何林蓉
【摘 要】:炎性肌病患者存在IL-6表達異常,病理狀態(tài)下肌肉中IL-6可能主要由浸潤的單核巨噬細胞產(chǎn)生。IL-6可能通過JAK/STAT通路調(diào)控衛(wèi)星細胞的增殖分化,影響肌肉代謝導致肌萎縮,拮抗IL-6/STAT通路的治療可能在肌病治療中有效。
【關鍵詞】:IL-6;炎性肌病;肌萎縮;衛(wèi)星細胞
Abstract:Abnormal expression of IL-6 was observed in inflammatory myopathies. IL-6 was mainly expressed by infiltrating monocytes and macrophages. IL-6 can modulate the proliferation and differentiation of satellite cell through JAK/STAT pathway, and interfere protein metabolism thus lead to muscle atrophy. Treatment target IL-6/STAT pathway may be useful in myopathies.
Key words: IL-6; inflammatory myopathy; muscle atrophy; satellite cell
【中圖分類號】R592【文獻標識碼】A【文章編號】1672-3783(2019)06-03--01
白細胞介素6(IL-6)是一種多功能的細胞因子,通過傳統(tǒng)及反式信號轉(zhuǎn)導兩種途徑結(jié)合IL-6受體(IL-6R),下游主要激活JAK/STAT信號通路,參與炎癥反應及免疫應答[1]。研究發(fā)現(xiàn)肌炎患者血清IL-6水平顯著高于對照組[2],在肌肉組織中也發(fā)現(xiàn)IL-6表達上調(diào)。皮肌炎合并快速進展性間質(zhì)性肺炎的患者血清IL-6水平顯著高于對照組[3],可能與不良預后相關。在臨床中也發(fā)現(xiàn)部分肌炎患者對IL-6受體單抗治療反應好,故而探究IL-6在肌炎發(fā)病機制中的作用具有潛在臨床價值,本文就可能的機制作綜述。
一 生理及病理狀態(tài)下肌肉中IL-6的表達
骨骼肌在運動后可釋放IL-6,故而IL-6也被認為是一種肌肉因子,肌肉同時也是IL-6的作用靶組織。IL-6是首個被發(fā)現(xiàn)在運動后分泌到血液的肌肉因子,IL-6水平與運動時間及運動的肌肉量相關。生理狀態(tài)下,3小時的運動刺激后骨骼肌IL-6表達是基礎狀態(tài)的22倍,休息后迅速恢復到基礎水平[4]。運動后IL-6升高并不是因為肌肉損傷誘導的炎癥反應,研究也證實升高的IL-6并不是來源于免疫細胞或肝臟,收縮的肌細胞本身是IL-6的來源[5]。病理狀態(tài)下肌肉中IL-6表達會改變,損傷再生的肌肉中IL-6可由浸潤的巨噬細胞、中性粒細胞和衛(wèi)星細胞產(chǎn)生。在肌肉損傷/修復的小鼠模型中,肌肉中IL-6表達上調(diào),主要由浸潤的單核巨噬細胞產(chǎn)生,活化下游JAK/STAT3通路,促進巨噬細胞的遷移及成肌細胞的增殖[6]。在C蛋白誘導的小鼠肌炎模型中也證實上調(diào)的IL-6主要由巨噬細胞表達,敲除IL-6的小鼠注射C蛋白后5只小鼠中僅1只誘導出很輕的肌炎,而IL-6R單抗治療可減輕C蛋白誘導肌肉組織炎癥,提示IL-6可能參與C蛋白誘導的肌炎的發(fā)病[7]。在培養(yǎng)的人成肌細胞中加入前炎癥因子IL-1β或TNFα可誘導產(chǎn)生IL-6[8],故而浸潤的炎癥細胞可能還通過產(chǎn)生其他誘導IL-6的前炎癥因子進而間接促進IL-6表達。
二 IL-6參與調(diào)控肌肉萎縮
病理狀態(tài)下持續(xù)IL-6升高可能與肌肉萎縮相關。健康人輸注相當于長期劇烈運動后水平的IL-6可輕度增加凈蛋白分解,降低肌肉蛋白轉(zhuǎn)換及血氨基酸水平[9]。向小鼠輸注低劑量的IL-6對肌纖維大小及重量沒有顯著影響,然而大劑量的IL-6可以顯著降低肢體肌肉重量[10]。Haddad等[11]通過對大鼠肌肉局部輸注相當于人運動后水平的IL-6,發(fā)現(xiàn)實驗組肌肉蛋白含量減少,IL-6/ STAT通路上的STAT3磷酸化上升、SOCS3表達上調(diào),而生長因子及IGF-1通路相關的S6K1、STAT5蛋白磷酸化下降,提示IL-6可能調(diào)控生長因子及IGF-1通路影響合成代謝進而參與肌肉萎縮。Tsujinaka等[12]發(fā)現(xiàn)IL-6轉(zhuǎn)基因鼠肌肉重量低于對照組,過表達IL-6的轉(zhuǎn)基因小鼠10周齡時就表現(xiàn)出嚴重的肌萎縮,溶酶體cathepsins B表達上調(diào),泛素mRNA表達上調(diào),而IL-6R單抗治療可逆轉(zhuǎn)這種改變,提示IL-6可能通過泛素蛋白酶體系統(tǒng)及溶酶體系統(tǒng)增加蛋白降解,促進肌肉萎縮,IL-6R單抗可能有治療價值。
三 IL-6/STAT通路影響衛(wèi)星細胞增殖分化
在肌纖維的基底膜及肌膜間存在衛(wèi)星細胞,僅占肌細胞核的2~4%,但對于肌肉的損傷修復及再生具有重要作用。衛(wèi)星細胞的激活、增殖及分化由一系列復雜的成肌調(diào)控因子(MRF)調(diào)控,其中Myf5及MyoD對于成肌定向具有重要作用,而MRF4和myogenin對于終末分化有重要作用。轉(zhuǎn)錄因子Pax7是衛(wèi)星細胞的標記,是協(xié)調(diào)MRF表達的關鍵蛋白。衛(wèi)星細胞激活后表達MYOD及MYF5,一部分衛(wèi)星細胞Pax7表達下調(diào)、myogenin從頭表達,分化為肌細胞進而融合形成新的肌纖維。一部分衛(wèi)星細胞不進入分化程序,下調(diào)MyoD及MYF5,自我更新增殖,維持衛(wèi)星細胞儲備池[13]。
Price等[14]發(fā)現(xiàn)隨著小鼠年齡的增加,衛(wèi)星細胞數(shù)量減少,全基因組測序發(fā)現(xiàn)不同年齡組差異表達基因富集于JAK/STAT信號通路。通過PCR驗證發(fā)現(xiàn)JAK/STAT通路的靶基因在老年組表達上調(diào),且pSTAT3蛋白水平升高。在體外培養(yǎng)肌纖維中通過siRNA阻斷JAK2或STAT3,發(fā)現(xiàn)PAX7陽性衛(wèi)星細胞數(shù)量增多,而PAX7-/MyoD+的分化細胞數(shù)量減少。在CTX誘導的肌肉損傷再生模型小鼠,通過局部肌肉注射JAK/STAT通路抑制劑發(fā)現(xiàn)肌肉衛(wèi)星細胞數(shù)量增加。Tierney等[15]發(fā)現(xiàn)肌肉損傷后衛(wèi)星細胞參與修復的過程中STAT3一過性磷酸化,且與MyoD1表達相關。體外衛(wèi)星細胞培養(yǎng)發(fā)現(xiàn)IL-6刺激促進STAT3及MyoD1 mRNA表達上調(diào),而阻斷STAT3后,MyoD1、myogenin表達均下調(diào),影響衛(wèi)星細胞的終末分化,這提示IL-6介導的衛(wèi)星細胞向前體細胞分化依賴STAT3。進一步的模型小鼠體內(nèi)試驗證實,在衛(wèi)星細胞中敲除STAT3不會打破正常肌肉中衛(wèi)星細胞的靜止狀態(tài),肌肉損傷后觀察5天及25天時PAX7陽性細胞數(shù)量增加,但分化融合受影響。上述研究提示IL-6/STAT3信號通路可能促進衛(wèi)星細胞向肌細胞分化,抑制衛(wèi)星細胞自我更新增殖,持續(xù)的STAT3活化可能介導衛(wèi)星細胞耗竭,周期性的應用IL6/STAT3抑制劑可能有助于增加衛(wèi)星細胞數(shù)量,促進肌肉修復。
綜上,病理狀態(tài)的肌肉中IL-6高表達,可能主要由浸潤的單核巨噬細胞產(chǎn)生,通過JAK/STAT通路調(diào)控衛(wèi)星細胞的增殖分化,影響肌肉的損傷修復,同時可能促進分解代謝和蛋白降解導致肌肉的萎縮,拮抗IL-6/STAT通路的治療可能有效,但還有待更多的臨床和基礎研究來證實。
參考文獻
Forcina L, Miano C, Musarò A. The physiopathologic interplay between stem cells and tissue niche in muscle regeneration and the role of IL-6 on muscle homeostasis and diseases[J]. Cytokine & Growth Factor Reviews. 2018,41:S1359610118300583.
Yang M, Cen X, Xie Q, et al. Serum interleukin-6 expression level and its clinical significance in patients with dermatomyositis[J]. Clinical & developmental immunology. 2013,2013:717808.
Kawasumi H, Gono T, Kawaguchi Y, et al. IL-6, IL-8, and IL-10 are associated with hyperferritinemia in rapidly progressive interstitial lung disease with polymyositis/dermatomyositis[J]. BioMed research international. 2014,2014:815245.
Fischer CP, Hiscock NJ, Penkowa M, et al. Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle[J]. The Journal of physiology. 2004,558(Pt 2):633-45.
Hiscock N, Chan MH, Bisucci T, et al. Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity[J]. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2004,18(9):992-4.
Zhang C, Li Y, Wu Y, et al. Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration[J]. The Journal of biological chemistry. 2013,288(3):1489-99.
Okiyama N, Sugihara T, Iwakura Y, et al. Therapeutic effects of interleukin-6 blockade in a murine model of polymyositis that does not require interleukin-17A[J]. Arthritis and rheumatism. 2009,60(8):2505-12.
Gallucci S, Provenzano C, Mazzarelli P, et al. Myoblasts produce IL-6 in response to inflammatory stimuli[J]. International immunology. 1998,10(3):267-73.
van Hall G, Steensberg A, Fischer C, et al. Interleukin-6 markedly decreases skeletal muscle protein turnover and increases nonmuscle amino acid utilization in healthy individuals[J]. The Journal of clinical endocrinology and metabolism. 2008,93(7):2851-8.
Janssen SP, Gayan-Ramirez G, Van den Bergh A, et al. Interleukin-6 causes myocardial failure and skeletal muscle atrophy in rats[J]. Circulation. 2005,111(8):996-1005.
Haddad F, Zaldivar F, Cooper DM, Adams GR. IL-6-induced skeletal muscle atrophy[J]. Journal of applied physiology (Bethesda, Md : 1985). 2005,98(3):911-7.
Tsujinaka T, Fujita J, Ebisui C, et al. Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice[J]. The Journal of clinical investigation. 1996,97(1):244-9.
Almada AE, Wagers AJ. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease[J]. Nature Reviews Molecular Cell Biology, 2016 May ; 17(5): 267–279.
Price FD, von Maltzahn J, Bentzinger CF, et al. Inhibition of JAK-STAT signaling stimulates adult satellite cell function[J]. Nature medicine. 2014,20(10):1174-81.
Tierney MT, Aydogdu T, Sala D, et al. STAT3 signaling controls satellite cell expansion and skeletal muscle repair[J]. Nature medicine. 2014,20(10):1182-6.