胡頌軍 宋石平 劉媛
摘要:采用數(shù)值模擬方法研究了二次流吹風(fēng)比和自由流湍流度對(duì)葉片表面換熱系數(shù)分布影響,獲得了不同吹風(fēng)比和湍流度下葉片表面換熱系數(shù)展向平均分布曲線,并與試驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比。研究結(jié)果表明:換熱系數(shù)比全局平均值隨著吹風(fēng)比的增大而減小,隨著湍流度的增大而減??;數(shù)值計(jì)算較好地模擬了葉片表面換熱特征。
關(guān)鍵詞:吹風(fēng)比;湍流度;換熱系數(shù)
Abstract:The effect of blowing ration and free stream turbulence on heat transfer coefficient of a film cooled vane was investigated numerically and compared with experimental data. The results show that the average heat transfer coefficient based on suction side decreased almost linearly with an increase in blowing ratio and free stream turbulence. Compared with experiment results,the numerical research method can simulate and indicate heat transfer characteristic of a vane.
Key words:blowing ratio;turbulence;heat transfer coefficient
提高渦輪進(jìn)口溫度可以有效提升航空發(fā)動(dòng)機(jī)性能,但這使得燃燒室和渦輪等高溫部件的工作環(huán)境惡化,影響發(fā)動(dòng)機(jī)可靠性和使用壽命。對(duì)高溫部件進(jìn)行先進(jìn)高效的冷卻為解決這一問(wèn)題的方法之一。氣膜冷卻作為發(fā)動(dòng)機(jī)中渦輪葉片的主要熱防護(hù)措施受到廣泛關(guān)注。
Nealy等指出影響渦輪葉片換熱的基本因素包括:邊界層的轉(zhuǎn)捩特性、自由湍流度、氣流分離和再附著等[1],文獻(xiàn)[2]研究了馬赫數(shù)和吹風(fēng)比對(duì)葉片氣膜冷卻特性的影響,朱惠人等[3]在葉片氣膜冷卻研究中關(guān)注孔位置和氣膜射流流量對(duì)葉片表面換熱系數(shù)的影響,文獻(xiàn)[4,5]研究了湍流度、湍流尺度對(duì)邊界層發(fā)展的影響,Van Fossen等研究了湍流度及湍流尺度、雷諾數(shù)等參數(shù)對(duì)葉片換熱的影響[6]。本文針對(duì)典型的渦輪導(dǎo)向葉片,采用數(shù)值計(jì)算研究氣膜出流吹風(fēng)比和葉柵進(jìn)口自由流湍流度對(duì)葉片換熱特性的影響。
1數(shù)值計(jì)算
1.1 計(jì)算模型
如圖1,計(jì)算模型為的直導(dǎo)向葉片,在吸力面S=-14.1D處布置單排7個(gè)氣膜孔,孔徑D=1.54mm,角度α=55°,孔間距4.2D,模型進(jìn)口高度29.5D。
2.2湍流度對(duì)表面換熱系數(shù)影響分析
圖4表明,在湍流度較大(6.85%和14.24%)時(shí),氣膜出流后壁面換熱系數(shù)比先增后減;而在湍流度為0.59%時(shí),氣膜出流后壁面換熱系數(shù)比持續(xù)增大,在靠近葉片尾緣附近增幅緩慢;不同湍流度下?lián)Q熱系數(shù)比的峰值位置不同,且隨著湍流度的增大向前緣移動(dòng)。因?yàn)樵谕牧鞫容^大時(shí),氣膜出流后加劇了氣膜孔附近的流場(chǎng)擾動(dòng),增強(qiáng)了換熱;同時(shí)氣膜出流更快速的回到壁面,換熱系數(shù)比峰值更靠近氣膜孔。
從圖5可以看出,在吹風(fēng)比較?。ā?.0)時(shí),換熱系數(shù)比均隨湍流度單調(diào)減小。
3 結(jié)論
本文研究了二次流吹風(fēng)比和主流湍流度對(duì)葉片表面換熱系數(shù)的影響,并與試驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比,結(jié)論如下:
(1)葉片吸力面換熱系數(shù)比平均隨S/C的變化趨勢(shì)與試驗(yàn)結(jié)果吻合較好,數(shù)值計(jì)算能較好的模擬有氣膜葉片表面換熱特征。
(2)除主流湍流度為6.85%、吹風(fēng)比M=1.2工況外、換熱系數(shù)比全局平均值隨吹風(fēng)比的增大而減小。
(3)在吹風(fēng)比較小(≤1.0)時(shí),換熱系數(shù)比均隨湍流度單調(diào)減小。
參考文獻(xiàn)
[1] Nealy D A,Mihelc M S,Hylton L D,et al. Measurements of heat transfer distribution over the surfaces of highly loaded turbine nozzle guide vanes[J]. ASME,Transactions,Journal of Engineering for Gas Turbines and Power,1984,106:149-158.
[2] Newman A,Xue S,Ng W,et al. Performance of a Showerhead and Shaped Hole Film Cooled Vane at High Free stream Turbulence and Transonic Conditions[J]. ASME Conference Proceedings,2011,2011(54655):65-77.
[3] Han J C,Dutta S,Ekkad S. Gas turbine heat transfer and cooling technology[M]. Taylor & Francis Group,2000.
[4] Mayle R E,Dullenkopf K,Schulz A. 1997 Best Paper Award---Heat Transfer Committee:The Turbulence That Matters[J]. Journal of Turbomachinery,1998,120(3):402-409.
[5] Carullo J S,Nasir S,Cress R D,et al. The effects of freestream turbulence,turbulence length scale and exit Reynolds number on turbine blade heat transfer in a transonic cascade:Proceedings of the ASME Turbo Expo,Montreal,Que.,Canada,2007[C].
[6] Van Fossen G J,Simoneau R J,Ching C Y. Influence of turbulence parameters,Reynolds number,and body shape on stagnation-region heat transfer[J]. Journal of Heat Transfer,1995,117(3):597-603.
[7] 曹玉璋. 航空發(fā)動(dòng)機(jī)傳熱學(xué)[M]. 北京:北京航空航天大學(xué)出版社,2005.
(作者單位:中國(guó)航發(fā)湖南動(dòng)力機(jī)械研究所 中小型航空發(fā)動(dòng)機(jī)葉輪機(jī)械湖南省重點(diǎn)實(shí)驗(yàn)室)