張林,張志杰,2,李巖峰
(1.中北大學 儀器與電子學院,山西 太原 030051;2.中北大學 儀器科學與動態(tài)測試教育部重點實驗室,山西 太原 030051)
非接觸測溫中的輻射測溫具有響應速度快、測量溫度高以及不影響溫度場等優(yōu)勢,因此它得到了快速的發(fā)展,并廣泛應用于諸多領域。其中,雙波段比色測溫法已在高溫場測量中取得了許多的成就,開發(fā)了許多不同類型的測溫儀,例如基于DSP的比色光纖高溫測溫儀[1],基于彩色CCD的高溫輻射測量儀[2],智能便攜式鎂合金燃點比色測溫儀[3]等。但是在低于1 000℃的中低溫場的相關研究比較少。本文介紹雙波段比色測溫的原理,研究溫度測量時雙波段的選取問題,以及實際系統(tǒng)中標定方法的選擇、誤差的分析等。
輻射測溫的基本原理是基于黑體輻射的普朗克定律。普朗克曲線如圖1所示。普朗克定律描述的是輻射能量的光譜分布,它的相應公式表明了光譜黑體輻射出射度與波長和絕對溫度的關系:
式中:c1=2πhc2=3.74×10-16;c2=hck=1.43879×10-2,c為光速,k和h分別為玻爾茲曼常數(shù)和普朗克常數(shù)[4]。
圖1 普朗克曲線Fig.1 Planck curves
根據(jù)普朗克定律可以得到很多種輻射測溫方法,包括單色輻射式測溫法、全輻射式測溫法和比色式測溫法等[5]。雙波段比色測溫的原理是根據(jù)被測溫度場在兩個波段上的光譜輻射出射度的比值與溫度的關系來測量溫度的。在實際應用中,比色測溫儀是利用不同工作波長的兩路輸出信號比值與溫度單值函數(shù)來確定物體溫度的。當選擇合適的波長后,發(fā)射率的影響可以忽略不計,這樣就可以大大減少發(fā)射率帶來的誤差,這也是比色測溫法最主要的優(yōu)點[6]。
1.2.1 雙波段的選取范圍
比色測溫的核心是雙波長的選取。影響波長選擇的因素很多,包括發(fā)射率、測溫范圍、大氣吸收等。其中發(fā)射率的確定很困難,因此選擇兩個相近的波長,使得熱源在兩個波段的發(fā)射率盡量相近,降低發(fā)射率對測溫誤差的影響[7]。實驗的測溫范圍為100~1 000℃(373~1 273 K)。溫度越低,總的輻射功率越小,相應的探測波段輻射功率也小,探測器不容易檢測到信號。探測波段越小的位置輻射功率也越小[8-9]。根據(jù)維恩位移定律,計算出測溫段的峰值波長為2.28~7.77 m。
由于大氣環(huán)境含有水汽、二氧化碳和臭氧,這些物質會吸收輻射能量導致無法測量或者測量不精確,因此要根據(jù)大氣吸收光譜選擇合適的波長。水汽分子是紅外輻射的主要吸收體,較強的水汽吸收帶位于0.71~0.735 m,0.81~0.84 m,0.89~0.99 m,1.07~1.20 m,1.3~1.5 m,1.7~2.0 m,2.4~3.3 m等。為了提高信噪比,所選波長應該接近峰值波長,并根據(jù)探測器的響應范圍等相關因素,應選擇1.5~1.7 m波段進行比色測溫。
1.2.2 中心波長的選取
輸出信號的比值與溫度有著很復雜的數(shù)學關系。選擇合適的測溫參數(shù),對提升測溫精度很重要,中心波長λ1={1.5,1.55,1.6,1.65,1.7}μm,λ2={1.55,1.6,1.65,1.75}μm,兩個所選波長的帶寬都為0.04 m,對應的兩個波長輻射功率之比R與溫度T關系的曲線,見圖2。由圖2可以看出,在所測的373~1 273 K之間,波長越小,輻射功率之比變化范圍越大,分辨率越好[10-12]。
圖2 波長與輻射功率之比的關系Fig.2 Relationship between wavelength and radiant power ratio
從靈敏度來判斷,定義靈敏度S為溫度變化1 K時R的變化量[13],即S=ΔRΔT。由圖 3可知,波長越小,對應的靈敏度越高。
圖3 波長與靈敏度的關系Fig.3 Relationship between wavelength and sensitivity
當兩波段的中心間距從0.05 m減少為0.04 m時,兩個所選帶寬仍為0.04 m。對比圖2~圖4中曲線的Y軸變化范圍,可知此時的輻射功率動態(tài)變化范圍將減小,而且靈敏度也降低;但波長越近,發(fā)射率的影響越小,測溫越準確,考慮到發(fā)射率是測量準確性的主要影響因素,并根據(jù)實際濾光片的情況,選用兩塊較近波長的濾光片即可。
由于實際濾波片的帶寬基本已定,而且增加帶寬的目的是提高信噪比,縮小帶寬卻可以提高精確度。一般來說,帶寬的最大寬度由探測元件限制,帶寬的最低限度由信噪比決定。
考慮改變帶寬的影響,選擇中心波長λ1={ 1.5,1.6,1.7 }μm,λ2={ 1.55,1.65,1.75 }μm時,兩個波段的帶寬分別為0.02 m,0.04 m,0.06 m。由圖5可知,帶寬的改變基本不影響波長輻射功率之比。
圖4 兩波長間距減小后的曲線圖Fig.4 Curve diagrams after spacing between two wavelengths was reduced
圖5 不同帶寬的曲線Fig.5 Curves at different bandwidths
由以上分析可以得出,帶寬的改變并不影響結果;波長越小,輻射功率變化范圍越大;分辨率越高,靈敏度越高。
因此,在選擇兩波長時,應在可探測輻射強度和大氣窗口所限定的波段內,讓兩波長盡量小,間距盡量接近。本實驗選擇的濾光片波長分別為60~1 550 nm和60~1 600 nm。
比色測溫系統(tǒng)由光學探頭、分束光纖、濾光片和銦鎵砷光電探測器等組成。其中,銦鎵砷光電探測器具有放大作用,響應波長為0.8~1.7 m。系統(tǒng)的組成框圖見圖6,部分實驗設備見圖7。
圖6 比色測溫系統(tǒng)框圖Fig.6 Block diagram of colorimetric temperature measurement system
圖7 部分實驗設備Fig.7 Partial experimental equipments
本系統(tǒng)是由光學部分和電學部分共同組成的。輻射光源發(fā)出的輻射光由光學探頭接收,通過分束光纖平均分為兩路光信號;然后經(jīng)過光纖準直器和濾光片,被銦鎵砷光電探測器所接收、放大;最后通過數(shù)據(jù)采集處理系統(tǒng)進行信號的采集和處理,顯示出電壓信號。
在測試系統(tǒng)中,光的輻射能量轉化為電壓信號。測溫系統(tǒng)在兩個波段處的輸出電壓之比與雙波段輻射亮度之比間的函數(shù)關系為:
式中:f(λ)為濾光片光譜透過率;D(λ)為光電轉換器的光譜響應函數(shù);F(λ)為光學系統(tǒng)的光譜透過率;ε(λ,T)為所測物體在某一溫度和波長處的發(fā)射率;其中令:
則可以簡化為:
當兩波段接近,且?guī)捿^窄時,兩波段平均發(fā)射率相等,可以認為K是一個與波長無關的比例系數(shù),這是K值法。
由式(2)可知,通過比色測溫系統(tǒng)得到的兩個輸出端的電壓值可以求出此刻物體的溫度。在基于黑體爐的標定實驗中,根據(jù)所測電壓的比值和此刻黑體爐的溫度,實驗選取兩種方法對比色測溫系統(tǒng)進行標定,并對兩種方法進行比較。一種是K值法,根據(jù)式(3),當測溫距離確定后,K值應該是一個由系統(tǒng)參數(shù)確定的常量,實測中可由式(1)與式(2)反解得到當前溫度;另一種是曲線擬合法,擬合一條電壓比值和對應黑體爐溫度的曲線并確定曲線的方程,實測中將測量結果的比值代入方程即可求得對應的溫度。
在實驗系統(tǒng)的測試中發(fā)現(xiàn),400℃以下由于輻射強度等原因會測不到,400~600℃由于輻射產(chǎn)生的電壓變化相對于噪聲干擾帶來的變化并不明顯,誤差較大。因此本實驗主要以600℃以上測量為準。
本實驗中光學探頭與黑體爐的距離為10 cm。實驗一所測的溫度為600~940℃(間隔20℃),實驗二所測的溫度為610~950℃(間隔20℃)。為了減小測量誤差,實驗中每個溫度點均進行3次測量,取3次電壓的平均值作為實驗結果。
使用K值法對實驗一結果進行求解,得到的K值為0.798 9;使用曲線擬合法對實驗一結果進行二次擬合,結果方程為:
式中:x為電壓比值;y為溫度。
方程對應的曲線如圖8所示。
圖8 曲線擬合法結果圖Fig.8 Result diagram of curve-fitting method
分別用兩種方法對實驗二結果進行誤差分析,結果見表1。由圖8和表1可知,曲線擬合法效果更好,系統(tǒng)測溫的穩(wěn)定性更好。
表1 兩種方法的對比Table 1 Comparison of two methods
實驗中探測器與熱源的距離長短會影響到K值。從理論上來說,距離越遠,大氣干擾性越大;距離越遠,周圍環(huán)境的影響越大;距離越遠,所接收到熱輻射強度會迅速降低。因此,距離越遠,測量誤差越大。
調節(jié)探測器的旋鈕,使得再次進行的重復性實驗的測溫距離拉長到16 cm,其他條件不變。實驗三所測的溫度為600~940℃(間隔20℃),實驗四所測的溫度為610~950℃(間隔20℃);實驗中每個溫度仍均測3次,取其平均值作為測量結果。
實驗三所測到的平均K值為0.715 9,實驗四所測到的平均K值為0.722 4。對比實驗一與實驗三、實驗四的K值結果可以得出結論,測溫距離很明顯影響到K值,對于不同的測溫距離,應使用不同的K值或者擬合方程。
綜合實驗一至實驗四的結果,根據(jù)測溫距離不同進行對比。溫度范圍為600~950℃(間隔10℃),測溫距離分別為10 cm和16 cm。結果如圖9所示,易知測溫距離越大,誤差越大。
由黑體爐標定實驗可以得出結論:在安全距離內,距離熱源越近誤差越小;在中低溫段,擬合曲線法比K值法誤差更??;由于環(huán)境、能量等方面的影響,對于不同的測溫距離,測溫系統(tǒng)應使用不同的K值或者擬合曲線。
圖9 不同測溫距離對比圖Fig.9 Comparison of different temperature measurement distances
本文詳細介紹了雙波長的選取原則,應考慮大氣環(huán)境等因素選擇合適的波段,在可探測強度的前提下選擇更小的波長,讓兩波長盡量接近。在實際系統(tǒng)的標定中,擬合曲線法比K值法更適合。溫度較低時測溫距離對測量精度影響很大。由于低溫輻射強度低、系統(tǒng)噪聲等原因,一般會出現(xiàn)輻射強度過低無法測量、干擾因素導致誤差太大等現(xiàn)象。