国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

3-乙基-2-乙酰吡嗪縮4-甲基氨基硫脲Cuギ配合物的合成、結(jié)構(gòu)和DNA結(jié)合性質(zhì)

2019-08-08 06:53:16呂目軒卞琳艷李夢茹吳偉娜
無機(jī)化學(xué)學(xué)報 2019年8期
關(guān)鍵詞:化工學(xué)院吡嗪乙基

呂目軒 卞琳艷*, 李夢茹 楊 怡 吳偉娜*, 王 元 陳 忠

(1河南理工大學(xué)化學(xué)化工學(xué)院,河南省煤炭綠色轉(zhuǎn)化重點實驗室,焦作 454000)(2江西科技師范大學(xué)材料與機(jī)電學(xué)院,南昌 330013)

Pyrazine-containing thiosemicarbazones (TSCs)have received considerable attention in chemistry and biology,primarily due to their marked and various biological properties[1-6].Currently the most famous drug candidate of this class of compounds is Triapine(3-aminopyridine-2-carboxaldehyde thiosemicarbazone),which entered several phaseⅠandⅡclinical trials as an antitumor chemotherapeutic agent[5-6].In addition,earlier studies revealed that the biological properties of TSCs are often modulated by metal ion coordination[7-10].In this regard,the complexes of TSCs bearing pyrazine unit usually displayed higher biological activity than the parent ligands due to the so-called metal-ligand synergism effect.Our previous work also shows that the interactions of the Ni(Ⅱ) and Zn(Ⅱ) complexes with DNA are stronger than that of the thiosemicarbazone ligand,namely 1-(3-ethylpyrazin-2-yl)ethylidene)-4-methylthiosemicarbazide (HL)[11].

On the other hand,Cu(Ⅱ)containing anticancer agents are promising leads for next generation of metal-based anticancer agents because Cu(Ⅱ)plays a significant role in biological systems[8-9].Furthermore,diverse structures of Cu(Ⅱ)complexes with TSCs could be obtained by varying the corresponding anions.As part of our continuous work on searching for bioactive compounds,three Cu(Ⅱ)complexes with HL were synthesized and characterized by X-ray diffraction methods.In addition,their DNA-binding properties have been investigated in detail.

Scheme 1 Synthetic route of the TSC ligand HL[11]

1 Experimental

1.1 M aterials and measurements

Solvents and starting materials for syntheses were purchased commercially and used as received.Ligand HL was synthesized by the method reported by us[11].Elemental analyses were carried out on an Elemental Vario ELanalyzer.The IR spectra (ν=4 000~400 cm-1)were determined by the KBr pressed disc method on a Bruker V70 FT-IR spectrophotometer.The UV spectra were recorded on a Purkinje General TU-1800 spectrophotometer.DNA-binding properties of the ligand and three complexes were measured using literature method via emission spectra[12].

1.2 Syntheses of com p lexes 1~3

Complex 1 was synthesized by reacting HL(0.5 mmol)with equimolar amount of CuBr2,CuCl2or CuSO4in methanol/DMF (10 mL,1∶1,V/V)solution at room temperature,respectively.The crystals suitable for X-ray diffraction analysis were obtained by evaporating the reaction solutions at room temperature.

1:Black blocks.Yield:77%.Anal.Calcd.for C13H21N6OSBrCu(%):C,34.48;H,4.67;N,18.56;S,7.08.Found(%):C,34.25;H,4.86;N,18.28;S,6.89.FT-IR (cm-1):ν(N=C)1 523,ν(N=C,pyrazine)1 456,ν(S=C)858.

2:Black plates.Yield 65%.Anal.Calcd.for C10H18N5O2SClCu(%):C,32.35;H,4.89;N,18.86;S,8.63.Found(%):C,32.15;H,4.99;N,19.01;S,8.53.FT-IR (cm-1):ν(N=C)1 541,ν(N=C,pyrazine)1 498,ν(S=C)856.

3:Black rods.Yield 53%.Anal.Calcd.for C21H34N10O6S3Cu2(%):C,33.82;H,4.59;N,18.78;S,12.90.Found(%):C,33.45;H,4.39;N,18.75;S,12.79.FT-IR (cm-1): ν(N=C)1 541, ν(N=C,pyrazine)1 500,ν(S=C)860.

1.3 X-ray crystallography

The X-ray diffraction measurement for complexes 1 (crystal size:0.16 nm×0.12 nm×0.10 mm),2 (crystal size:0.25 nm×0.12 nm×0.04 mm),and 3 (crystal size:0.40 nm ×0.20 nm ×0.20 mm)was performed on a Bruker SMARTAPEXⅡCCD diffractometer equipped with a graphite monochromatized Mo Kα radiation (λ=0.071 073 nm)by usingφ-ω scan mode.Semi-empirical absorption correction was applied to the intensity data using the SADABS program[13].The structures were solved by direct methods and refined by full matrix least-square on F2using the SHELXTL-97 program[14].All non-hydrogen atoms were refined anisotropically.The H atoms for the O1 and O2 atoms of complex 2 were not added due to the special symmetric positions of these atoms.All the other H atoms were positioned geometrically and refined using a riding model.Details of the crystal parameters,data collection and refinements for complexes 1~3 are summarized in Table 1.

CCDC:1884254,1;1884255,2;1884256,3.

Table 1 Crystal data and structure refinement for com plexes 1~3

2 Results and discussion

2.1 Crystal structures description

A diamond drawing of complexes 1~3 is shown in Fig.1.Selected bond distances and angles are listed in Table 2.The TSC ligand is anionic with C-S bond length in a range of 0.168 4(4)~0.173 2(4)nm in all three complexes.As shown in Fig.1a and 1b,the structures of complexes 1 and 2 are similar,and the center Cuギion in each complex is coordinated by one thiosemicarbazone ligand with N2S donor set and one halide ion (bromide for 1 and chloride for 2),thus possessing a distorted planar square coordination geometry.The intermolecular N-H…O hydrogen bond between the complex and free DMF molecule is found in the crystal of 1.It should be noted that the O1 and O2 atoms occupy in special symmetric position in complex 2 and the H atoms for them are not added,while both of crystal water molecules are involved in a ladder-like supramolecular network,including intermolecular N-H…O,O-H…N,O-H…Cl and O-H…O hydrogen bonds.

In the asymmetric unit of complex 3,there exist one dimeric Cuギcomplex,one free water and one methanol molecules.Two Cuギions were doubly bridged by two S atoms of two TSC ligands to form a Cu2S2core with Cu…Cu distance of 0.318 0 nm.Each of the Cuギions is also coordinated by two N atoms from one TSC ligand and one O atom from theη2-SO42-anion at the outer axial site.According to the Addison rule[15],the geometric indexτis 0.136 and 0.161 for Cu1 and Cu2,respectively,indicating that the coordination geometry of each Cuギion is best described as a distorted tetragonal pyramid rather than trigonal biyramid.In addition,in the solid state,intermolecular N-H…O,O-H…N,and O-H…O hydrogen bonds are helpful to construct a three dimensional supramolecular network.

Fig.1 ORTEP drawing of 1 (a),2 (b),and 3 (d)with 30%thermal ellipsoids;(c)Ladder-like structure formed via N-H…O hydrogen bonds in complex 2

Table 2 Selected bond lengths(nm)and angles(°)in complexes 1~3

Table 3 Hydrogen bond parameters for complexes 1~3

2.2 IR spectra

The infrared spectral bands most useful for determining the coordination mode of the ligand are the ν(N=C),ν(N=C,pyrazine)and ν(S=C)vibrations.Such three bonds of the free TSC ligand were found at 1 544,1 502 and 863 cm-1[11],respectively,while they shifted to lower frequency in complexes 1~3,clearly indicating the coordination of imine N,pyrazine N and S atoms[1-2,16-17].It is in accordance with the X-ray diffraction analysis result.

2.3 UV spectra

The UV spectra of HL[11]and complexes 1~3 in DMSO solution (concentration:10 μmol·L-1)were measured at room temperature (Fig.2).The spectrum of HL featured only one main band located around 299 nm (ε=34 026 L·mol-1·cm-1)[11],which could be assigned to characteristic π-π*transition of pyrazine unit[12].Similar bands were observed at 324 nm (ε=39 263 L·mol-1·cm-1),327 nm (ε=18 260 L·mol-1·cm-1)and 317 nm (ε=139 830 L·mol-1·cm-1)in complexes 1~3,respectively.However,the new bonds at 437 nm(ε=27 771 L·mol-1·cm-1),432 nm (ε=16 202 L·mol-1·cm-1)and 433 nm (ε=87 930 L·mol-1·cm-1)could be observed in spectra of 1~3,respectively,probably due to the ligand-to-metal charge transfer (LMCT)[16].This indicates that an extended conjugation is formed in anionic ligand after complexation in the complexes.

Fig.2 UV spectra of complexes 1~3 in DMSO solution at room temperature

2.3 EB-DNA binding study by fluorescence spectrum

Fig.3 Emission spectra of EB-DNA system in the presence of complexes 1~3 (a~c,respectively)

It is well known that EB can intercalate into DNA to induce strong fluorescence emission.Competitive binding of other drugs to DNA and EB will result in displacement of bounding EB and a decrease in the fluorescence intensity[15].Fig.3 shows the effects of the ligand and complexes 1 ~3 (10 μmol·L-1)on the fluorescence spectra of EB-DNA system.The fluorescence intensities of EB bound to ct-DNA at about 600 nm showed remarkable decreasing trend with the increasing concentration of each tested compound,indicating that some EB molecules are released into solution after the exchange with the compound.The quenching of EB bound to DNA by the compound is in agreement with the linear Stern-Volmer equation:I0/I=1+Ksqr[16],where I0and I represent the fluorescence intensities in the absence and presence of quencher,respectively;Ksqis the linear Stern-Volmer quenching constant;r is the ratio of the concentration of quencher and DNA.In the quenching plots of I0/I versus r,Ksqvalues are given by the slopes.The Ksqvalues were 0.484,1.465,1.133 and 1.827 for HL[11]and complexes 1~3,respectively,indicating that interaction of the complexes with DNA is much stronger than HL[11].This is probably due to the structure rigidity and metal-ligand synergism effect of the complexes[13].Complex 3 exhibits the highest activity among the three complexes,which is consistent with the demonstration that the activity of polynuclear complex is stronger than that of mononuclear one[18].

3 Conclusions

Three complexes with a pyrazine-containing thiosemicarbazone ligand were prepared and characterized by single-crystal X-ray crystallography.In addition,the fluorescence spectra indicated that the interaction of the complexes to DNA is stronger than that of the ligand HL.Particularly,complex 3 exhibits the highest activity among the three complexes,which is consistent with the demonstration that the activity of polynuclear complex is stronger than that of mononuclear one.Further research is needed to better determine the relationship between structures and activities.

猜你喜歡
化工學(xué)院吡嗪乙基
使固態(tài)化學(xué)反應(yīng)100%完成的方法
國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
《化工學(xué)報》贊助單位
硫酸鋅電解液中二(2-乙基己基)磷酸酯的測定
2-羧乙基苯基次膦酸的胺化處理及其在尼龍6中的阻燃應(yīng)用
濃香型“山莊老酒”中吡嗪類物質(zhì)的分析研究
中國釀造(2015年4期)2015-01-26 22:50:40
雙[2-(5-硝基-2H-四唑基)-2,2-二硝乙基]硝胺的合成與量子化學(xué)計算
4H,8H-雙呋咱并[3,4-b:3',4'-e]吡嗪的合成及熱性能
吡嗪-2,3,5,6-四甲酸及4,4′-聯(lián)吡啶與ds-金屬配合物合成、結(jié)構(gòu)及發(fā)光性質(zhì)
塔城市| 宁安市| 海宁市| 贺州市| 巨鹿县| 华坪县| 锡林浩特市| 建阳市| 天祝| 浦县| 北辰区| 黄山市| 庐江县| 万州区| 景宁| 鄂伦春自治旗| 康保县| 余干县| 西华县| 新余市| 乌拉特前旗| 汕头市| 无锡市| 祁连县| 连平县| 岳西县| 会泽县| 新宁县| 修武县| 涞水县| 石台县| 通江县| 偃师市| 汉源县| 兴隆县| 徐闻县| 中江县| 鸡泽县| 宁晋县| 弥勒县| 措勤县|