楊會(huì)民,散鋆龍,陳毅飛,王學(xué)農(nóng),牛長(zhǎng)河,侯書(shū)林
?
不同振動(dòng)特性參數(shù)對(duì)杏樹(shù)振動(dòng)響應(yīng)的影響
楊會(huì)民1,散鋆龍2,陳毅飛1,王學(xué)農(nóng)1※,牛長(zhǎng)河1,侯書(shū)林2
(1. 新疆農(nóng)業(yè)科學(xué)院農(nóng)業(yè)機(jī)械化研究所,烏魯木齊 830091;2. 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)
為研究振動(dòng)時(shí)間、振動(dòng)頻率和振動(dòng)激勵(lì)點(diǎn)振幅等不同振動(dòng)特性參數(shù)對(duì)杏樹(shù)振動(dòng)的影響,該文利用ANSYS軟件對(duì)杏樹(shù)進(jìn)行了有限元建模分析;通過(guò)三因素三水平試驗(yàn)分析不同振動(dòng)特性參數(shù)對(duì)杏樹(shù)振動(dòng)檢測(cè)點(diǎn)的影響,利用Design Expert軟件進(jìn)行優(yōu)化分析,并進(jìn)行實(shí)驗(yàn)室驗(yàn)證試驗(yàn)。杏樹(shù)自由模態(tài)振動(dòng)響應(yīng)分析表明最佳杏樹(shù)振動(dòng)采收響應(yīng)頻率范圍為0~20 Hz;諧振動(dòng)響應(yīng)分析可知在最佳頻率范圍內(nèi),杏樹(shù)振動(dòng)激勵(lì)點(diǎn)振幅為5、10和15 mm時(shí),同一頻率下,隨著激勵(lì)振幅的增大,相同位置加速度增大,但振動(dòng)曲線整體變化規(guī)律和趨勢(shì)一致。試驗(yàn)分析可知,各因素影響檢測(cè)點(diǎn)1和2加速度的強(qiáng)弱順序一致:激勵(lì)點(diǎn)振幅>振動(dòng)頻率>振動(dòng)時(shí)間;各因素影響檢測(cè)點(diǎn)3加速度的強(qiáng)弱順序?yàn)椋赫駝?dòng)時(shí)間>激勵(lì)點(diǎn)振幅>振動(dòng)頻率;建立3個(gè)檢測(cè)點(diǎn)的響應(yīng)方程,由下至上3個(gè)檢測(cè)點(diǎn)的回歸方程決定系數(shù)分別為0.906 7、0.879 3和0.973 3;多目標(biāo)參數(shù)優(yōu)化結(jié)果為:振動(dòng)時(shí)間7.207 s,振動(dòng)頻率15 Hz,激振點(diǎn)振幅10 mm,通過(guò)驗(yàn)證試驗(yàn)可知由下至上各檢測(cè)點(diǎn)加速度為10.4、10.2和9.3,與優(yōu)化值相近。該研究可為杏振動(dòng)采收機(jī)械參數(shù)設(shè)計(jì)提供參考。
振動(dòng);收獲;機(jī)械化;杏;振動(dòng)響應(yīng)試驗(yàn)
杏(Lam.)屬薔薇科()杏屬(Mill.)落葉喬木,是世界重要的經(jīng)濟(jì)果樹(shù)之一[1]。中國(guó)杏樹(shù)栽培歷史悠久,根據(jù)遺傳學(xué)研究表明,新疆伊犁河北岸野生普通杏是世界栽培杏的起源種群[2]。截止2016年底,新疆維吾爾自治區(qū)杏樹(shù)種植面積12.487萬(wàn)hm2,產(chǎn)量115.42萬(wàn)t[3]。近年來(lái)新疆杏產(chǎn)業(yè)化發(fā)展迅速,但其收獲方式仍停留在利用長(zhǎng)梯或長(zhǎng)桿輔助的傳統(tǒng)人工采摘,作業(yè)風(fēng)險(xiǎn)較高,同時(shí)增大了收獲成本,收獲環(huán)節(jié)成為制約新疆林果產(chǎn)業(yè)發(fā)展的首要問(wèn)題。振動(dòng)采收是目前林果采收的主要手段之一,利用機(jī)械化采收方式可有效降低勞動(dòng)成本,提高林果采收效率。
國(guó)外已形成了一套完整的林果振動(dòng)采收體系,林果振動(dòng)采收理論完善,機(jī)具成熟,其中不同振動(dòng)采收參數(shù)對(duì)林果收獲的影響是主要的研究方向之一[4-11]。由于果樹(shù)自身生長(zhǎng)特性與材料特性,不同品種果樹(shù)的振動(dòng)響應(yīng)不同,采收機(jī)械振動(dòng)頻率、振幅、振動(dòng)時(shí)間以及振動(dòng)激勵(lì)點(diǎn)位置等振動(dòng)特性參數(shù)的選擇和設(shè)定將直接影響林果采收效率與質(zhì)量[11-12]。早在1957年美國(guó)就已展開(kāi)往復(fù)式振動(dòng)采收機(jī)工作頻率和振幅對(duì)李子采收、果實(shí)損傷以及果樹(shù)搖動(dòng)所需動(dòng)力的研究[13-14]。Aristizábal等[15]研究使用圓周和多方向振動(dòng)采收咖啡過(guò)程中,振動(dòng)頻率、振幅、振動(dòng)時(shí)間以及振動(dòng)激勵(lì)位置對(duì)成熟果實(shí)采收率的影響。Polat等[16]為獲得巴丹木最佳振動(dòng)采收參數(shù),利用慣性式懸臂振動(dòng)機(jī)進(jìn)行振動(dòng)采收,研究相同振動(dòng)時(shí)間下,不同振動(dòng)頻率和振幅參數(shù)組合對(duì)果實(shí)脫落率的影響。
國(guó)內(nèi)開(kāi)展了大量林果振動(dòng)采收機(jī)構(gòu)設(shè)計(jì)、振動(dòng)傳遞特性以及果樹(shù)響應(yīng)狀態(tài)等方面的基礎(chǔ)研究,但對(duì)振動(dòng)特性參數(shù)對(duì)林果采收影響研究較淺[17-26]。范雷剛等[27]研究了海棠果樹(shù)受不同振動(dòng)特性參數(shù)組合時(shí),不同位置加速度變化。杜小強(qiáng)等[28]對(duì)所設(shè)計(jì)的三維激振林果采收機(jī)構(gòu)進(jìn)行優(yōu)化設(shè)計(jì),并對(duì)系統(tǒng)振動(dòng)響應(yīng)進(jìn)行了分析。王東等[29]利用有限元進(jìn)行果樹(shù)響應(yīng)分析,研究不同樹(shù)形果樹(shù)振動(dòng)響應(yīng)狀態(tài)。
為研究不同振動(dòng)采收參數(shù)對(duì)林果機(jī)械采收的影響,指導(dǎo)杏林果振動(dòng)采收機(jī)械設(shè)計(jì),優(yōu)化杏振動(dòng)采收機(jī)械性能,本文利用ANSYS建立杏樹(shù)有限元模型,進(jìn)行杏樹(shù)自由模態(tài)與諧響應(yīng)仿真分析,確定杏振動(dòng)采收參數(shù)范圍。在實(shí)驗(yàn)室內(nèi)進(jìn)行振動(dòng)試驗(yàn),分析振動(dòng)試驗(yàn)結(jié)果,研究不同振動(dòng)特性參數(shù)組合對(duì)振動(dòng)采收的影響,得到杏最佳振動(dòng)參數(shù)組合,并進(jìn)行實(shí)驗(yàn)室驗(yàn)證試驗(yàn),以期為杏振動(dòng)采收機(jī)械參數(shù)設(shè)計(jì)提供設(shè)計(jì)及理論依據(jù)。
根據(jù)4GZG-25型牽引式偏心式林果采收樣機(jī)工作方式與振動(dòng)特性,建立偏心塊對(duì)稱(chēng)放置的振動(dòng)采收機(jī)-果樹(shù)模型,如圖1所示[30-31]。在振動(dòng)采收機(jī)與杏樹(shù)加持位置水平面上,以杏樹(shù)夾持位置中心為坐標(biāo)系原點(diǎn),方向?yàn)橄到y(tǒng)水平運(yùn)動(dòng)方向,方向?yàn)榕c水平垂直運(yùn)動(dòng)方向。杏樹(shù)動(dòng)力學(xué)特性由加持位置杏樹(shù)樹(shù)干等效彈性系數(shù)(常數(shù))與等效阻尼系數(shù)(常數(shù))表示。
注:m為偏心塊質(zhì)量,kg;ω為角速度,rad·s-1;t為時(shí)間,s;L1為振動(dòng)箱與杏樹(shù)間距離,m; L2為偏心塊旋轉(zhuǎn)軸中心與x軸間距離,m;r為偏心塊轉(zhuǎn)動(dòng)中心與質(zhì)心的距離,mm;k為杏樹(shù)樹(shù)干等效彈性系數(shù),常數(shù);c為杏樹(shù)樹(shù)干等效阻尼系數(shù),常數(shù)。
對(duì)稱(chēng)放置的2個(gè)偏心塊質(zhì)量相等,轉(zhuǎn)動(dòng)方向相反,結(jié)合杏樹(shù)-振動(dòng)機(jī)動(dòng)力學(xué)模型,由牛頓第三定律可知,由于偏心塊做圓周運(yùn)動(dòng),采收機(jī)振動(dòng)過(guò)程中偏心機(jī)構(gòu)整體在方向產(chǎn)生的力相互疊加,在方向上的力相互抵消,即方向受力為零。由此可的偏心塊產(chǎn)生的慣性力為
式中F為偏心機(jī)構(gòu)方向上產(chǎn)生的力,N;F為偏心機(jī)構(gòu)方向上產(chǎn)生的力,N;為偏心機(jī)構(gòu)在方向上的位移,mm。
對(duì)系統(tǒng)整體進(jìn)行受力分析,并簡(jiǎn)化可得杏樹(shù)-振動(dòng)采收機(jī)振動(dòng)微分方程為
由于所設(shè)計(jì)的4GZG-25型牽引式偏心式林果采收樣機(jī)正弦振動(dòng)激勵(lì)輸出特性,為優(yōu)化樣機(jī)工作參數(shù)提供參考,研究杏樹(shù)受迫振動(dòng)后的響應(yīng)狀態(tài),獲得最佳的振動(dòng)響應(yīng)參數(shù);通過(guò)有限元建模與實(shí)驗(yàn)室振動(dòng)響應(yīng)試驗(yàn)相結(jié)合對(duì)杏樹(shù)振動(dòng)響應(yīng)進(jìn)行研究,對(duì)優(yōu)化后的參數(shù)進(jìn)行實(shí)驗(yàn)室驗(yàn)證試驗(yàn)。杏樹(shù)振動(dòng)響應(yīng)試驗(yàn)路線如圖2所示。
圖2 杏樹(shù)振動(dòng)響應(yīng)試驗(yàn)路線
根據(jù)牛頓第二定律,振動(dòng)過(guò)程中杏果實(shí)在質(zhì)量一定的情況下,加速度越大,果實(shí)由于慣性產(chǎn)生的脫落力越大。因此本文以杏樹(shù)檢測(cè)點(diǎn)處加速度為主要評(píng)價(jià)指標(biāo)進(jìn)行試驗(yàn),加速度單位為(為重力加速度,取9.8 m/s2)。
以新疆主要杏品種庫(kù)麥提杏樹(shù)為主要研究對(duì)象,樹(shù)形結(jié)構(gòu)為自然開(kāi)心型[29]。2018年6月底杏成熟期,將新疆農(nóng)業(yè)科學(xué)院輪臺(tái)國(guó)家果樹(shù)資源圃內(nèi)樹(shù)齡為3 a的果樹(shù),移栽到新疆農(nóng)業(yè)科學(xué)院農(nóng)業(yè)機(jī)械化研究所物料特性實(shí)驗(yàn)室內(nèi),進(jìn)行測(cè)繪與基本參數(shù)測(cè)量。
試驗(yàn)儀器:蘇州試驗(yàn)儀器設(shè)備公司DC-300振動(dòng)試驗(yàn)臺(tái),正弦推力2.94 kN,工作頻率5~5 000 Hz,最大位移40 mm;SA-3振動(dòng)平臺(tái)功率放大器,額定輸出功率15 kVA;YMC壓電式IEPE型加速度傳感器,靈敏度50 mV/ms2,測(cè)試范圍±10,頻率范圍0~4 000 Hz。美國(guó)NI公司NI DAQ 9 178四通道信號(hào)采集器,NI 9 234振動(dòng)信號(hào)采集卡。上海一恒科學(xué)儀器有限公司BPG-9 140A型精密鼓風(fēng)干燥箱,功率2 050 W,溫度范圍RT+10~25 ℃。美特斯工業(yè)系統(tǒng)(中國(guó))有限公司CMT 6 103系列電子萬(wàn)能試驗(yàn)機(jī),最大應(yīng)力1 kN。
試驗(yàn)軟件:ANSYS Workbench 17.0有限元分析軟件;SolidWorks 2017三維建模軟件;Labview振動(dòng)測(cè)試虛擬軟件;Design expert 10.0.3試驗(yàn)分析軟件。
利用SolidWorks 2017軟件對(duì)已測(cè)繪的杏樹(shù)進(jìn)行三維建模,使用ANSYS Workbench 17.0軟件對(duì)杏樹(shù)進(jìn)行有限元分析,有限元模型如圖3所示。分析杏樹(shù)不附加任何振動(dòng)激勵(lì)狀態(tài)下的自由模態(tài),結(jié)合模態(tài)云圖仿真結(jié)果中杏樹(shù)響應(yīng)的一致性,獲得最佳的振動(dòng)頻率范圍;研究杏樹(shù)不同振幅下受正弦振動(dòng)激勵(lì)時(shí)沿樹(shù)干3個(gè)檢測(cè)位置的諧響應(yīng)狀態(tài),每個(gè)檢測(cè)位置間距離為400 mm,以加速度大小表示檢測(cè)位置的響應(yīng)狀態(tài)。
圖3 杏樹(shù)有限元模型
根據(jù)有限元分析相應(yīng)結(jié)果,利用DC-300振動(dòng)實(shí)驗(yàn)平臺(tái)對(duì)杏樹(shù)施加正弦振動(dòng)激勵(lì),研究振動(dòng)時(shí)間、振動(dòng)頻率和加持點(diǎn)振幅等振動(dòng)采收主要因素對(duì)杏樹(shù)不同位置加速度的影響。杏樹(shù)從果園中砍伐后立即移入實(shí)驗(yàn)室,如圖4所示。去掉細(xì)小樹(shù)枝與樹(shù)葉,利用自制的連接器將杏樹(shù)與振動(dòng)平臺(tái)連接,杏樹(shù)根部固定。沿杏樹(shù)樹(shù)干安裝加速度傳感器,傳感器安裝位置與有限元分析時(shí)果樹(shù)3個(gè)檢測(cè)點(diǎn)位置相同,通過(guò)Labview振動(dòng)檢測(cè)軟件得到NI DAQ 9 178振動(dòng)信號(hào)采集器所采集的加速度數(shù)據(jù)。采用Design Expert 10.0.3 軟件進(jìn)行試驗(yàn)方案設(shè)計(jì),分析杏樹(shù)不同位置在不同振動(dòng)激勵(lì)參數(shù)下的響應(yīng)狀態(tài),得到最佳的振動(dòng)激勵(lì)參數(shù),并進(jìn)行實(shí)驗(yàn)室驗(yàn)證試驗(yàn)。
圖4 杏樹(shù)振動(dòng)檢測(cè)平臺(tái)
根據(jù)國(guó)家標(biāo)準(zhǔn)GB/T 1 931-2009木材含水率測(cè)定方法和GB/T 1 936.2-2009木材抗彎彈性模量測(cè)定方法測(cè)得庫(kù)麥提杏樹(shù)木材含水率為41.01%,彈性模量為425.35 MPa,密度為0.856 g/cm3,泊松比取0.330,由此可得杏樹(shù)木材剪切模量為159.9 MPa。將所測(cè)得的杏樹(shù)木材基本參數(shù)代入ANSYS Workbench建立的杏樹(shù)模型中,對(duì)杏樹(shù)進(jìn)行有限元分析。
利用ANSYS Workbench中Modal模塊對(duì)杏樹(shù)進(jìn)行1~50階模態(tài)分析,得到反應(yīng)杏樹(shù)模型自由模態(tài)下階次、響應(yīng)頻率和杏樹(shù)整體形變關(guān)系的3D曲面圖,如圖5所示。
圖5 杏樹(shù)自由模態(tài)響應(yīng)分析
由圖5可知,杏樹(shù)在15、26、30和40階時(shí)具有典型自由模態(tài)響應(yīng),對(duì)應(yīng)的頻率分別為5.5、10.5、15.1和29.3 Hz,果樹(shù)最大形變分別為286.5、261.9、267.2和273.5 mm。
分析杏樹(shù)典型自由模態(tài)云圖6可知,第15和26階典型自由模態(tài)中杏樹(shù)枝干末端響應(yīng)性較高;第30階果樹(shù)整體響應(yīng)一致性高,杏樹(shù)末端形變響應(yīng)最大;第40階29.3 Hz時(shí)果樹(shù)部分枝條變形嚴(yán)重,樹(shù)形整體結(jié)構(gòu)易被破壞。由此可知:杏樹(shù)振動(dòng)采收過(guò)程中最佳頻率范圍可控制在5~15 Hz之間。
圖6 杏樹(shù)典型模態(tài)響應(yīng)云圖
通過(guò)對(duì)杏樹(shù)模型進(jìn)行諧響應(yīng)分析,確定杏樹(shù)枝干在固定幅值的正弦位移作用下的穩(wěn)定響應(yīng),采用完全法進(jìn)行求解。根據(jù)果樹(shù)振動(dòng)采收激振點(diǎn)振幅特性[31],夾持點(diǎn)振幅設(shè)定為5、10和15 mm進(jìn)行杏樹(shù)諧振動(dòng)響應(yīng)分析。由自由模態(tài)仿真結(jié)果設(shè)定頻率范圍為0~20 Hz,進(jìn)行諧振動(dòng)分析可得到檢測(cè)點(diǎn)1、2、3位置加速度值變化曲線,如圖7。
圖7 不同振幅激勵(lì)下檢測(cè)點(diǎn)X軸方向加速度變化曲線
由圖7可知,激勵(lì)點(diǎn)振幅為5、10和15 mm時(shí),在0~20 Hz振動(dòng)頻率區(qū)間內(nèi),檢測(cè)點(diǎn)1在4.67、7.33、15.33和18.66 Hz時(shí)具有典型加速度峰值;檢測(cè)點(diǎn)2在6.34和17.33 Hz時(shí)具有典型加速度峰值;檢測(cè)點(diǎn)3在7.01和17.3 Hz時(shí)具有典型加速度峰值。檢測(cè)點(diǎn)位置由下至上,振幅為5 mm時(shí),最大加速度分別為7.52、6.57和4.93;振幅為10 mm時(shí),最大加速度分別為14.89、12.96和9.87;振幅為15 mm時(shí),最大加速度分別為22.36、19.71和14.8。
由此可知,在0~20 Hz內(nèi),振幅為5、10和15 mm時(shí),同一頻率下,隨著激勵(lì)振幅的增大,相同位置加速度增大,但振動(dòng)曲線整體變化規(guī)律和趨勢(shì)一致。
為了驗(yàn)證有限元分析結(jié)果,獲得最優(yōu)振動(dòng)采收參數(shù)組合,指導(dǎo)振動(dòng)采收樣機(jī)參數(shù)設(shè)計(jì),根據(jù)樣機(jī)工作原理與ANSYS有限元仿真結(jié)果,在2018年6月底在新疆農(nóng)業(yè)科學(xué)院農(nóng)業(yè)機(jī)械化研究所物料特性實(shí)驗(yàn)室中,按照試驗(yàn)路線圖2,利用振動(dòng)試驗(yàn)平臺(tái)對(duì)剛移栽入實(shí)驗(yàn)室的成熟期杏樹(shù)施加振動(dòng)激勵(lì),進(jìn)行振動(dòng)試驗(yàn),試驗(yàn)數(shù)據(jù)由加速度傳感器與NI 9 234振動(dòng)信號(hào)采集卡采集。
選擇振動(dòng)時(shí)間(s)、激勵(lì)點(diǎn)振幅(mm)和振動(dòng)頻率(Hz)3個(gè)試驗(yàn)因素,在實(shí)驗(yàn)室進(jìn)行振動(dòng)試驗(yàn),每組試驗(yàn)重復(fù)3次。樹(shù)枝加速度是果實(shí)振動(dòng)脫落的主要評(píng)價(jià)指標(biāo),本文選擇3個(gè)主要檢測(cè)點(diǎn)所測(cè)得的加速度作為評(píng)價(jià)指標(biāo)。
進(jìn)行三因素三水平組合試驗(yàn),根據(jù)杏樹(shù)有限元自由模態(tài)響應(yīng)與諧振動(dòng)響應(yīng)分析結(jié)果,試驗(yàn)因素與水平編碼如表1所示。
利用Design Expert 10.0.3 軟件進(jìn)行試驗(yàn)方案設(shè)計(jì),共進(jìn)行17組試驗(yàn),每組重復(fù)3次,試驗(yàn)結(jié)果取平均值,試驗(yàn)數(shù)據(jù)如表2。
表1 試驗(yàn)因素和水平編碼
表2 試驗(yàn)設(shè)計(jì)方案及響應(yīng)值結(jié)果
注:1、2、3為圖3中3個(gè)檢測(cè)點(diǎn)的加速度。
Note:1,2, and3are the accelerations of the three detection points in Fig.3.
通過(guò)Design Expert 10.0.3軟件對(duì)試驗(yàn)結(jié)果進(jìn)行回歸分析,并進(jìn)行多元回歸擬合,得到3個(gè)檢測(cè)點(diǎn)加速度1、2和3,3個(gè)試驗(yàn)指標(biāo)的回歸方程,并驗(yàn)證其顯著性,試驗(yàn)分析結(jié)果如表3所示。
4.3.1 檢測(cè)點(diǎn)1加速度的顯著性分析
由表3可知,整體模型極其顯著(<0.01),各因素影響檢測(cè)點(diǎn)1加速度的強(qiáng)弱順序?yàn)?;其中模型回歸項(xiàng)和顯著,因素不顯著(>0.05)可忽略,擬合后得到回歸方程決定系數(shù)2為0.906 7,擬合程度高,方程為
式中為激勵(lì)點(diǎn)振幅,mm;為振動(dòng)頻率,Hz。
4.3.2 檢測(cè)點(diǎn)2加速度的顯著性分析
由表3可知,整體模型極其顯著(<0.01),各因素影響檢測(cè)點(diǎn)2加速度的強(qiáng)弱順序?yàn)?>,與檢測(cè)點(diǎn)1一致,其中模型回歸項(xiàng)和顯著,因素不顯著(>0.05)可忽略,擬合后得到回歸方程決定系數(shù)2為0.879 3,方程為
4.3.3檢測(cè)點(diǎn)3加速度的顯著性分析
由表3可知,整體模型極其顯著(<0.01),整體模型極其顯著,各因素影響檢測(cè)點(diǎn)3加速度的強(qiáng)弱順序?yàn)?>。其中除模型回歸項(xiàng)、與2的檢測(cè)點(diǎn)3加速度值大于0.05不顯著可忽略,其他回歸項(xiàng)均為顯著。由于檢測(cè)點(diǎn)3位于整個(gè)果樹(shù)末端,檢測(cè)點(diǎn)位置、振動(dòng)過(guò)程中位移、果樹(shù)樹(shù)枝粗細(xì)以及果果枝形狀等原因會(huì)造成因素對(duì)不同檢測(cè)點(diǎn)的影響強(qiáng)弱順序不同?;貧w方程決定系數(shù)2為0.973 3,擬合程度極高,方程為
式中為振動(dòng)時(shí)間,s。
表3 檢測(cè)點(diǎn)加速度回歸模型方差F檢驗(yàn)與分析
注:<0.01,為極其顯著;0.01<<0.05為顯著。
Note:<0.01, extremely significant; 0.01<<0.05, significant.
振動(dòng)過(guò)程果實(shí)脫落的響應(yīng)加速度越大,果實(shí)所受脫落力越大,果實(shí)更易脫落,即3個(gè)檢測(cè)點(diǎn)加速度響應(yīng)均為最大值時(shí)滿足優(yōu)化條件。根據(jù)上述有限元分析結(jié)果、振動(dòng)試驗(yàn)與項(xiàng)目組前期的試驗(yàn)結(jié)果[30-31],為避免振動(dòng)過(guò)程造成果樹(shù)損傷,3個(gè)檢測(cè)點(diǎn)加速度優(yōu)化范圍為0~20;根據(jù)檢測(cè)點(diǎn)由下至上所處的位置,設(shè)定3個(gè)檢測(cè)點(diǎn)值的權(quán)重,檢測(cè)點(diǎn)1、2設(shè)置權(quán)重為1,檢測(cè)點(diǎn)3接近果實(shí)生長(zhǎng)位置權(quán)重為2。
根據(jù)上述參數(shù)設(shè)定,由Design Expert10.0.3軟件中Optimization模塊(響應(yīng)優(yōu)化)對(duì)檢測(cè)點(diǎn)進(jìn)行多目標(biāo)優(yōu)化。
目標(biāo)編碼變量?jī)?yōu)化函數(shù)為
對(duì)目標(biāo)函數(shù)進(jìn)行優(yōu)化得到最優(yōu)振動(dòng)采收參數(shù)組合為:振動(dòng)時(shí)間7.207 s,振動(dòng)頻率15 Hz,激振點(diǎn)振幅10 mm。
為驗(yàn)證最終優(yōu)化參數(shù),按優(yōu)化后得到參數(shù)調(diào)整振動(dòng)實(shí)驗(yàn)平臺(tái)設(shè)置參數(shù),在實(shí)驗(yàn)室中進(jìn)行振動(dòng)試驗(yàn),試驗(yàn)重復(fù)3次取平均值,優(yōu)化值與實(shí)際測(cè)量值之間分析驗(yàn)證結(jié)果如表4所示,實(shí)驗(yàn)值與優(yōu)化參數(shù)相近,偏差較小。
表4 優(yōu)化值與實(shí)際值對(duì)比結(jié)果
1)對(duì)建立的杏樹(shù)模型進(jìn)行ANSYS有限元分析,通過(guò)杏樹(shù)自由模態(tài)振動(dòng)響應(yīng)分析可知最佳杏樹(shù)振動(dòng)采收響應(yīng)頻率范圍為0~20 Hz;通過(guò)諧振動(dòng)響應(yīng)分析可知在0~20 Hz內(nèi),杏樹(shù)振動(dòng)激勵(lì)點(diǎn)振幅為5、10和15 mm時(shí),同一頻率下,隨著激勵(lì)振幅的增大,相同位置加速度增大,但振動(dòng)曲線整體變化規(guī)律和趨勢(shì)一致。
2)研究杏樹(shù)振動(dòng)特性參數(shù)(振動(dòng)時(shí)間、激勵(lì)點(diǎn)振幅和振動(dòng)頻率)對(duì)不同檢測(cè)點(diǎn)振動(dòng)加速度的影響規(guī)律,進(jìn)行三因素三水平試驗(yàn)分析,各參數(shù)對(duì)檢測(cè)點(diǎn)1和2的影響強(qiáng)弱順序一致為>>;對(duì)檢測(cè)點(diǎn)3的影響強(qiáng)弱順序?yàn)?>。
3)建立3個(gè)檢測(cè)點(diǎn)響應(yīng)方程,由下至上3個(gè)檢測(cè)點(diǎn)的回歸方程決定系數(shù)分別為0.906 7、0.879 3和0.973 3,為杏樹(shù)振動(dòng)特性分析提供參考。
4)利用Design Expert10.0.3軟件響應(yīng)優(yōu)化模塊對(duì)檢測(cè)點(diǎn)響應(yīng)方程進(jìn)行優(yōu)化,獲得最優(yōu)振動(dòng)采收參數(shù)組合為:振動(dòng)時(shí)間7.207 s,振動(dòng)頻率15 Hz,激振點(diǎn)振幅10 mm,經(jīng)試驗(yàn)驗(yàn)證可知由下至上3個(gè)檢測(cè)點(diǎn)加速度分別為10.4、10.2和9.3,試驗(yàn)值與優(yōu)化參數(shù)相符,該研究可為杏振動(dòng)采收機(jī)械參數(shù)設(shè)計(jì)提供設(shè)計(jì)及理論依據(jù)。
[1] 包文泉,烏云塔娜,王淋,等. 野生杏和栽培杏的遺傳多樣性和遺傳結(jié)構(gòu)分析[J]. 植物遺傳資源學(xué)報(bào),2017,18(2):201-209.
Bao Wenquan, Wuyun Tana, Wang Lin, et al. Genetic diversity and population structure of the wild apricot and cultivation apricot[J]. Journal of Plant Genetic Resources, 2017, 18(2): 201-209. (in Chinese with English abstract)
[2] 廖康. 新疆野生果樹(shù)資源研究[M]. 烏魯木齊:新疆人民出版社,2013.
[3] 中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2017.
[4] BlancoRoldán G L, GilRibes J A, Kouraba K, et al. Effects of trunk shaker duration and repetitions on removal efficiency for the harvesting of oil olives[J]. Applied Engineering in Agriculture, 2009, 25(3): 329-334.
[5] Pezzi F, Caprara C. Mechanical grape harvesting: Investigation of the transmission of vibrations[J]. Biosystems Engineering, 2009, 103(3): 281-286.
[6] Torregrosa A, Ortí E, Martín B, et al. Mechanical harvesting of oranges and mandarins in Spain[J]. Biosystems Engineering, 2009, 104(1): 18-24.
[7] Whitney J D, Smerage G H, Block W A. Dynamic analysis of a trunk shaker-post system[J]. Transactions of the ASAE, 1990, 33(4): 1066-1070.
[8] Horvath E, Sitkei G. Damping properties of plum trees shaken at their trunks[J]. Transactions of the ASAE, 2005, 48(1): 19-25.
[9] Láng Z. A one degree of freedom damped fruit tree model[J]. Agricultural Engineering International Cigr Journal, 2008, 51(3): 823-829.
[10] Horvath E, Sitkei G. Energy consumption of selected tree shakers under different operational conditions[J]. Journal of Agricultural Engineering Research, 2001, 80(2): 191-199.
[11] Torregrosa A, Martin B, Garcia Brunton J, et al. Mechanical harvesting of processed peaches[J]. Applied Engineering in Agriculture, 2008, 24(6): 723-729.
[12] Castro-García S, Blanco-Roldán G L, Gil-Ribes J A. Vibrational and operational parameters in mechanical cone harvesting of stone pine (Pinus pinea L.)[J]. Biosystems Engineering, 2012, 112(4): 352-358.
[13] Castro-García S, Blanco-Roldán G L, Gil-Ribes J A, et al. Dynamic analysis of olive trees in intensive orchards under forced vibration[J]. Trees, 2008, 22(6): 795-802.
[14] Adrian P A, Fridley R B. Mechanical fruit tree shaking[J]. California Agriculture, 1958, 12: 3-15.
[15] Aristizábal I D, Oliveros C E, Alvarez F. Mechanical harvest of coffee applying circular and multidirectional vibrations.[J]. Transactions of the ASAE, 2003, 46(2): 205-210.
[16] Polat R, Guner M, Dursun E, et al. Mechanical harvesting of almond with an inertia type limb shaker[J]. Asian Journal of Plant Sciences, 2007, 6(3): 528-532.
[17] Du X, Chen D, Zhang Q, et al. Dynamic responses of sweet cherry trees under vibratory excitations[J]. Biosystems Engineering, 2012, 111(3): 305-314.
[18] Wu C, He L, Du X, et al. 3D reconstruction of Chinese hickory tree for dynamics analysis[J]. Biosystems Engineering, 2014, 119(1): 69-79.
[19] Du X Q, Wu C Y, He L Y, et al. Dynamic characteristics of dwarf Chinese hickory trees under impact excitations for mechanical fruit harvesting[J]. International Journal of Agricultural & Biological Engineering, 2015, 8(1):17-25.
[20] 杜小強(qiáng),倪柯楠,潘珂,等. 可調(diào)振幅單向拽振式林果采收機(jī)構(gòu)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(16):25-32.
Du Xiaoqiang, Ni Ke’nan, Pan Ke, et al. Parameter optimization of stroke-adjustable and monodirectional pulling fruit harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) , 2014, 30(16): 25-32. (in Chinese with English abstract)
[21] 杜小強(qiáng),倪柯楠,武傳宇. 基于外旋輪線軌跡的果品振動(dòng)采收機(jī)構(gòu)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(3):59-66.
Du Xiaoqiang, Ni Ke’nan, Wu Chuanyu. Vibratory harvesting mechanism for tree fruit based on epitrochoid[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 59-66. (in Chinese with English abstract).
[22] 杜小強(qiáng),李黨偉,賀磊盈,等. 基于電子果實(shí)技術(shù)的機(jī)械振動(dòng)采收過(guò)程果實(shí)運(yùn)動(dòng)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(17):58-64.
Du Xiaoqiang, Li Dangwei, He Leiying, et al. Fruit motion analysis in process of mechanical vibration harvesting based on electronic fruit technique[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(17): 58-64. (in Chinese with English abstract)
[23] 喬園園,牛長(zhǎng)河,孟詳金,等. 牽引式林果振動(dòng)采收機(jī)的設(shè)計(jì)與田間試驗(yàn)[J]. 新疆農(nóng)業(yè)科學(xué),2015,52(3):528-534.
[24] 王長(zhǎng)勤,許林云,周宏平,等. 偏心式林果振動(dòng)采收機(jī)的研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(16):10-16.
Wang Changqin, Xu Linyun, Zhou Hongping, et al. Development and experiment of eccentric-type vibratory harvester for forest-fruits[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 10-16. (in Chinese with English abstract)
[25] 蔡菲,王春耀,王學(xué)農(nóng),等. 基于高速攝像技術(shù)的振動(dòng)落果慣性力研究[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2013,41(4):208-212.
Cai Fei, Wang Chunyao, Wang Xuenong, et al. Inertia force of fruits abscised by vibration based on high-speed video camera technology[J]. Journal of Northwest A&F University: Nat. Sci. Ed, 2013, 41(4): 208-212. (in Chinese with English abstract)
[26] 付威,何榮,曲金麗,等. 自走式矮化密植紅棗收獲機(jī)的設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2014,36(4):106-109.
[27] 范雷剛,王春耀,劉夢(mèng)霞,等. 振動(dòng)參數(shù)對(duì)果樹(shù)采收影響的試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2016,38(10):165-168.
[28] 杜小強(qiáng),李松濤,賀磊盈,等. 三維激振果品采收機(jī)構(gòu)優(yōu)化設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):48-55.
Du Xiaoqiang, Li Songtao, He Leiying, et al. Optimal design and experiment on vibratory fruit harvesting mechanism with three-dimensional excitation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 48-55. (in Chinese with English abstract)
[29] 王冬,陳度,王書(shū)茂,等. 基于有限元方法的整形果樹(shù)振動(dòng)收獲機(jī)理分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(增刊1):56-62.
Wang Dong, Chen Du, Wang Shumao, et al. Analysis on vibratory harvesting mechanism for trained fruit tree based on finite element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(Supp.1): 56-62. (in Chinese with English abstract)
[30] 散鋆龍,楊會(huì)民,王學(xué)農(nóng),等. 振動(dòng)方式和頻率對(duì)杏樹(shù)振動(dòng)采收響應(yīng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(8):10-17.
San Yunlong, Yang Huimin, Wang Xuenong, et al. Effects of vibration mode and frequency on vibration harvesting of apricot trees[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 10-17. (in Chinese with English abstract)
[31] 散鋆龍,楊會(huì)民,王學(xué)農(nóng),等. 振動(dòng)收獲過(guò)程中杏果實(shí)脫落的動(dòng)態(tài)響應(yīng)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):68-75.
San Yunlong,Yang Huimin,Wang Xuenong, et al. Dynamic response analysis of apricot fruit dropping during vibration harvesting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 68-75. (in Chinese with English abstract)
Influence of different vibration characteristic parameters on vibration response of apricot trees
Yang Huimin1, San Yunlong2, Chen Yifei1, Wang Xuenong1※, Niu Changhe1, Hou Shulin2
(1.830091,; 2.100083)
In this paper, the combination of finite element modeling and experiment was used to study the effects of different vibration parameters such as vibration time (), amplitude () of the vibration excitation point on apricot tree vibration and vibration frequency (), and optimize the performance of forest fruit vibration harvesting prototype. The effects of different vibration parameters on the vibration detection points of apricot trees were analyzed by vibration response test. The response analysis of apricot tree free modal vibration using ANSYS Workbench software showed that apricot trees had typical free modal responses at 15, 26, 30 and 40 orders, the corresponding frequencies were 5.5, 10.5, 15.1, and 29.3 Hz, respectively; and the maximum displacement deformation of fruit trees was 286.5, 261.9, 267.2, and 273.5 mm, respectively. The typical free modal cloud image analysis showed that the typical free modalities of the 15th and 26th orders were higher in the terminal end responsiveness of the apricot branches. The 30th order fruit tree had a high overall response consistency, and the apricot tree had the largest deformation response at the end; at the 40th order of 29.3 Hz, some branches of the fruit trees were severely deformed, and the overall structure of the tree was easily destroyed. The optimal response frequency of apricot tree vibration harvesting ranged from 0 to 20 Hz. The harmonic response analysis showed that in the optimal frequency range, the acceleration of the same position increased with the increase of the excitation amplitude at the same frequency, but the overall variation of the vibration curve was consistent with the trend; When the amplitude of the vibration excitation point of the apricot tree was 5, 10 and 15 mm, at the same frequency, as the excitation amplitude increased, the acceleration at the same position increased, but the overall variation of the vibration curve was consistent with the trend. The three-factor and three-level vibration response tests were conducted to study the effects of vibration time, vibration frequency and excitation point amplitude on the acceleration of three different detection points. The multivariate regression analysis of variance showed that the accelerations1and2of detection points 1 and 2 were less than 0.000 1, the overall model was highly significant (<0.01), and the model regression termsandwere significant. The acceleration3of the detection point 3 was 0.000 1, and the overall model was highly significant (<0.01), except that the acceleration3value of the detection point 3 of the model regression terms,and2was not significant (>0.05), and other regression terms were significant (<0.05). The factors which affected the acceleration of the detection points 1 and 2 were the same as the amplitude of the excitation point, vibration frequency and vibration time. The order of the magnitude of the acceleration affecting the detection point 3 was the vibration time, the amplitude of the excitation point, and the vibration frequency. Through the response equations of the three detection points, the coefficient of determination2of the regression equations from the bottom to the top three detection points were 0.906 7, 0.879 3 and 0.973 3, respectively. Using the Design-Expert 10.0.3 software to optimize the detection point response equation, the optimal vibration recovery parameter combination was that the vibration time was 7.207 s, the vibration frequency was 15 Hz, and the amplitude of the excitation point was 10 mm. The verification test showed that the acceleration from the bottom to the top of each detection point was 10.4, 10.2 and 9.3, which was similar to the optimized value. These conclusions can provide design and theoretical basis for the design of mechanical parameters of apricot vibration harvesting.
vibrations; harvesting; mechanization; apricot; vibration response test
10.11975/j.issn.1002-6819.2019.02.002
S225.93
A
1002-6819(2019)-02-0010-07
2018-09-10
2019-01-09
國(guó)家自然科學(xué)基金項(xiàng)目—新疆杏振動(dòng)脫落動(dòng)力學(xué)特性及振動(dòng)采收機(jī)理研究(51465059)
楊會(huì)民,助理研究員,主要從事農(nóng)業(yè)工程研究。Email:yhm_shz@163.com
王學(xué)農(nóng),研究員,主要從事農(nóng)業(yè)工程與裝備研究。Email:xjwxn2010@ sina.com
楊會(huì)民,散鋆龍,陳毅飛,王學(xué)農(nóng),牛長(zhǎng)河,侯書(shū)林. 不同振動(dòng)特性參數(shù)對(duì)杏樹(shù)振動(dòng)響應(yīng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(2):10-16. doi:10.11975/j.issn.1002-6819.2019.02.002 http://www.tcsae.org
Yang Huimin, San Yunlong, Chen Yifei, Wang Xuenong, Niu Changhe, Hou Shulin. Influence of different vibration characteristic parameters on vibration response of apricot trees[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 10-16. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.02.002 http://www.tcsae.org