魏清華 梁波
關(guān)鍵詞: 車輛行為; 信息感知; 隧道照明; PID閉環(huán)反饋; 自動(dòng)調(diào)節(jié); 調(diào)光信號(hào)
中圖分類號(hào): TN830.1?34; TP311.52 ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼: A ? ? ? ? ? ? ? ? 文章編號(hào): 1004?373X(2019)02?0094?04
Automatic brightness adjustment system based on vehicle behavior information perception for tunnel illumination
WEI Qinghua1,2, LIANG Bo3
(1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
2. Chongqing Communications Planning Survey & Design Institute, Chongqing 401121, China;
3. State Key Laboratory Breeding Base of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
Abstract: The tunnel illumination brightness adjustment system based on fuzzy neural network can not realize feedback regulation of tunnel brightness signals, and has poor adjustment and energy?saving effects. Therefore, an automatic brightness adjustment system based on vehicle behavior information perception is designed for tunnel illumination. The vehicle behavior perception devices are used to perceive the vehicle speed, traffic flow, and vehicle passing situations inside and outside the tunnel. The main control module taking the STM32F103RCT6 as the main control chip is used to collect vehicle?related signals and dimming signals obtained by the vehicle behavior perception devices and the brightness detector USREGAL LUX CS 201. These signals are transmitted to the monitoring center to ensure that the overall dimming control is regulated by the lighting units on the tunnel site. In the system, the automatic brightness regulation of tunnel illumination is realized by means of the wireless monitoring terminal and on the basis of feedback signals of the main control module. For the system software, the principle of PID closed?loop feedback adjustment is adopted to realize accurate brightness adjustment in the tunnel. The experimental results show that the designed system can effectively adjust the brightness in the tunnel with or without passing vehicles at various speeds, and the designed system can save up to 244 kW·h of daily energy consumption in comparison with the system without using the proposed system, which has a remarkable energy?saving effect.
Keywords: vehicle behavior; information perception; tunnel illumination; PID closed?loop feedback; automatic adjustment; dimming signal
傳統(tǒng)的隧道交通中,為了確保車輛在隧道內(nèi)安全行駛,要求隧道內(nèi)照明燈長(zhǎng)期明亮,在無車情況下亦是如此。但長(zhǎng)久以往會(huì)造成能源消耗和不必要的支出,并且傳統(tǒng)隧道中大都采用高壓鈉燈,與LED燈進(jìn)行對(duì)比發(fā)現(xiàn)高壓鈉燈滿足不了隧道照明的按需調(diào)光[1],同時(shí)高壓鈉燈維護(hù)費(fèi)用相對(duì)較多。文獻(xiàn)[2]研究的隧道照明節(jié)能控制系統(tǒng),只針對(duì)洞內(nèi)照明進(jìn)行調(diào)控,無法對(duì)洞外照明進(jìn)行有效調(diào)控,存在一定的局限性;文獻(xiàn)[3]設(shè)計(jì)的基于模糊神經(jīng)網(wǎng)絡(luò)的公路隧道照明控制系統(tǒng),無法實(shí)現(xiàn)隧道亮度信號(hào)的反饋調(diào)控,調(diào)節(jié)效果差;文獻(xiàn)[4]提出的基于駕駛視認(rèn)需求的隧道中間段路面亮度調(diào)節(jié)方法,通常對(duì)隧道中間路段的亮度進(jìn)行調(diào)控,無法實(shí)現(xiàn)總體隧道亮度的感知調(diào)控。上述研究的隧道照明控制系統(tǒng)沒有通過感知車輛行為信息進(jìn)行亮度的自動(dòng)調(diào)節(jié),因此本文設(shè)計(jì)了基于車輛行為信息感知的隧道照明亮度自動(dòng)調(diào)節(jié)系統(tǒng),實(shí)現(xiàn)隧道照明亮度的全面、準(zhǔn)確智能調(diào)控。
1.1 ?系統(tǒng)硬件設(shè)計(jì)
1.1.1 ?系統(tǒng)總體結(jié)構(gòu)設(shè)計(jì)
環(huán)境信息感知子系統(tǒng)、車輛行為感知子系統(tǒng)、照度實(shí)時(shí)監(jiān)測(cè)子系統(tǒng)、隧道照明及調(diào)光子系統(tǒng)、隧道照明通信子系統(tǒng)、隧道變電所監(jiān)控中心及變電所隧道照明監(jiān)控軟件、隧道遠(yuǎn)程監(jiān)控中心及監(jiān)控中心隧道照明監(jiān)控軟件是組成隧道照明智能控制系統(tǒng)的重要組成部分。圖1為隧道照明系統(tǒng)結(jié)構(gòu)圖。
1.1.2 ?車輛行為感知設(shè)備
將紅外探測(cè)器安裝在洞內(nèi),線圈車輛檢測(cè)器安裝在洞外構(gòu)成車輛行為感知設(shè)備[5]。確?!败囘M(jìn)燈亮”的硬件基礎(chǔ)是洞外傳感器,其功能是檢測(cè)洞外將要進(jìn)入隧道的車輛,并且計(jì)算車速和車流量等信息。確保入口段與過渡段“車走燈暗”的硬件基礎(chǔ)是洞內(nèi)傳感器,其功能是感知入口段與過渡段的車輛通過情況[6]。
1.1.3 ?主控模塊設(shè)計(jì)
1) 檢測(cè)裝置選擇。隧道洞內(nèi)外亮度、經(jīng)過隧道的車流量和車速是系統(tǒng)主控制器的輸入?yún)?shù)。本文對(duì)洞內(nèi)外亮度檢測(cè)的過程中采用亮度檢測(cè)器USREGAL LUX CS 201進(jìn)行檢測(cè)。該檢測(cè)器適合野外環(huán)境,技術(shù)成熟、成本低,并且有RS 485傳輸接口,可通過車輛行為感知設(shè)備、車輛相關(guān)信息。
2) 主控制器設(shè)計(jì)。圖2為系統(tǒng)主控制器硬件結(jié)構(gòu)圖,STM32F103RCT6為主控制芯片。連接檢測(cè)裝置,完成系統(tǒng)輸入信息的收集是用RS 485實(shí)現(xiàn);對(duì)不同調(diào)光控制器實(shí)施連接,通過CAN總線傳輸調(diào)光命令;對(duì)無線通信模塊實(shí)施連接是通過RS 232通信完成,主控制器和上位機(jī)的通信是由GPRS實(shí)現(xiàn);下載與調(diào)試系統(tǒng)程序通過USB接口進(jìn)行;數(shù)據(jù)存儲(chǔ)是用FLASH閃存完成;程序運(yùn)行是用SRAM實(shí)現(xiàn);顯示系統(tǒng)的照明狀態(tài)是用TFT_LCD表示[7]。
1.1.4 ?無線監(jiān)控終端設(shè)計(jì)
系統(tǒng)通過無線監(jiān)控終端基于主控模塊反饋的信號(hào),實(shí)現(xiàn)隧道照明亮度的自主調(diào)控,無線監(jiān)控終端結(jié)構(gòu)圖如圖3所示。
1.2 ?系統(tǒng)軟件設(shè)計(jì)
1.2.1 ?系統(tǒng)軟件結(jié)構(gòu)圖
系統(tǒng)軟件由數(shù)據(jù)采集與亮度解算模塊、圖像處理模塊、調(diào)光指令發(fā)送模塊等構(gòu)成,其結(jié)構(gòu)如圖4所示。
1.2.2 ?隧道內(nèi)亮度調(diào)節(jié)實(shí)現(xiàn)
如圖5所示為系統(tǒng)進(jìn)行隧道照明亮度自動(dòng)調(diào)節(jié)的PID閉環(huán)反饋調(diào)節(jié)原理的示意圖。
隧道里的實(shí)際亮度上傳到亮度實(shí)時(shí)監(jiān)測(cè)單元,PID調(diào)光計(jì)算模塊實(shí)時(shí)接收實(shí)際亮度值[8]。亮度控制等級(jí)是將調(diào)節(jié)亮度值依據(jù)轉(zhuǎn)換公式轉(zhuǎn)換后得到的結(jié)果,將PID調(diào)節(jié)控制單元規(guī)定的亮度值和亮度實(shí)時(shí)監(jiān)測(cè)單元運(yùn)算出實(shí)際亮度值,再將實(shí)際亮度值作為輸入?yún)?shù)進(jìn)行運(yùn)算得到調(diào)節(jié)亮度值[9]。
增量式PID控制用于隧道照明閉環(huán)反饋智慧控制系統(tǒng),增量式PID公式是[10]:
[Qm=Qa+fq·nf+fo·nf-1+fe·nf-2] (1)
式中:[Qa]為圖像灰度值,需經(jīng)過亮度實(shí)時(shí)監(jiān)測(cè)單元測(cè)量得出,實(shí)際亮度值是經(jīng)灰度和亮度計(jì)算模型輸入圖像灰度值進(jìn)行運(yùn)算得到;[nf],[nf-1],[nf-2]分別為某一時(shí)刻,上一時(shí)刻和[f-2]時(shí)刻的設(shè)定亮度值和實(shí)際亮度值的差;[Qm]是調(diào)節(jié)亮度值需通過PID調(diào)節(jié)并進(jìn)行運(yùn)算得到值;[fb]為比例系數(shù);[fo]為微分系數(shù);[fe]為積分系數(shù)。
2.1 ?系統(tǒng)調(diào)節(jié)效果分析
實(shí)驗(yàn)對(duì)本文系統(tǒng)調(diào)節(jié)下的玉函隧道內(nèi)的情況用網(wǎng)絡(luò)IP攝像機(jī)在各種狀態(tài)下進(jìn)行取樣,再將取樣后的圖片亮度進(jìn)行比較,檢驗(yàn)本文系統(tǒng)的調(diào)光效果。為了保證實(shí)驗(yàn)驗(yàn)證的準(zhǔn)確性,要求實(shí)驗(yàn)采用的網(wǎng)絡(luò)IP攝像機(jī)增益與曝光時(shí)間是穩(wěn)定的。
1) 各車速隧道亮度對(duì)比
圖6表示在洞外亮度一定情況下,本文系統(tǒng)獲取不同時(shí)速車輛進(jìn)入隧道過渡段的亮度對(duì)比情況。分析該圖能夠得出本文系統(tǒng)在車速為55 km/h以及車速為63 km/h時(shí),調(diào)節(jié)隧道亮度后使得隧道亮度等級(jí)分別是53%和71%,說明隨著車速的提高,本文系統(tǒng)調(diào)節(jié)后的隧道過渡段的亮度等級(jí)越高。結(jié)果表明,本文系統(tǒng)可對(duì)車輛速度進(jìn)行有效感知,進(jìn)而準(zhǔn)確調(diào)控隧道的亮度情況。
2) 無車隧道內(nèi)與有車隧道內(nèi)亮度對(duì)比
本文系統(tǒng)為達(dá)到節(jié)能目的,在設(shè)計(jì)時(shí)考慮到一定時(shí)間內(nèi)無車進(jìn)入隧道時(shí),隧道內(nèi)的燈具自動(dòng)調(diào)節(jié)亮度的情況,調(diào)節(jié)的亮度為全功率照明的20%。圖7a)描述的是無車進(jìn)入隧道入口段的低能消耗下的隧道亮度情況;圖7b)是有車進(jìn)入隧道內(nèi)調(diào)光效果??梢钥闯鲇熊囘M(jìn)入隧道后本文系統(tǒng)自動(dòng)依據(jù)當(dāng)前車輛情況對(duì)亮度進(jìn)行調(diào)光。綜合分析圖7說明,本文系統(tǒng)可準(zhǔn)確感知隧道有無車輛,完成隧道亮度的有效調(diào)控。
2.2 ?系統(tǒng)節(jié)能效果分析
實(shí)驗(yàn)檢測(cè)本文系統(tǒng)的節(jié)能效果時(shí),要求實(shí)驗(yàn)玉函隧道內(nèi)無車進(jìn)入情況下,隧道內(nèi)亮度為全功率的20%。本文系統(tǒng)實(shí)驗(yàn)選取LED隧道專用燈為照明燈具。
表1是未采用本文調(diào)節(jié)系統(tǒng)時(shí)玉函隧道在電表統(tǒng)計(jì)的自動(dòng)模式與全亮模式(亮度等級(jí)100%)情況下日耗電量。表2是玉函隧道采用本文調(diào)節(jié)系統(tǒng)后,在不同控制模式下的日耗電量。
通過表1與表2得知,玉函隧道使用本文系統(tǒng)比不使用本文系統(tǒng)的情況下電表日耗電量大大降低,最大節(jié)能能耗電量是1 028 kW·h,比未使用本文系統(tǒng)的最高可節(jié)省日能耗電量244 kW·h。說明使用本文系統(tǒng)調(diào)節(jié)隧道照明可以節(jié)能降耗,減少不必要的損耗同時(shí)還可省錢環(huán)保。
本文以車輛行為信息感知為基礎(chǔ)設(shè)計(jì)隧道照明亮度自動(dòng)調(diào)節(jié)系統(tǒng)。利用主控模塊獲取調(diào)光信號(hào)和車輛相關(guān)信號(hào),再將這些信號(hào)傳輸?shù)綗o線監(jiān)控終端進(jìn)行調(diào)控,使用PID閉環(huán)反饋調(diào)節(jié)原理完成隧道內(nèi)亮度的準(zhǔn)確調(diào)節(jié),實(shí)現(xiàn)“車進(jìn)燈亮”“車走燈暗”“按需照明”。結(jié)果表明,隨著車速的提高,本文系統(tǒng)檢測(cè)出的隧道過渡段的亮度等級(jí)越高,其具有的感知性就越高;玉函隧道使用本文系統(tǒng)比不使用本文系統(tǒng)的情況下最高日節(jié)能能耗電量為244 kW·h,本文系統(tǒng)能夠?qū)Χ赐饬炼炔▌?dòng)狀況進(jìn)行全面、有效的檢測(cè),說明本文系統(tǒng)可實(shí)現(xiàn)隧道照明亮度的智能調(diào)控,并且可節(jié)省開支,低碳減排。
參考文獻(xiàn)
[1] 張利東,秦莉,蔣海濤,等.隧道照明智能監(jiān)控軟件系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J].公路交通科技,2017,34(10):92?99.
ZHANG Lidong, QIN Li, JIANG Haitao, et al. Design and implementation of intelligent monitoring software system for tunnel lighting [J]. Journal of highway and transportation research and development, 2017, 34(10): 92?99.
[2] 黃鳳武,陳勇,肖華,等.隧道照明節(jié)能控制系統(tǒng)研究與實(shí)現(xiàn)[J].公路工程,2008,33(6):111?114.
HUANG Fengwu, CHEN Yong, XIAO Hua, et al. Research and realization of tunnel illumination energy?saving control system [J]. Highway engineering, 2008, 33(6): 111?114.
[3] 秦慧芳,郭佑民,羅榮輝.基于模糊神經(jīng)網(wǎng)絡(luò)的公路隧道照明控制系統(tǒng)研究[J].隧道建設(shè),2017,37(z2):115?120.
QIN Huifang, GUO Youmin, LUO Ronghui. Study of illumination control system of highway tunnel based on fuzzy neural network [J]. Tunnel construction, 2017, 37(S2): 115?120.
[4] 張曉芹,胡江碧,王猛,等.基于駕駛視認(rèn)需求的隧道中間段路面亮度需求[J].北京工業(yè)大學(xué)學(xué)報(bào),2016,42(5):768?773.
ZHANG Xiaoqin, HU Jiangbi, WANG Meng, et al. Road surface luminance of tunnel interior zone based on the driving visual cognition demand [J]. Journal of Beijing University of Technology, 2016, 42(5): 768?773.
[5] 蘇玉澤,任清華,孟慶微.低信噪比下TDCS的壓縮感知稀疏信道估計(jì)[J].計(jì)算機(jī)仿真,2016,33(1):205?208.
SU Yuze, REN Qinghua, MENG Qingwei. A compressed sensing channel estimation method for TDCS in low SNR conditions [J]. Computer simulation, 2016, 33(1): 205?208.
[6] 馮守中,高巍,王軍.蓄能發(fā)光多功能涂料輔助隧道照明試驗(yàn)研究[J].現(xiàn)代隧道技術(shù),2016,53(4):189?194.
FENG Shouzhong, GAO Wei, WANG Jun. Experimental study on energy?storing self?illuminated multi?functional coating for auxiliary lighting in tunnels [J]. Modern tunnelling technology, 2016, 53(4): 189?194.
[7] 曹立波,陳崢,秦勤,等.基于車輛位置感知的自動(dòng)快速公交系統(tǒng)[J].中國公路學(xué)報(bào),2017,30(11):115?121.
CAO Libo, CHEN Zheng, QIN Qin, et al. Automatic bus rapid transit system based on vehicle position sensing [J]. China journal of highway and transport, 2017, 30(11): 115?121.
[8] 秦慧芳.隧道照明自動(dòng)控制系統(tǒng)的設(shè)計(jì)[J].現(xiàn)代建筑電氣,2016,7(8):59?61.
QIN Huifang. Design of tunnel lighting automatic control system [J]. Modern architecture electric, 2016, 7(8): 59?61.
(上接第97頁)
[9] 潘國兵,梁波,皮宇航,等.基于反應(yīng)時(shí)間的隧道照明縮尺模型集成系統(tǒng)的研制與應(yīng)用[J].現(xiàn)代隧道技術(shù),2016,53(3):26?32.
PAN Guobing, LIANG Bo, PI Yuhang, et al. Development and application of an integrated scale model system of tunnel lighting based on reaction time [J]. Modern tunnelling technology, 2016, 53(3): 26?32.
[10] 董麗麗,石娜,張利東,等.低透過率下隧道照明亮度對(duì)能見度的影響[J].光子學(xué)報(bào),2017,46(2):20?27.
DONG Lili, SHI Na, ZHANG Lidong, et al. Influence of tunnel lighting brightness on visibility under low transmittance [J]. Acta Photonica Sinica, 2017, 46(2): 20?27.