国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

秸稈捆燒鍋爐設(shè)計及其排放特性研究

2019-02-21 04:11賈吉秀姚宗路趙立欣叢宏斌劉廣華趙亞男
農(nóng)業(yè)工程學(xué)報 2019年22期
關(guān)鍵詞:爐膛除塵生物質(zhì)

賈吉秀,姚宗路,趙立欣,叢宏斌,劉廣華,趙亞男

秸稈捆燒鍋爐設(shè)計及其排放特性研究

賈吉秀1,姚宗路1※,趙立欣2,叢宏斌2,劉廣華3,趙亞男1

(1. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081;2. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計研究院,農(nóng)業(yè)部農(nóng)業(yè)廢棄物能源化利用重點(diǎn)實(shí)驗室,北京 100125;3. 承德市本特生態(tài)能源技術(shù)有限公司,河北 067000)

針對中國現(xiàn)有秸稈捆燒鍋爐燃燒不充分,燃燒后煙氣凈化工藝繁瑣以及自動化程度較低等問題,該文基于原料分級、配風(fēng)分級技術(shù)原理,設(shè)計了打捆秸稈分級燃燒系統(tǒng),研發(fā)了多級配風(fēng)系統(tǒng)和組合式煙氣凈化除塵裝置等關(guān)鍵部件,并開發(fā)了智能控制系統(tǒng),實(shí)現(xiàn)燃燒過程工藝參數(shù)的實(shí)時調(diào)控和數(shù)據(jù)采集。以打捆玉米秸稈為原料進(jìn)行燃燒試驗,結(jié)果表明秸稈捆燒供熱鍋爐的熱效率為84.6%,鍋爐功率為230 kW,煙塵排放平均質(zhì)量濃度19.8 mg/m3,NOX質(zhì)量濃度133.6 mg/m3,SO2質(zhì)量濃度小于3 mg/m3,達(dá)到《鍋爐大氣污染物排放標(biāo)準(zhǔn)》(GB13271—2014)要求,解決了燃燒效率低、煙塵和NOx等污染物排放高的問題,智能化的鍋爐燃燒系統(tǒng)可開展多種工藝試驗的探索,為捆燒鍋爐技術(shù)裝備的推廣應(yīng)用提供平臺支撐。

秸稈;排放控制;設(shè)計;秸稈捆;捆燒鍋爐;分級燃燒;煙氣除塵

0 引 言

中國農(nóng)作物秸稈資源豐富、種類繁多,根據(jù)各省秸稈資源量調(diào)查和綜合利用終期評估結(jié)果,2017年全國秸稈可收集量為8.37億t,利用量為7億t,綜合利用率達(dá)到83.67%。然而廢棄或就地焚燒的秸稈接近1.8億t,造成了嚴(yán)重的環(huán)境污染和資源浪費(fèi),引發(fā)空氣質(zhì)量惡化、航班起降受阻等一系列問題[1]。近年來,在國家出臺的一系列政策支持下,秸稈的綜合利用工作得到了長足發(fā)展,秸稈捆燒等燃料化利用方式作為秸稈綜合利用的重要途徑之一,與生物轉(zhuǎn)化和物理轉(zhuǎn)化方法相比,它具備轉(zhuǎn)化成本低、轉(zhuǎn)化效率高、低污染和較好的原料適應(yīng)性等優(yōu)點(diǎn),因此開發(fā)先進(jìn)的秸稈捆燒鍋爐系統(tǒng)裝備,對于防治秸稈散燒,減少環(huán)境污染、節(jié)約化石能源等具有重要意義[2-6]。

秸稈捆燒技術(shù)是一種較好的秸稈能源化利用方式,是將田間松散的秸稈經(jīng)過撿拾打捆后再燃燒供熱的技術(shù)過程。秸稈打捆后提高了能量密度,降低了收儲運(yùn)成本,同時捆裝后的秸稈半氣化燃燒大幅提高了燃燒效率和鍋爐供熱效率,具有較好的經(jīng)濟(jì)效益。目前秸稈捆燒技術(shù)主要有2種,一種是間歇性的打捆秸稈鍋爐燃燒系統(tǒng),另一種是連續(xù)燃燒整捆秸稈的系統(tǒng)。國外秸稈打捆燃燒技術(shù)發(fā)展較早,在秸稈捆燒特性、配風(fēng)燃燒技術(shù)、鍋爐結(jié)構(gòu)設(shè)計以及成套化設(shè)備研究等方面取得一定的研究進(jìn)展,主要集中在歐洲國家的科研機(jī)構(gòu)和企業(yè),較為成熟的國家有丹麥、波蘭、塞爾維亞、英國以及加拿大等[7-9];中國打捆燃燒技術(shù)研究起步較晚,打捆燃燒設(shè)備的研究較少,捆燒理論有待完善,河南農(nóng)業(yè)大學(xué)對秸稈捆燒的燃燒特性、爐膛設(shè)計和煙塵減排等方面進(jìn)行了研究,取得了較大的進(jìn)展[10-11]。中國北方地區(qū)也有規(guī)模化的打捆直燃工程,但是在實(shí)際運(yùn)行中仍然存在燃燒不充分、燃燒效率較低、氮氧化物排放過高、煙氣凈化工藝繁瑣等問題。因此,完善秸稈捆燒理論,優(yōu)化捆燒工藝,突破秸稈捆燒分級配風(fēng)、低氮燃燒、爐內(nèi)降塵、煙氣處理等關(guān)鍵技術(shù),提高捆燒燃燒效率,降低煙塵排放等,還需進(jìn)行深入研究探索。

針對上述問題,本文通過半氣化燃燒理論,基于原料分級、配風(fēng)分級技術(shù)原理,設(shè)計了打捆秸稈分級燃燒系統(tǒng)并計算燃燒配風(fēng)量,設(shè)計一體化組合除塵凈化裝置,開發(fā)關(guān)鍵參數(shù)的智能控制系統(tǒng),進(jìn)行樣機(jī)試制并開展燃燒測試,探索捆燒最優(yōu)工藝參數(shù)。

1 結(jié)構(gòu)及工作原理

1.1 總體結(jié)構(gòu)

秸稈捆燒設(shè)備主要由秸稈捆燒鍋爐和后端煙氣凈化除塵裝置組成。其中秸稈捆燒鍋爐主要包括一次燃燒室、一次配風(fēng)、二次燃燒室、二次配風(fēng)以及擋板除塵器等,后端煙氣凈化除塵裝置主要包括集靜電除塵、旋風(fēng)除塵和循環(huán)噴淋的一體化除塵裝置和污水凈化回用裝置,具體組成結(jié)構(gòu)如圖1所示。

1.一次燃燒室 2.爐門 3.爐底 4.一次配風(fēng) 5.二次燃燒室 6.二次配風(fēng) 7.列管換熱器 8.隔板 9.擋板 10.熱煙氣 11.煙氣出口 12.省煤器 13.煙氣入口 14.污水排出口 15.凈化水箱 16.回流泵 17.旋風(fēng)筒壁 18.魚骨型陰極 19.煙氣出口 20.陰極穿墻套管 21.環(huán)形布水管 1.Primary combustion chamber 2.Fire door 3.Hearth bottom 4.Primary air distribution 5.Secondary combustion chamber 6.Secondary air distribution 7.Tube heat transfer 8.A partition 9. Baffle 10.Hot smoke 11.Flue gas outlet 12.Economizer 13. Flue gas inlet 14. Sewage outlet 15.Purification tank 16. Reflux pump 17.Cyclone wall 18.Fishbone cathode 19.Flue gas outlet 20.Cathode wall bushing 21.Annular distribution pipe

1.2 工作原理

設(shè)備正常運(yùn)行時,將打捆后的秸稈放置于一次燃燒爐腔中,爐腔內(nèi)配備多點(diǎn)均布式的一次風(fēng),控制過量空氣系數(shù)以保證打捆秸稈的半氣化燃燒,燃燒過程中打捆秸稈依次經(jīng)歷水分蒸發(fā)、揮發(fā)分的析出及焦炭形成等階段[12-13];燃燒產(chǎn)生的揮發(fā)分與熱煙氣進(jìn)入第二燃燒爐腔,通過第二爐腔的切向配風(fēng)管結(jié)構(gòu),對煙氣中的揮發(fā)分進(jìn)行二次旋流燃燒,同時第二燃燒爐腔上設(shè)置的交叉擋板可以延長煙氣停留時間,促進(jìn)煙氣中可燃?xì)怏w的燃盡。

燃燒過程中產(chǎn)生的熱量經(jīng)過爐腔的輻射換熱和熱煙氣的對流換熱后傳遞給循環(huán)水用于供暖,換熱后的熱煙氣進(jìn)入煙氣凈化除塵系統(tǒng),產(chǎn)生的灰渣經(jīng)過爐排輸送至排渣口排出。煙氣進(jìn)入凈化除塵系統(tǒng)后,經(jīng)歷旋風(fēng)除塵、靜電除塵和噴淋除塵的組合除塵工藝,將煙氣中的灰塵顆粒集中到循環(huán)水中,再經(jīng)歷循環(huán)水箱的過濾除塵后,清潔的循環(huán)水再經(jīng)循環(huán)泵輸送至除塵器,循環(huán)使用,保證捆燒煙氣的達(dá)標(biāo)排放。

1.3 主要技術(shù)參數(shù)

設(shè)計鍋爐功率230 kW,燃料消耗量為60 kg/h,試制的鍋爐外形尺寸長3 026 mm,寬2 178 mm,高2 407 mm;鍋爐可裝填小方捆和大圓捆,小方捆外形尺寸為700 mm×450 mm×350 mm,一次可裝填24捆,大圓捆外形尺寸為1 200 mm×1 300 mm,一次可以裝填1捆。

2 關(guān)鍵部件設(shè)計

2.1 多級燃燒室配風(fēng)系統(tǒng)設(shè)計

根據(jù)捆燒鍋爐結(jié)構(gòu)設(shè)計及秸稈燃燒特性,分析捆燒秸稈的燃燒原理如圖2,將秸稈捆燒分為秸稈半氣化一次燃燒和揮發(fā)分二次燃燒2個燃燒過程。其中,結(jié)合秸稈氣化反應(yīng)條件[14],控制一次燃燒室溫度為600~800 ℃,過量空氣系數(shù)控制為0.8~1.0,使秸稈中的半纖維素、纖維素和木質(zhì)素等發(fā)生熱分解反應(yīng),產(chǎn)成揮發(fā)性氣體,氣體中主要的可燃成分為CO、CH4、H2,二次燃燒室配備二次風(fēng)對可燃?xì)怏w進(jìn)行二次燃燒,生物質(zhì)中揮發(fā)分燃燒產(chǎn)生的熱量約占生物質(zhì)總熱量的70%,因此捆燒過程中揮發(fā)分的充分燃燒控制決定了鍋爐的燃燒效率[15-18]。

圖2 秸稈捆燒原理圖

燃料燃燒所需的空氣量主要取決于燃料中可燃元素成分的含量,可燃元素完全燃燒所需的空氣量即理論空氣量,根據(jù)公式 (1)計算。鍋爐實(shí)際運(yùn)行時,通過控制過量空氣系數(shù)控制打捆秸稈一次配風(fēng)量,維持秸稈半氣化燃燒狀態(tài),實(shí)際配風(fēng)量根據(jù)公式(2)、(3)計算。其中,根據(jù)生物質(zhì)氣化技術(shù)原理,燃燒過程中揮發(fā)性氣體約為1.2 m3/kg,具體組分如表1所示,所需二次配風(fēng)量如式 (4)、(5)所示[19]

結(jié)合前人秸稈內(nèi)熱式氣化原理技術(shù)研究[20],秸稈熱解氣化產(chǎn)生的可燃?xì)饨M分主要為CO、H2和CH4。在鍋爐配風(fēng)計算時,本文參考河北省肥鄉(xiāng)區(qū)秸稈氣化站燃?xì)饨M分測試結(jié)果,如表1所示,由公式(1)、(2)、(3)計算可得,第一燃燒室每千克打捆秸稈燃燒所用的理論空氣量為3.64 m3/kg,實(shí)際空氣量為3.28 m3/kg,一次燃燒實(shí)際配風(fēng)量為196.7 m3/h;由公式(4)、(5)計算所得,每標(biāo)方揮發(fā)分氣體燃燒理論空氣量為1.16 m3,實(shí)際空氣量為1.74 m3,二次燃燒室實(shí)際配風(fēng)量為125.3 m3/h。

表1 揮發(fā)性氣體組分測試結(jié)果

2.2 煙氣凈化除塵系統(tǒng)

煙氣凈化除塵系統(tǒng)主要由煙氣入口、旋風(fēng)筒、魚骨型電極、環(huán)形布水管、切向噴頭、排污口、煙氣出口、污水管道、污水凈化裝置和回流泵組成。煙氣入口與旋風(fēng)筒體切向連接,筒內(nèi)懸掛魚骨型陰極棒,旋風(fēng)筒壁為陽極,形成高壓靜電場;筒體內(nèi)壁固定環(huán)形布水管,布水管等間距布置12個水平切向的噴嘴,循環(huán)水噴出后在旋風(fēng)筒內(nèi)壁形成一層水膜。設(shè)備啟動時,含顆粒的煙氣由底部向上運(yùn)動過程中,顆粒物受離心力和庫侖力的作用向筒壁運(yùn)動,再由水膜不斷沖刷到底部的排污口,污水經(jīng)過凈化分離后再回流噴淋利用。集成了旋風(fēng)分離、靜電除塵和循環(huán)水噴淋除污等技術(shù)原理,簡化了煙氣凈化除塵工藝,降低了煙氣除塵成本。

經(jīng)過測定,捆燒秸稈燃燒換熱后煙氣溫度約為150 ℃,參照《除塵技術(shù)手冊》,根據(jù)公式(4)、(5)、(6)、(7)確定旋分離器尺寸[21-24]。

式中V為標(biāo)況下煙氣流量,取480 m3/h;V1為工況下煙氣流量,m3/h;為旋風(fēng)入口的高度,m;為旋風(fēng)入口的寬度,m;u為高溫?zé)煔獾娜肟谒俣?,?0 m/s;為旋風(fēng)筒體直徑,m;為拍塵口直徑,取0.07 m;為旋風(fēng)筒底錐頂角,°。

將煙氣量代入公式可得旋風(fēng)入口高度為0.14 m,寬度為0.07 m,旋風(fēng)筒內(nèi)直徑為0.28 m,筒底錐頂角為21.2°。魚骨型陰極線上相鄰的魚骨針程90°或60°交錯排列,相鄰的間距為80 mm,根據(jù)筒體直徑設(shè)計靜電場強(qiáng)度,保證2~3 kV/dm的靜電場強(qiáng)度,實(shí)現(xiàn)較好的靜電除塵效果。

2.3 智能控制系統(tǒng)

基于PLC開發(fā)的秸稈捆燒鍋爐的控制系統(tǒng)如圖3所示,主要包括人機(jī)交互系統(tǒng)、爐膛壓力控制系統(tǒng)、爐膛溫度控制系統(tǒng)、智能配風(fēng)系統(tǒng)以及溫度和壓力預(yù)警系統(tǒng)。其中爐膛壓力采用爐膛負(fù)壓傳感器測得的實(shí)時爐膛壓力與設(shè)計要求值的偏差為調(diào)節(jié)信號,調(diào)節(jié)引風(fēng)機(jī)變頻器頻率,實(shí)現(xiàn)對爐膛壓力的閉環(huán)調(diào)節(jié);爐膛溫度是采用溫度傳感器與目標(biāo)設(shè)定偏差為反饋信號,通過調(diào)節(jié)配風(fēng)量對燃燒負(fù)荷進(jìn)行閉環(huán)調(diào)節(jié);根據(jù)每個進(jìn)風(fēng)口電磁閥的開度,分別調(diào)節(jié)一次風(fēng)和二次風(fēng)配風(fēng)量。并加設(shè)壓力預(yù)警和溫度預(yù)警模塊,實(shí)現(xiàn)整個燃燒狀態(tài)的實(shí)時監(jiān)測和控制。

圖3 智能控制系統(tǒng)原理

利用組態(tài)軟件Visual Basic開發(fā)的人機(jī)界面如圖4所示,主要分為控制界面、參數(shù)設(shè)置界面和參數(shù)保存界面,可以在控制界面實(shí)現(xiàn)進(jìn)料、點(diǎn)火、水循環(huán)、引風(fēng)及鼓風(fēng)的起停控制,在參數(shù)設(shè)定界面設(shè)定溫度和壓力的預(yù)警范圍,在參數(shù)的保存界面實(shí)現(xiàn)爐膛溫度、出水溫度、煙氣溫度、爐膛壓力、配風(fēng)量以及煙氣流量等參數(shù)的采集與存儲,并可以調(diào)出進(jìn)行表格顯示或者曲線顯示等功能。

圖4 智能控制人機(jī)交互界面

3 燃燒與排放特性試驗

3.1 試驗材料與測試方法

樣機(jī)完成后進(jìn)行了秸稈燃燒與排放特性試驗,選取遼寧省朝陽市小方捆玉米秸稈作為原料,原料的工業(yè)分析見表2,低位熱值為12.5 MJ/kg,含水率為15%。小方捆橫截面為450 mm×350 mm、長度為700 mm,共計24捆一次性裝入爐膛中,打捆燃料密度約為108.8 kg/m3。

表2 玉米秸稈打捆燃料分析

裝入原料后打開鍋爐控制系統(tǒng)和配風(fēng)系統(tǒng),設(shè)定爐膛溫度為800 ℃,爐膛壓力為10 Pa,人工點(diǎn)火后約15 min爐膛溫度達(dá)到穩(wěn)定狀態(tài),此時進(jìn)行煙氣排放測試和鍋爐熱平衡測試,穩(wěn)定狀態(tài)下測試時長3 h,根據(jù)GB13271—2014《鍋爐大氣污染物排放標(biāo)準(zhǔn)》和GB5468—1991《鍋爐煙塵測試方法》進(jìn)行鍋爐煙氣排放的檢測,采用的主要儀器有QUINTOX-KM9106綜合煙氣分析測量儀、F732-VJ測汞儀、林格曼黑度圖、嶗應(yīng)3072型智能雙路煙氣采樣器等設(shè)備[25];按照GB/T10180—2003《工業(yè)鍋爐熱工性能試驗規(guī)范》測量鍋爐和回水溫度差、管道水流量檢測、排煙溫度、過量空氣系數(shù)、爐渣熱損失、爐體外表面溫度等指標(biāo)來計算鍋爐正反平衡熱效率,采用的主要儀器有QUINTOX-KM9106綜合煙氣分析測量儀、便攜式快速紅外測溫儀、煙氣黑度儀、微機(jī)全自動立式量熱儀、林格曼黑度圖、烘干箱以及馬弗爐等儀器設(shè)備[25]。

3.2 結(jié)果分析

試驗測得的結(jié)果如表3所示,秸稈捆燒鍋爐的出水流量、出水溫度均滿足設(shè)計要求,鍋爐熱效率達(dá)84.6%,平均功率達(dá)230 kW;同時秸稈捆燒鍋爐的煙氣排放中NOx質(zhì)量濃度為133.6 mg/m3,SO2質(zhì)量濃度小于3 mg/m3,均低于國家排放要求,煙塵含量和林格曼黑度也符合環(huán)保指標(biāo),說明該鍋爐達(dá)到了設(shè)計要求。

表3 秸稈捆燒鍋爐燃燒性能試驗結(jié)果

3.3 效益分析

以該秸稈捆燒鍋為例,每小時消耗秸稈量為60 kg,功率達(dá)230 kW,供暖面積可達(dá)1 200 m2,秸稈捆的市場價格在180~240元/t,供暖季按照150 d計算,每天平均供熱8 h,每年供暖的燃料成本為10.8~14.4元/m2。如表 4所示,對比煙煤供暖的燃料成本為11.7~16.8元/m2,生物質(zhì)顆粒燃料供暖的燃料成本為24.4~32.5元/m2,秸稈捆燒供暖在燃料使用費(fèi)上具有較好的經(jīng)濟(jì)性[26-27]。另外,捆燒秸稈供暖代替煤炭供暖,每年每平米減少SO2排放0.38 kg,減少CO2排放1.54 g,具有較好的環(huán)保效益[28]。

表4 不同供暖方式運(yùn)行燃料成本

4 結(jié) 論

1)針對中國現(xiàn)有秸稈捆燒鍋爐燃燒不充分,燃燒后煙氣凈化工藝繁瑣以及自動化程度較低等問題,基于原料分級、配風(fēng)分級技術(shù)原理,設(shè)計了打捆秸稈分級燃燒系統(tǒng)和組合式煙氣凈化除塵裝置,開發(fā)了智能控制系統(tǒng),為秸稈捆燒試驗提供平臺支撐。

2)玉米秸稈的捆燒試驗表明,鍋爐熱效率達(dá)84.6%,煙塵排放平均質(zhì)量濃度19.8 mg/m3,NOX質(zhì)量濃度133.6 mg/m3,SO2質(zhì)量濃度小于3 mg/m3,達(dá)到《鍋爐大氣污染物排放標(biāo)準(zhǔn)》(GB13271—2014)要求,具有較好的經(jīng)濟(jì)效益和環(huán)保效益。

3)該捆燒鍋爐具有燃燒溫度、進(jìn)風(fēng)量、引風(fēng)量和爐膛壓力等關(guān)鍵參數(shù)的實(shí)時監(jiān)控和數(shù)據(jù)記錄等功能,可以進(jìn)行不同工況的燃燒試驗,為下一步燃燒工藝優(yōu)化提供平臺支撐。

[1]霍麗麗,趙立欣,孟海波,等. 中國農(nóng)作物秸稈綜合利用潛力研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(13):218-224. Huo Lili, Zhao Lixin, Meng Haibo, et al. Study on straw multi-use potential in China [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 218-224. (in Chinese with English abstract)

[2]叢宏斌,趙立欣,王久臣,等. 中國農(nóng)村能源生產(chǎn)消費(fèi)現(xiàn)狀與發(fā)展需求分析[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(17):224-231. Cong Hongbin, Zhao Lixin, Wang Jiuchen, et al. Current situation and development demand analysis of rural energy in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(17):224-231. (in Chinese with English abstract)

[3]葛慧,郭志強(qiáng),楊林,等. 農(nóng)林生物質(zhì)替代城鎮(zhèn)煤炭供熱發(fā)展研究[J]. 農(nóng)業(yè)工程學(xué)報,2016,6(5):44-48. Ge Hui, Guo Zhiqiang, Yang Lin, et al. Heating technology development of agricultural and forestry biomass substitutes for urban coal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 6(5): 44-48. (in Chinese with English abstract)

[4]劉圣勇,王艷玲,白冰,等. 玉米秸稈致密成型燃料燃燒動力學(xué)分析[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(9):287-292. Liu Shengyong, Wang Yanling, Bai Bing, et al. Analysis on combustion kinetics of corn stalk briquetting densification fuel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(9): 287-292. (in Chinese with English abstract)

[5]姚宗路,趙立欣,Ronnback M,等. 生物質(zhì)顆粒燃料特性及其對燃燒的影響分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2010,41(10):97-102. Yao Zonglu, Zhao Lixin, Ronnback M, et al. Comparison on characterization effect of biomass pellet fuels on combustion behavior[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(10): 97-102. (in Chinese with English abstract)

[6]張品,劉圣勇,王炯,等. 國內(nèi)外生物質(zhì)捆燒技術(shù)及設(shè)備的研究現(xiàn)狀[J]. 工業(yè)鍋爐,2015(6):10-15. Zhang Pin, Liu Shengyong, Wang Jiong, et al. Research status of straw bales combustion technology at home and abroad[J]. Industrial Boilers, 2015(6): 10-15. (in Chinese with English abstract)

[7]Erik F K, Jens K. Development and test of small-scale batch-fired straw boilers in Denmark[J]. Biomass and Bioenergy, 2004, 26: 561-569

[8]Branislav R D, Dejan D, Aleksandar E. Development of a Boiler for Large Straw Bales Combustion, Paths to Sustainable Energy[M]. Dr Artie Ng (Ed. ), Croatia: InTech Europe, 2010.

[9]Rastko M, Dragoljub D, Aleksandar E. The boiler concept for combustion of large soya straw bales[J]. Enery, 2009, 34(5): 715-723.

[10]王翠蘋,李定凱,王鳳印,等. 生物質(zhì)成型顆粒燃料燃燒特性的試驗研究[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(10):174-177. Wang Cuiping, Li Dingkai, Wang Fengyin, et al. Experimental study on the combustion characteristics of biomass pellets[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(10): 174-177. (in Chinese with English abstract)

[11]劉圣勇,白冰,劉小二,等. 生物質(zhì)捆燒鍋爐的設(shè)計與研究[J],太陽能學(xué)報,2010,31(12):1527-1531. Liu Shengyong, Bai Bing, Liu Xiao’er, et al. Design and study of a biomass bales combustion boiler[J]. Acta Energiae Solaris Sinica, 2010, 31(12): 1527-1531. (in Chinese with English abstract)

[12]田松峰,羅偉光,荊有印,等. 玉米秸稈燃燒過程及燃燒動力學(xué)分析[J]. 太陽能學(xué)報,2008,29(12):157-159. Tian Songfeng, Luo Weiguang, Jing Youyin, et al. Combustion process and kinetics analysis of cornstalk[J]. Acta Energiae Solaris Sinica, 2008, 29(12): 157-159. (in Chinese with English abstract)

[13]楊帥,楊樹斌,甘云華,等. 生物質(zhì)成型燃料熱解特性及動力學(xué)研究[J]. 節(jié)能技術(shù),2010,28(3):199-205. Yang Shuai, Yang Shubin, Gan Yunhua, et al. Study on the pyrolysis characteristics and kinetics of biomass moulding fuel[J]. Energy Conservation Technology, 2010, 28(3): 199-205. (in Chinese with English abstract)

[14]趙京,魏小林,李森,等. 上吸式秸稈氣化爐中當(dāng)量比對氣化特性的影響[J]. 中國電機(jī)工程學(xué)報,2017,37(S1):118-122. Zhao Jing, Wei Xiaolin, Li Sen, et al. Effect of equivalence ratio on gasification characteristics in a straw updraft gasifier[J]. Proceedings of the CSEE, 2017, 37(S1): 118-122. (in Chinese with English abstract)

[15]趙立欣,賈吉秀,姚宗路,等. 生物質(zhì)連續(xù)式分段熱解炭化設(shè)備研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(8):221-226. Zhao Lixin, Jia Jixiu, Yao Zonglu, et al. Equipment for biomass continuous grading pyrolysis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 221-226. (in Chinese with English abstract)

[16]高玉寬,陳炳榮,朱小云,等. 臥式內(nèi)燃燃油和燃?xì)忮仩t的結(jié)構(gòu)和設(shè)計[J]. 熱能動力工程學(xué)報,1999(14):122-125. Gao Yukuan, Chen Bingrong, Zhu Xiaoyun, et al. Structure and design of horizontal internal combustion oil and gas fired boiler[J]. Journal of Thermal Energy and Power Engineering, 1999(14): 122-125. (in Chinese with English abstract)

[17]劉明. 生物質(zhì)氣化及其燃?xì)馊紵囼炑芯颗c分析[D]. 天津:天津大學(xué),2008. Liu Ming. Experimental Research and Analyse on Biomass Gasification and Biogas Combustion[D]. Tianjin: Tianjin University, 2008. (in Chinese with English abstract)

[18]常兵. 配風(fēng)方式對層燃爐燃燒特性影響的試驗研究[D]. 上海:上海交通大學(xué),2007Chang Bing. Experimental Study of the Influence on the Combustion Charicteristics in the Stoker Boiler by Air Distribution Modes[D]. Shanghai: Shanghai Jiaotong University, 2007. (in Chinese with English abstract)

[19]姚宗路,仉利,趙立欣,等. 生物質(zhì)熱解氣燃燒裝置設(shè)計與燃燒特性試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2017,48(12):299-305. Yao Zonglu, Zhang Li, Zhao Lixin, et al. Gas burner design and experiment on emission characteristic of biomass pyrolysis gas[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 299-305. (in Chinese with English abstract)

[20]李斌,陳漢平,楊海平,等. 上吸式生物質(zhì)氣化爐的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(7):270-273. Li Bin, Chen Hanping, Yang Haiping, et al. Design and experiment on updraft biomass gasifier[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 270-273. (in Chinese with English abstract)

[21]張志通. 燃煤排放除塵凈化技術(shù)的研究與比較[J]. 北華航天工業(yè)學(xué)院學(xué)報,2018,28(3):15-17. Zhang Zhitong. Comparative study of purification technology for coal dust removal[J]. Journal of North China Institute of Aerospace Engineering, 2018, 28(3): 15-17. (in Chinese with English abstract)

[22]Yin C, Rosendahl L, Kaer Sk, et al. Mathematical modeling and experimental study of biomass combustion in a thermal 108 MW grate-fired boiler[J]. Energy & Fuels, 2008, 22(2): 1380-1390.

[23]張永亮,趙立欣,姚宗路,等. 生物質(zhì)固體成型燃料燃燒顆粒物的數(shù)量和質(zhì)量分布特性[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(19):185-192. Zhang Yongliang, Zhao Lixin, Yao Zonglu, et al. Distribution characteristics of number and mass for particulate emission of biomass solid fuel combustion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(19): 185-192. (in Chinese with English abstract)

[24]徐飛,趙立欣,孟海波,等. 生物質(zhì)顆粒燃料熱風(fēng)點(diǎn)火性能的試驗研究[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(7):288-294. Xu Fei, Zhao Lixin, Meng Haibo, et al. Experimental study on hot-air ignition of biofuel pellets[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 288-294. (in Chinese with English abstract)

[25]劉恩海,劉圣勇,白冰,等. 玉米秸稈打捆燃料燃燒動力學(xué)模型[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(24):218-225. Liu Enhai, Liu Shengyong, Bai Bing, et al. Development of dynamic model of cornstalk bale combustion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 218-225. (in Chinese with English abstract)

[26]賴曉璐,周腰華,王興偉,等. 遼寧省生物質(zhì)燃料鍋爐主要類型及供暖成本分析[J]. 遼寧農(nóng)業(yè)科學(xué),2017(6):60-62.

[27]王力力. 燃煤鍋爐替代方案及各種燃料供暖成本分析[J]. 能源與節(jié)能,2017(1):70-72. Wang Lili. Analysis of alternative scheme of coal-fired boiler and various kinds of fuel heating cost[J]. Energy and Energy Conservation, 2017(1): 70-72. (in Chinese with English abstract)

[28]叢宏斌,趙立欣,孟海波,等. 生物質(zhì)熱解多聯(lián)產(chǎn)在北方農(nóng)村清潔供暖中的適用性評價[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(1):8-14. Cong Hongbin, Zhao Lixin, Meng Haibo, et al. Applicability evaluation of biomass yrolytic poly-generation technology on clean heating in northern rural of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 8-14. (in Chinese with English abstract)

Design and emission characteristics of straw bales fuel combustion-boiler

Jia Jixiu1, Yao Zonglu1※, Zhao Lixin2, Cong Hongbin2, Liu Guanghua3, Zhao Yanan1

(1.,,100081,; 2.,,,100125,;3.,067000,)

As an important way of straw comprehensive utilization, straw bales combustion has the advantages of low cost, high efficiency, low pollution and better adaptability of raw materials. However, there still exist the problems such as low combustion efficiency, complex flue gas purification and low automation of straw bales combustion. Based on thecombustion theory of raw material classification and air distribution classification technology, we designed the secondary air distribution device, which consists of two combustion chambers. In the first combustion chamber, a primary air was provided to ensure gasification reaction. In the second combustion chamber, a secondary air was provided to ensure gas combustion, which realized the full combustion of straw. At the same time, we developed a dust removal device and the intelligent control system, and built a straw bale boiler test platform, which realized real-time control of bale burning and data acquisition. The design power of the boiler was 230 kW, the fuel consumption was 60 kg/h, and the overall dimension of the trial boiler was 3 026 mm×2 178 mm×2 407 mm; the boiler could be filled with small square bundles and large round bundles, the overall dimension of small square bundles was 700 mm×450 mm×350 mm, 24 bundles could be filled at a time, and the overall dimension of large round bundles was 1 200 mm×1 300 mm, and one round bundle could be filled at a time. The boiler mainly included primary combustion chamber, primary air distribution chamber, secondary combustion chamber, secondary air distribution and baffle dust remover. The flue gas purification and dedusting device mainly included electrostatic dedusting, cyclone dedusting, circulating spray and sewage purification and reuse device. The intelligent control system mainly included human-computer interaction system, furnace pressure control system, furnace temperature control system, intelligent air distribution system and temperature warning system.When the equipment works, we could open the boiler control system and air distribution system after loading the raw materials, set the furnace temperature as 800 ℃, furnace pressure as 10 Pa, and the furnace temperature would reach a stable state about 15 minutes after manual ignition. At this time, the flue gas emission test and boiler heat balance test were carried out, and the test duration at the stable state was 3 hours. Tested with corn stalk as raw material, the result showed that the thermal efficiency of straw-fired boilers was 84.6%, the heat load was 230 kW, the average concentration of soot emissions was 19.8 mg/m3, the concentration of NOXwas 133.6 mg/m3, and the concentration of SO2was<3 mg/m3, which met the requirements of (GB13271-2014). Taking this boiler as an example, the annual heating fuel cost was 10.8-14.4 yuan/m2, which had an advantage in heating costs, and had a good benefit for environmental protection compared with coal heating and biomass pellet heating. The intelligent combustion platform also can carry out various process tests, and the next step is to carry out combustion tests under different working conditions and explore different combustion processes, which can provide a basis for further optimization.

straw; emission control; design; straw bales fuel; air distribution; dust removal

賈吉秀,姚宗路,趙立欣,叢宏斌,劉廣華,趙亞男. 秸稈捆燒鍋爐設(shè)計及其排放特性研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(22):148-153.doi:10.11975/j.issn.1002-6819.2019.22.017 http://www.tcsae.org

Jia Jixiu, Yao Zonglu, Zhao Lixin, Cong Hongbin, Liu Guanghua, Zhao Yanan. Design and emission characteristics of straw bales fuel combustion-boiler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 148-153. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.22.017 http://www.tcsae.org

2019-09-05

2019-10-10

中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程協(xié)同創(chuàng)新任務(wù)(CAAS- XTCX2016011-01);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項資金資助(CARS-02-31)

賈吉秀,工程師,主要從事生物質(zhì)能源技術(shù)與裝備研究。Email:sdaujdjjx@163.com

姚宗路,研究員,博士,主要從事農(nóng)業(yè)廢棄物能源化利用技術(shù)研究。Email:yaozonglu@163.com

10.11975/j.issn.1002-6819.2019.22.017

TQ515

A

1002-6819(2019)-22-0148-06

猜你喜歡
爐膛除塵生物質(zhì)
專利名稱:一種用于再生混凝土混料的除塵裝置及其除塵方法
生物質(zhì)水暖爐 農(nóng)村節(jié)能減排好幫手
生物質(zhì)發(fā)電:秸稈變?nèi)剂檄h(huán)保又增收
生物質(zhì)揮發(fā)分燃燒NO生成規(guī)律研究
制氫轉(zhuǎn)化爐爐膛溫度場研究*
二維爐膛氣液兩相對沖流動數(shù)值模擬
如何鑒別及選購一臺好的石材除塵設(shè)備
水鹽體系法生產(chǎn)硫酸鉀除塵方式選擇
船用燃油輔鍋爐爐膛爆燃分析
大佛除塵