出口空氣溫度提高7.8%。正午時(shí)分入射偏角為0°時(shí),玻璃管接收體平均集熱量為445.73 W,比入射偏角為10°時(shí)增加了42.57%,與光學(xué)仿真計(jì)算結(jié)果相差3.3%。多云天氣條件下,接收體出口空氣溫度變化曲線表明該類型聚光器可以接受部分散射光。
圖6 測(cè)試時(shí)的太陽(yáng)輻照度和環(huán)境溫度
圖7 接收體出口溫度隨入射偏角變化
3.2.2 玻璃蓋板對(duì)聚光器性能影響
槽式復(fù)合拋物面聚光器入光口處超白鋼化玻璃蓋板具有保護(hù)反射面受到灰塵污染、與聚光器圍護(hù)共同起到“溫室”作用、保護(hù)玻璃管接收體免受損壞等功能。其中玻璃蓋板對(duì)聚光器光熱轉(zhuǎn)換效率、循環(huán)空氣溫升的影響需要通過(guò)測(cè)試加以分析。
選取2組相同規(guī)格聚光器,在晴天太陽(yáng)光入射條件下,對(duì)比研究有、無(wú)玻璃蓋板對(duì)聚光器性能的影響。有無(wú)玻璃蓋板聚光器接收體進(jìn)、出口空氣溫度隨太陽(yáng)輻照度變化如圖8所示。
圖8表明,對(duì)于2組測(cè)試聚光器,接收體進(jìn)、出口空氣溫度變化趨勢(shì)與太陽(yáng)輻照度變化趨勢(shì)相一致。有玻璃蓋板聚光器出口空氣溫度最大為33.2 ℃,無(wú)玻璃蓋板聚光器出口空氣溫度最大為25.6 ℃。究其原因,玻璃蓋板的安裝,使聚光器形成密封空間,在太陽(yáng)照射下,產(chǎn)生“溫室”效應(yīng),有效對(duì)單層玻璃管接收體進(jìn)行了隔熱保溫,而無(wú)玻璃蓋板聚光器中的單層玻璃管接收體受到周圍環(huán)境溫度、風(fēng)速的影響較大,散熱損失較大。在測(cè)試中,玻璃蓋板對(duì)于消除聚光器結(jié)霜影響也有益處。2組聚光器光熱轉(zhuǎn)換效率計(jì)算對(duì)比如圖9所示。
圖8 接收體進(jìn)出口溫差隨太陽(yáng)輻照度變化
圖9 聚光器效率隨時(shí)間變化
從圖9中可以看出,由于聚光器加裝玻璃蓋板,其最大光熱轉(zhuǎn)換效率可以達(dá)到55%左右,比無(wú)玻璃蓋板聚光器增加了120%,測(cè)試周期內(nèi)平均光熱轉(zhuǎn)換效率為51.35%。無(wú)玻璃蓋板聚光器的最大光熱轉(zhuǎn)換效率約為25%,測(cè)試周期內(nèi)平均光熱轉(zhuǎn)換效率為19.09%。通過(guò)在聚光器入光口加裝玻璃蓋板可以有效提高裝置光熱轉(zhuǎn)換效率,同時(shí)還可以用單層玻璃管代替昂貴的玻璃真空管作為接收體,具有較好經(jīng)濟(jì)性。
為了減小太陽(yáng)能干燥系統(tǒng)集熱器占地面積、提高太陽(yáng)能光熱轉(zhuǎn)化效率,本文設(shè)計(jì)一種槽式復(fù)合拋物面聚光集熱太陽(yáng)能干燥系統(tǒng),利用光學(xué)仿真軟件對(duì)槽式復(fù)合拋物面聚光器聚光性能進(jìn)行了理論計(jì)算分析,在此基礎(chǔ)上,測(cè)試研究了實(shí)際天氣條件下,不同入射偏角、有無(wú)玻璃蓋板等對(duì)槽式復(fù)合拋物面聚光器溫升、光熱轉(zhuǎn)化效率等的影響。得到以下結(jié)論:
1)光學(xué)仿真計(jì)算結(jié)果表明,當(dāng)入射偏角為10°時(shí),本文所設(shè)計(jì)的聚光器的光學(xué)效率仍可以達(dá)到70.38%。
2)對(duì)于復(fù)合拋物面聚光器等內(nèi)聚光式聚光器,在兩側(cè)端面開(kāi)設(shè)透光口可以有效提高聚光器的光學(xué)效率。
3)在晴天運(yùn)行,空氣流速為6.5 m/s時(shí),太陽(yáng)正入射聚光器接收體出口空氣溫度最高為37.2 ℃,比入射偏角為10°時(shí)提高7.8%。接收體集熱量為445.73 W,比入射偏角為10°時(shí)集熱量增加了42.57%,與光學(xué)仿真計(jì)算結(jié)果相近。
4)通過(guò)在槽式復(fù)合拋物面聚光器入光口加裝玻璃蓋板可以有效提高光熱轉(zhuǎn)化效率,最大效率約為55%,比相同運(yùn)行條件下無(wú)玻璃蓋板聚光器效率提高120%。
[1] 李長(zhǎng)友. 糧食干燥傳遞和轉(zhuǎn)換特征及其理論表達(dá)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(19):1-8. Li Changyou. Theoreticalanalysis of exergy transfer and conversion in grain drying process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 1-8. (in Chinese with English abstract)
[2] Fudholi A, Sopian K, Ruslan M H, et al. Review of solar dryers for agricultural and marine products[J]. Renewable & Sustainable Energy Reviews, 2010, 14(1): 1-30.
[3] Abdulmalek S H, Assadi M K, Al-Kayiem H H,et al. A comparative analysis on the uniformity enhancement methods of solar thermal drying[J]. Energy, 2018, 148: 1103-1105.
[4] El-Sebaii A A, Shalaby S M. Solar drying of agricultural products: A review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(1): 37-43.
[5] 李偉釗,盛偉,張振濤,等. 熱管聯(lián)合多級(jí)串聯(lián)熱泵玉米干燥系統(tǒng)性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):278-284. Li Weizhao, Sheng Wei, Zhang Zhentao, et al. Experiment on performance of corn drying system with combination of heat pipe and multi-stage series heat pump equipment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 278-284. (in Chinese with English abstract)
[6] Sharma A, Chen C R, Vu L N. Solar-energy drying systems: A review[J]. Renewable and Sustainable Energy Reviews, 2009, 13: 1185-1210.
[7] Belessiotis V, Delyannis E. Solar drying[J]. Solar Energy, 2011, 85(8): 1665-1691.
[8] Pirasteh G, Saidur R, Rahman S M A, et al. A review on development of solar drying applications[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 133-48.
[9] Mahesh K, Sunil K S, Pankaj K. Progress in solar dryers for drying various commodities[J]. Renewable & Sustainable Energy Reviews, 2016, 55: 346-360.
[10] Tomar V, Tiwari G N, Norton B. Solar dryers for tropical food preservation: Thermophysics of crops, systems and components[J]. Solar Energy, 2017, 154: 2-13.
[11] Bal L M, Satya S, Naik S N. Solar dryer with thermal energy storage systems for drying agricultural food products: A review[J]. Renewable & Sustainable Energy Reviews, 2010, 14: 2298-2314.
[12] Aymen K E, Salwa B, Sami Kooli, et al. Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM[J]. Journal of Cleaner Production, 2017, 148: 37-48.
[13] Kant K, Shukla A, Sharma A, et al. Thermal energy storage based solar drying systems: A review[J]. Innovative Food Science & Emerging Technologies, 2016, 34: 86-99.
[14] Mohamed E A , Mostafa A M , Abdulrahman O A. Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (MenthaViridis)[J]. Journal of Cleaner Production, 2018, 181: 352-364.
[15] Ehsan B, Saeed R, Omid B. Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage[J]. Renewable Energy, 2017, 112: 143-150.
[16] Chandrasekar M, Senthilkumar T, Kumaragurubaran B, et al. Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate[J]. Renewable Energy, 2018, 122: 375-381.
[17] Amer B M A, Gottschalk K, Hossain M A. Integrated hybrid solar drying system and its drying kinetics of chamo-mile[J]. Renewable Energy, 2018, 121: 539-547.
[18] Tiwari S, Tiwari G N, Al-helal I M, et al. Development and recent trends in greenhouse dryer: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 1048-1064.
[19] Aaineb Z, Sami Kooli, Aymen E, et al. Investigation of a new solar greenhouse drying system for peppers[J]. International Journal of Hydrogen Energy, 2017, 42: 8818-8826.
[20] Pushpendra S, Vipin S, Anil K. Developments in greenhouse solar drying: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3250-3262.
[21] 王偉華,王海,何思魯,等. 南美白對(duì)蝦太陽(yáng)能干燥能耗參數(shù)優(yōu)化及中試[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(18):271-278. Wang Weihua, Wang Hai, He Silu, et al. Parameter optimization for energy consumption of solar drying ofand pilot scale rest[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 271-278. (in Chinese with English abstract)
[22] Dissa A O, Bathiebo D J, Desmorieux H, et al. Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes[J]. Energy, 2011, 36: 2517-2527.
[23] Wafa B C, Abdellah K, Ahmed M, et al. Experimental investigation of an active direct and indirect solar dryer with sensible heat storage for camel meat drying in Saharan environment[J]. Solar Energy, 2018, 174: 328-341.
[24] Hamdi I, Kooli S, Elkhadraoui A, et al. Experimental study and numerical modeling for drying grapes under solar greenhouse[J]. Renewable Energy, 2018, 127: 936-946.
[25] 肉孜·阿木提,毛志懷,李峰,等. 整體式果品蔬菜太陽(yáng)能干燥裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(1):134-139.Rouzi·Amuti, Mao Zhihuai, Li Feng, et al. Design and experiment of integrative fruit-vegetable air dryer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(1): 134-139. (in Chinese with English abstract)
[26] Ganapathy P A, Subramaniam S, Arunachalam V, et al. Performance analysis of double-pass oscillating bed solar dryer for drying of non-parboiled paddy grains[J]. Energy Sources, 2019, 41(4): 418-426.
[27] Hao W G, Lu y f, Lai Y H, et al. Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products[J]. Renewable Energy, 2018, 127: 685-696.
[28] Sharma A, Chen C R, Lan N V . Solar-energy drying systems: A review[J]. Renewable & Sustainable Energy Reviews, 2009, 13(6): 1185-1210.
[29] Geng W G, Gao L, Ma X X, et al. Honeysuckle drying by using hybrid concentrator photovoltaic-thermal (PV/T) dryer: An experimental study[J]. Applied Mechanics and Materials, 2013, 291: 132-136.
[30] 凌德力,李明,羅熙,等. 基于槽式聚光太陽(yáng)能供熱的煙絲干燥特性研究[J]. 太陽(yáng)能學(xué)報(bào),2015,36(2):460-466. Ling Deli, Li Ming, Luo Xi, et al. Study on drying characteristics of cut tobacco based on trough concentrating solar heating[J]. Acta Energiae Solaris Sinica, 2015, 36(2): 460-466. (in Chinese with English abstract)
[31] Tian M, Su Y H, Zheng H F, et al. A review on the recent research progress in the compound parabolic concentrator for solar energy application [J]. Renewable & Sustainable Energy Reviews, 2018, 82: 1272-1296.
[32] Srikanth M, Robert F B. A review of nonimaging solar concentrators for stationary and passive tracking applications[J]. Renewable & Sustainable Energy Reviews, 2017, 71: 309-322.
[33] Winston R. Solar concentrators of novel design[J]. Solar Energy, 1974, 61: 89-95.
Analysis on thermal performance of trough compound parabolic concentrator in solar drying device
Chang Zehui1, Li Jianye1, Li Wenlong1, Hou Jing2, Zheng Hongfei3
(1.010051,; 2.010070,; 3.,,100081,)
Drying is an energy intensive process, which reduces the moisture content of the material to a certain preselected level to prevent deterioration. The increasing of agro-food products’ cost and the rapid depletion of fossil fuels accelerated the utilization of solar energy for drying. However, conventional open cycle solar drying system has several disadvantages, including the degradation of product quality caused by sudden rain, wind and dust, loss of the products due to rodents, birds and insects. To overcome these disadvantages and ensure better control of solar drying aspects, the direct solar drying systems have been designed and improved over decades. It has been noted that direct exposure to the sun during sunny day, particularly when the ambient temperature reaches to 30 ℃ or higher, might cause case hardening, which trapping moisture inside the products scattered. Based on the previous researches, this paper therefore designs a novel concentrated solar drying system. In this case, a trough compound parabolic concentrator (CPC) as heater is employed for solar-energy collection for heating of inlet air. Apart from this, the system is also configured with several trays, fan, operation air tube, control device, et al. Compared with the previous solar drying system, it not only improves the thermal efficiency of the system but also reduces the land area of the solar collectors. The system is suitable for use distributed and controllable for drying process. Its operation principle of the system can be shown as follows: Several concentrators installed with glass receiver are connected with air tubes. Then in the receiver, a plate heat transfer fin is spread by a black composite material coating to increase the sun absorptivity. The thickness of the fin is 1.5 mm. The air inside the receiver is heated to a higher temperature by the concentrated light. The heated air flows into the drying unit through the hot air pipe driven by fan. Then the flowing hot air passes through the materials placed on the trays. The materials will be heated and moisture will be removed. As the air driven by the fan flows towards exhaust pipe, the waste heat contained in the air in the exhaust pipe will transfer to the supplementary air in the cold air tube, which improves the system energy efficiency. The working principle of the trough compound parabolic concentrator and structure are introduced. A 3D model of the concentrator is obtained in commercial software SolidWorks, then is exported in IGES digital format so that it could be imported to optical analysis software to analyze ray tracing. The concentrating efficiency and optical efficiency of the concentrator have been calculated and analyzed. Based on the simulated results mentioned above, an experimental system driven by several trough compound parabolic concentrators is constructed to study the drying performance of the system outdoors. The geometric parameters of the concentrator unit are the same as the unit previously discussed. The results indicate when the radial incidence angle is 10°, the optical efficiency can reach to 70.38%. The light window is set in the sides of the concentrator has benefit to enhancement of the optical efficiency when axial incidence angle is not 0°. In sunny day, the maximum air temperature of the outlet can be reached to 37.2 ℃, which is higher than that of the unit when radial incidence angle is 10° by 7.8% when the air flow rate is 6.5m/s. A glass cover is placed on concentrator aperture to minimize convective heat losses from the receiver. The maximum thermal efficiency of the device with glass cover can be about 55%, which is higher than that of the concentrator without glass cover by about 120%. Thus, this study is able to provide theoretical and experimental reference for further application for active solar drying technology.
drying; solar energy; efficiency; compound parabolic; performance
10.11975/j.issn.1002-6819.2019.13.023
TK519
A
1002-6819(2019)-13-0197-07
2019-02-20
2019-04-09
國(guó)家自然科學(xué)基金項(xiàng)目(51666013);內(nèi)蒙古自治區(qū)科技重大專項(xiàng)(2018);內(nèi)蒙古自治區(qū)高等學(xué)校科學(xué)研究項(xiàng)目(NJZY17491);內(nèi)蒙古自治區(qū)高校青年科技英才支持計(jì)劃;內(nèi)蒙古自治區(qū)研究生科研創(chuàng)新項(xiàng)目(S2018111948Z)
常澤輝,教授,博士生導(dǎo)師,主要從事太陽(yáng)能光熱利用技術(shù)研究。Email:changzehui@163.com
常澤輝,李建業(yè),李文龍,侯 靜,鄭宏飛.太陽(yáng)能干燥裝置槽式復(fù)合拋物面聚光器熱性能分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(13):197-203. doi:10.11975/j.issn.1002-6819.2019.13.023 http://www.tcsae.org
Chang Zehui, Li Jianye, Li Wenlong, Hou Jing, Zheng Hongfei.Analysis on thermal performance of trough compound parabolic concentrator in solar drying device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 197-203. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.13.023 http://www.tcsae.org