国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

生物結(jié)皮坡面不同降雨歷時(shí)的產(chǎn)流特征

2019-02-21 00:32趙允格張子輝谷康民郭雅麗王閃閃
關(guān)鍵詞:產(chǎn)流土坡歷時(shí)

楊 凱,趙 軍,趙允格,,張子輝,孫 會(huì),谷康民,郭雅麗,王閃閃

生物結(jié)皮坡面不同降雨歷時(shí)的產(chǎn)流特征

楊 凱1,2,趙 軍2,趙允格2,4※,張子輝1,孫 會(huì)3,谷康民1,郭雅麗1,王閃閃4

(1. 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,楊凌 712100; 2. 西北農(nóng)林科技大學(xué)水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,楊凌 712100; 3. 西北農(nóng)林科技大學(xué)林學(xué)院,楊凌 712100;4. 中國(guó)科學(xué)院大學(xué),北京 100049)

黃土高原退耕還林(草)工程實(shí)施后,生物結(jié)皮廣泛發(fā)育,顯著影響坡面產(chǎn)流。已有大量研究探索了生物結(jié)皮對(duì)徑流的影響,但相關(guān)結(jié)論存在較大分歧。該研究以黃土高原典型生物結(jié)皮坡面為研究對(duì)象,通過(guò)人工模擬降雨試驗(yàn),研究了生物結(jié)皮坡面產(chǎn)流過(guò)程。結(jié)果表明:生物結(jié)皮坡面較翻耕后的裸土坡面顯著降低了初始產(chǎn)流時(shí)間,裸土坡面初始產(chǎn)流時(shí)間是生物結(jié)皮坡面的1.59~3.04倍。生物結(jié)皮蓋度與初始產(chǎn)流時(shí)間之間呈顯著的負(fù)相關(guān)關(guān)系;降雨15 min時(shí)與60 min時(shí)生物結(jié)皮對(duì)坡面徑流的影響發(fā)生逆轉(zhuǎn),90 mm/h的雨強(qiáng)下,當(dāng)降雨歷時(shí)為15 min時(shí),生物結(jié)皮坡面較裸土坡面增加75.42%的徑流;當(dāng)降雨歷時(shí)為60 min時(shí),生物結(jié)皮坡面徑流量較裸土坡面降低52.42%;生物結(jié)皮影響了土壤水分入滲速率,導(dǎo)致生物結(jié)皮坡面與裸土坡面隨降雨歷時(shí)變化的產(chǎn)流特征出現(xiàn)差異,裸土坡面降雨60 min時(shí)的入滲率較15 min時(shí)降低了34.30%,高蓋度生物結(jié)皮坡面降低了6.38%;生物結(jié)皮對(duì)坡面入滲產(chǎn)流的影響與降雨歷時(shí)有極大的關(guān)系,降雨歷時(shí)不同,很可能得到截然相反的結(jié)論,考慮生物結(jié)皮因素的野外降雨試驗(yàn),降雨歷時(shí)應(yīng)不少于45 min。研究結(jié)果為解釋生物結(jié)皮影響坡面入滲產(chǎn)流方面存在的分歧提供了科學(xué)依據(jù),進(jìn)一步明確了干旱半干旱地區(qū)生物結(jié)皮的水文效應(yīng)。

徑流;水動(dòng)力學(xué);生物土壤結(jié)皮;初始產(chǎn)流時(shí)間;徑流系數(shù)

0 引 言

生物土壤結(jié)皮(生物結(jié)皮)是由生長(zhǎng)于土壤表層和近地表數(shù)毫米內(nèi)的藍(lán)綠藻、苔蘚、地衣、真菌,以及許多景觀中常見(jiàn)的其它非維管束植物成分與土壤復(fù)合而形成的具有生命活性的復(fù)雜復(fù)合體,是干旱半干旱地區(qū)普遍存在的生物地被物,對(duì)土壤水分、養(yǎng)分、理化屬性及抗侵蝕性等具有重要的影響[1]。生物結(jié)皮由于微生物分泌物粘結(jié)、假根系/菌絲體的捆綁束縛作用,會(huì)形成水平方向極其穩(wěn)定的層狀結(jié)構(gòu)[2-3]。同時(shí),生物結(jié)皮的發(fā)育顯著改變了土壤表面特性,如粗糙度、持水性、斥水性等[4-5](王媛, 2014 #82)。表層土壤在水分循環(huán)中起著重要的作用,如降水入滲、地表徑流等過(guò)程都是以表層土壤為介質(zhì)發(fā)生和轉(zhuǎn)化的,因此生物結(jié)皮的發(fā)育影響了土壤水分的入滲和產(chǎn)流。就此,國(guó)內(nèi)已進(jìn)行了大量的研究,但目前所得結(jié)論存在較大分歧。一些研究認(rèn)為生物結(jié)皮延長(zhǎng)了水分在地表的停滯時(shí)間[6],從而促進(jìn)了入滲。Galun等[7]在以色列沙漠地區(qū)的研究發(fā)現(xiàn),藍(lán)藻地衣幾分鐘內(nèi)即可吸收其本身干重或體積的3~13倍的水分,進(jìn)而降低產(chǎn)流。澳大利亞的研究認(rèn)為生物結(jié)皮改善了下層土壤結(jié)構(gòu),增加了水分入滲,降低了坡面產(chǎn)流[8-9]。肖波等[10]使用砂質(zhì)壤土的裝填土槽,接種生物結(jié)皮后通過(guò)1 h的人工降雨試驗(yàn)發(fā)現(xiàn),生物結(jié)皮坡面較無(wú)生物結(jié)皮坡面減少了49%~64%的徑流量。

另有研究認(rèn)為生物結(jié)皮堵塞了地表土壤孔隙,導(dǎo)致入滲降低和徑流增加[11]。Rodríguez-Caballero[12]在西班牙南部研究了自然降雨下坡面尺度生物結(jié)皮對(duì)徑流的影響,結(jié)果表明生物結(jié)皮的存在增加了坡面徑流量。李新榮等[13]在沙坡頭人工植被固沙區(qū)比較了自然降水后生物結(jié)皮的濕潤(rùn)峰,結(jié)果表明,生物結(jié)皮降低了水分入滲率。Zhao等[14]在黃土高原地區(qū)采用15 min放水試驗(yàn)研究藻結(jié)皮和蘚結(jié)皮對(duì)坡面產(chǎn)流的影響,發(fā)現(xiàn)生物結(jié)皮較無(wú)生物結(jié)皮坡面增加了10%~15%的徑流量。

除此,還有研究認(rèn)為生物結(jié)皮對(duì)入滲無(wú)明顯作用。Booth[15]使用高強(qiáng)度耐壓水管?chē)姙⒃褰Y(jié)皮和無(wú)藻結(jié)皮的樣方,試驗(yàn)結(jié)果表明,2類(lèi)樣方上的入滲率無(wú)明顯差異。Eldridge等[16]認(rèn)為在生物結(jié)皮發(fā)育良好的地區(qū),下層土壤的大空隙對(duì)水分入滲的影響占絕對(duì)優(yōu)勢(shì),生物結(jié)皮的影響微不足道。而在生物結(jié)皮缺失的地區(qū),地表土壤缺乏大孔隙,水分入滲率本來(lái)就低。因此,生物結(jié)皮對(duì)入滲的影響應(yīng)歸因于土壤物理性質(zhì)、水分進(jìn)入土壤通道的不同以及地表侵蝕史的差異,而非生物結(jié)皮。綜上所述,國(guó)內(nèi)外專(zhuān)家學(xué)者關(guān)于生物結(jié)皮對(duì)水分入滲及徑流的影響已經(jīng)取得不少成果,但結(jié)論仍存在較大分歧。因此,有關(guān)生物結(jié)皮對(duì)坡面產(chǎn)流的影響,仍需要進(jìn)一步研究。

黃土高原是中國(guó)乃至全球土壤侵蝕最為嚴(yán)重的區(qū)域之一。在20世紀(jì)末,由于退耕還林(草)工程的實(shí)施,生物結(jié)皮在退耕坡地上廣泛發(fā)育,平均蓋度達(dá)到60%~70%,甚至更高[17],是退耕坡地表面比例最大的覆蓋因子[18],顯著影響該區(qū)坡面的水土流失。已有的研究證實(shí),生物結(jié)皮顯著影響坡面入滲及產(chǎn)流過(guò)程[19-20]。在黃土丘陵區(qū),暴雨多集中在6—9月,且降雨歷時(shí)不固定,亦有可能影響到生物結(jié)皮坡面的產(chǎn)流特征。因此,本文借助野外人工模擬降雨手段,研究了生物結(jié)皮坡面隨降雨歷時(shí)的入滲產(chǎn)流特征,以揭示降雨歷時(shí)的差異對(duì)生物結(jié)皮坡面入滲產(chǎn)流的影響,為黃土高原的生物結(jié)皮坡面水文過(guò)程研究及水土保持工作提供理論依據(jù)。

1 材料與方法

1.1 研究區(qū)概況

試驗(yàn)于2018年8月在陜西省榆林市定邊縣楊井鎮(zhèn)的退耕撂荒地進(jìn)行。該區(qū)屬于陜北黃土高原北部與毛烏素沙漠南緣的過(guò)渡地帶,屬溫帶半干旱內(nèi)陸性氣候,多年平均氣溫為8.7 ℃,多年平均降水量316.9 mm,年蒸發(fā)量2 490 mm,地形屬于黃土高原的丘陵溝壑區(qū),土壤以石灰性黃綿土為主。試驗(yàn)樣地主要植被為達(dá)烏里胡枝子()、早熟禾()、百里香()、茵陳蒿()、賴草()、長(zhǎng)芒草()等。樣地生物結(jié)皮平均蓋度79.2%,主要由蘚結(jié)皮、藻結(jié)皮及二者混合構(gòu)成。其中,蘚結(jié)皮優(yōu)勢(shì)種主要有短葉對(duì)齒蘚()、土生對(duì)齒蘚()及銀葉真蘚()等。

1.2 試驗(yàn)設(shè)計(jì)

樣地選取及小區(qū)處理:選取蘚結(jié)皮及蘚藻混合結(jié)皮為主的撂荒坡地作為研究樣地,樣地基本情況見(jiàn)表1。

表1 樣地概況

樣地面積約為80 m×20 m,坡度15°左右。用薄鋼板在該樣地圈建10 m×2.1 m的試驗(yàn)小區(qū),用剪刀去除小區(qū)內(nèi)的高等植物冠層。根據(jù)生物結(jié)皮總蓋度差異設(shè)置2個(gè)坡面處理,將無(wú)干擾的結(jié)皮坡面作為高蓋度生物結(jié)皮組(平均蓋度79.2%),用鏟子移除一部分結(jié)皮后的結(jié)皮坡面作為低蓋度生物結(jié)皮組(平均蓋度43.6%),同時(shí)以翻耕平整過(guò)的裸土坡面作為對(duì)照,每個(gè)試驗(yàn)處理設(shè)3個(gè)重復(fù),共計(jì)9個(gè)徑流小區(qū)。

模擬降雨試驗(yàn):采用槽式擺噴頭下噴式人工模擬降雨系統(tǒng)(EL-RS3/5,北京易科立德生態(tài)環(huán)境科技有限責(zé)任公司)。降雨強(qiáng)度設(shè)為90 mm/h,降雨歷時(shí)1 h。

1.3 試驗(yàn)步驟

降雨開(kāi)始前率定雨強(qiáng),保證降雨的均勻性與精確度[21]。降雨開(kāi)始后,當(dāng)坡面整體開(kāi)始產(chǎn)流,且出水口形成連續(xù)水流時(shí),記下此時(shí)的產(chǎn)流時(shí)間并接取第一個(gè)泥沙徑流樣,此后每隔3 min收集徑流泥沙樣。降雨過(guò)程中采用高錳酸鉀測(cè)取徑流流過(guò)1 m坡段的時(shí)間,計(jì)算流速。泥沙測(cè)定采用烘干法。

1.4 數(shù)據(jù)分析

產(chǎn)流率、入滲速率、徑流系數(shù)、佛汝德數(shù)(值)及水深計(jì)算公式如下

式中為產(chǎn)流率,mm/min;R為第次取樣的產(chǎn)流量,L;為入滲速率,mm/min;為降雨強(qiáng)度,mm/min;為徑流系數(shù);為產(chǎn)流時(shí)間,min;為坡面面積,m2;為坡度,(°);為佛汝德數(shù);為坡面平均流速,m/s;為重力加速度,m/s2;為水深,m;為單寬流量,m3/(m·min)。

在小區(qū)上中下部各選取5個(gè)點(diǎn)布設(shè)25 cm×25 cm樣方,記錄樣方中藻、蘚、裸土、植物根基、枯落物出現(xiàn)的頻次,以各類(lèi)物種占調(diào)查總點(diǎn)數(shù)的百分?jǐn)?shù)作為生物結(jié)皮蓋度。用針狀糙度計(jì)測(cè)定粗糙度。糙度計(jì)由52根金屬針組成,針隨測(cè)定地面的凸凹狀況而自由升降,針上部各點(diǎn)相對(duì)與參照基準(zhǔn)面的高度變化反映地面的起伏程度。用數(shù)碼照相機(jī)將針的起伏狀況拍攝下,用Profile meter程序處理照片,計(jì)算每根針相對(duì)于參照基準(zhǔn)面的高度。粗糙度用各測(cè)點(diǎn)高度的標(biāo)準(zhǔn)差表示[22]。每個(gè)試驗(yàn)小區(qū)分別測(cè)定平行于等高線和垂直于等高線方向的地面粗糙度各9次,取平均值。有機(jī)質(zhì)含量采用重鉻酸鉀外加熱法測(cè)定。顆粒組成采用馬爾文MS2000激光粒度分析儀進(jìn)行測(cè)定。

本文數(shù)據(jù)采用excel2010和spss19.0進(jìn)行處理分析,分析前對(duì)數(shù)據(jù)進(jìn)行正態(tài)分布檢測(cè)和方差齊性檢驗(yàn),對(duì)初始產(chǎn)流時(shí)間、產(chǎn)流率、入滲速率進(jìn)行單因素方差分析、LSD多重比較。對(duì)初始產(chǎn)流時(shí)間、產(chǎn)流率、以及生物結(jié)皮蓋度、粗糙度進(jìn)行Pearson雙尾相關(guān)性分析。

2 結(jié)果與分析

2.1 不同處理對(duì)坡面初始產(chǎn)流時(shí)間的影響

圖1為90 mm/h降雨條件下3個(gè)處理坡面產(chǎn)流量的時(shí)間動(dòng)態(tài)。隨著生物結(jié)皮蓋度的降低,初始產(chǎn)流時(shí)間增加,平均初始產(chǎn)流時(shí)間由大到小依次為裸土7.0 min、低蓋度生物結(jié)皮4.4 min、高蓋度生物結(jié)皮2.3 min,3種處理之間差異顯著(<0.05)。裸土坡面初始產(chǎn)流時(shí)間是生物結(jié)皮坡面的1.59~3.04倍。初始產(chǎn)流時(shí)間與生物結(jié)皮蓋度間的Pearson雙尾相關(guān)分析表明,初始產(chǎn)流時(shí)間與生物結(jié)皮蓋度之間存在極顯著的負(fù)相關(guān)關(guān)系(=?0.925,<0.01)。

注:不同小寫(xiě)字母表示差異顯著(P<0.05),下同。

2.2 坡面產(chǎn)流隨降雨歷時(shí)變化過(guò)程

不同處理坡面的瞬時(shí)產(chǎn)流量隨降雨歷時(shí)變化過(guò)程如圖2所示。可見(jiàn)裸土坡面初始產(chǎn)流時(shí)間高于不同蓋度生物結(jié)皮坡面,產(chǎn)流后徑流量快速增加。高蓋度生物結(jié)皮坡面產(chǎn)流早于裸土和低蓋度生物結(jié)皮坡面,降雨15 min后趨于平穩(wěn)。低蓋度生物結(jié)皮坡面徑流變化處于二者之間,降雨45 min后趨于穩(wěn)定。

圖2 不同處理坡面產(chǎn)流量隨降雨歷時(shí)的變化

各處理坡面不同降雨歷時(shí)的產(chǎn)流率如圖3所示。各處理坡面降雨歷時(shí)15 min時(shí)產(chǎn)流率由高至低依次為高蓋度生物結(jié)皮0.20 mm/min、裸土0.13 mm/min、低蓋度生物結(jié)皮0.10 mm/min,高蓋度生物結(jié)皮坡面產(chǎn)流率顯著高于低蓋度生物結(jié)皮(<0.05)。降雨歷時(shí)30 min時(shí)各處理坡面產(chǎn)流率差異不顯著(>0.05)。降雨歷時(shí)為45 min時(shí)裸土坡面產(chǎn)流率顯著高于高蓋度生物結(jié)皮(<0.05)。降雨歷時(shí)60 min時(shí)裸土坡面產(chǎn)流率達(dá)到最大,為0.56 mm/min,顯著高于高蓋度生物結(jié)皮坡面(0.28 mm/min)。生物結(jié)皮坡面與裸土坡面在不同降雨時(shí)段的產(chǎn)流量有逆轉(zhuǎn)表現(xiàn),當(dāng)降雨歷時(shí)為15 min時(shí),高蓋度生物結(jié)皮坡面較裸土增加75.42%的徑流;當(dāng)降雨歷時(shí)為60 min時(shí),高蓋度生物結(jié)皮坡面徑流較裸土降低52.42%。

圖3 不同降雨歷時(shí)各坡面產(chǎn)流率

為解析降雨歷時(shí)的影響,對(duì)15、30、45、60 min時(shí)的產(chǎn)流率與生物結(jié)皮蓋度、容重及粗糙度進(jìn)行了Pearson雙尾相關(guān)分析(表2)。結(jié)果表明,15、30 min產(chǎn)流率與粗糙度、容重及生物結(jié)皮蓋度均無(wú)相關(guān)關(guān)系;而隨著降雨時(shí)間的增加,45 min產(chǎn)流率與這3項(xiàng)指標(biāo)顯著相關(guān),60 min降雨率與容重顯著相關(guān),與粗糙度、生物結(jié)皮蓋度極顯著相關(guān)。相關(guān)系數(shù)絕對(duì)值隨著降雨歷時(shí)的增加而變大。

表2 不同降雨歷時(shí)產(chǎn)流率與影響因素相關(guān)性

注:*和**分別表示在0.05水平和0.01水平(雙側(cè))上顯著相關(guān)。

Note: * and ** indicated significant correlation at< 0.05 and<0.01 (two-tail), respectively.

2.3 徑流系數(shù)及入滲速率隨降雨歷時(shí)的變化特征

圖4為不同處理坡面徑流系數(shù)隨降雨歷時(shí)的變化過(guò)程。各處理坡面在產(chǎn)流初始時(shí)的徑流系數(shù)由大到小依次為高蓋度生物結(jié)皮0.08,裸土0.07,低蓋度生物結(jié)皮0.04。生物結(jié)皮坡面徑流系數(shù)隨降雨歷時(shí)的變化趨勢(shì)均為先增加,最終趨于穩(wěn)定。裸土坡面徑流系數(shù)變化趨勢(shì)表現(xiàn)為先增加,在降雨歷時(shí)為60 min時(shí)有下降趨勢(shì)。高蓋度生物結(jié)皮坡面徑流系數(shù)隨降雨歷時(shí)變化幅度最?。宦阃疗旅娴膹搅飨禂?shù)在產(chǎn)流后隨降雨歷時(shí)增加迅速增大,在后續(xù)的降雨過(guò)程中始終高于結(jié)皮坡面;低蓋度結(jié)皮坡面徑流系數(shù)介于在二者之間。

圖4 不同處理坡面徑流系數(shù)隨降雨歷時(shí)的變化

圖5為各處理坡面不同降雨歷時(shí)的入滲速率。裸土坡面的入滲速率在前30 min時(shí)與生物結(jié)皮坡面差異不顯著。45 min時(shí)的入滲速率由大到小依次為高蓋度生物結(jié)皮1.18 mm/min、低蓋度生物結(jié)皮1.13 mm/min、裸土0.98 mm/min,高蓋度生物結(jié)皮坡面入滲速率顯著大于裸土坡面(<0.05)。裸土坡面入滲速率在60 min時(shí)降低至0.89 mm/min,顯著低于高蓋度生物結(jié)皮坡面(1.17 mm/min,<0.05)。

圖5 不同降雨歷時(shí)各處理坡面入滲速率變化

2.4 坡面流速與流態(tài)隨降雨歷時(shí)的變化特征

不同處理降雨過(guò)程中流速的時(shí)間動(dòng)態(tài)見(jiàn)圖6a。其中裸土坡面的平均流速為0.23 m/s,顯著高于有結(jié)皮覆蓋的坡面(<0.05),隨著時(shí)間的增加呈波浪狀增長(zhǎng)趨勢(shì),在降雨末期(50 min后)有下降趨勢(shì)。高蓋度生物結(jié)皮覆蓋的坡面平均流速最低,為0.05 m/s,沒(méi)有明顯的變化趨勢(shì)。低蓋度生物結(jié)皮坡面流速為0.06 m/s,略大于高蓋度生物結(jié)皮坡面,在降雨中期流速波動(dòng)幅度較大。

佛汝德數(shù)(值)是流體內(nèi)慣性力與重力的比值,是判別水流狀態(tài)的重要參數(shù)。研究表明當(dāng)值>1時(shí),水流為急流,值<1時(shí),水流為緩流[23]。由圖6b可見(jiàn),3種坡面處理的流態(tài)變化特征與流速相似。裸土坡面的Fr值顯著高于生物結(jié)皮坡面,最大值達(dá)到了5.09,平均值為3.41,是生物結(jié)皮坡面的6.8~7.6倍。表明生物結(jié)皮在坡面上的覆蓋改變了降雨過(guò)程中坡面徑流的流態(tài)。

3 討 論

不同降雨歷時(shí)的產(chǎn)流率及生物結(jié)皮蓋度Pearson相關(guān)分析結(jié)果表明,產(chǎn)流率在降雨前30 min的與生物結(jié)皮蓋度無(wú)顯著關(guān)系,隨著降雨歷時(shí)的增加,45、60 min的產(chǎn)流率與生物結(jié)皮蓋度顯著相關(guān),且相關(guān)系數(shù)絕對(duì)值隨降雨歷時(shí)增加而變大。表明隨著降雨歷時(shí)的增加,生物結(jié)皮對(duì)坡面產(chǎn)流的影響也隨之增大。這可能是由于裸土坡面和生物結(jié)皮坡面的結(jié)構(gòu)隨降雨歷時(shí)變化的差異造成的。裸土坡面土壤結(jié)構(gòu)未破壞時(shí)孔隙度較大,水分入滲在降雨前期為大孔隙流,而生物結(jié)皮的飽和導(dǎo)水率低于無(wú)結(jié)皮土壤[24],此時(shí)裸土坡面產(chǎn)流量低于結(jié)皮坡面。隨著降雨歷時(shí)的增加,裸土坡面的土壤結(jié)構(gòu)容易被雨滴擊濺破壞,濺蝕產(chǎn)生的細(xì)土粒堵塞土壤孔隙,形成大面積的物理結(jié)皮,其致密的表層結(jié)構(gòu)會(huì)顯著降低表層土壤的入滲速率,導(dǎo)致坡面的產(chǎn)流量迅速增大[25]。已有研究表明,生物結(jié)皮的存在可以削減雨滴動(dòng)能,減少雨滴對(duì)下層土壤結(jié)構(gòu)的破壞,增加土壤水穩(wěn)定性[3,26]。因此,生物結(jié)皮坡面的表層土壤在降雨過(guò)程中較裸土坡面更加穩(wěn)定,水分入滲率隨降雨歷時(shí)變化不大。基于以上原因,生物結(jié)皮坡面的產(chǎn)流率隨降雨歷時(shí)變化平穩(wěn),裸土坡面由于表層土壤結(jié)構(gòu)的不穩(wěn)定性導(dǎo)致產(chǎn)流隨降雨歷時(shí)增加而迅速增大。

本研究團(tuán)隊(duì)在該地區(qū)采用線源入流入滲法測(cè)定了高蓋度生物結(jié)皮小區(qū)與裸土小區(qū)的水分入滲時(shí)間動(dòng)態(tài)。分析發(fā)現(xiàn),裸土小區(qū)前6 min的初始入滲速率高于高蓋度生物結(jié)皮小區(qū),隨著入滲時(shí)間的增加,裸土小區(qū)的入滲速率迅速下降,在7~20 min時(shí)段低于高蓋度生物結(jié)皮小區(qū),隨后緩慢下降至穩(wěn)定數(shù)值。高蓋度結(jié)皮小區(qū)初始入滲速率較穩(wěn)定,8 min后開(kāi)始緩慢下降,最后下降至穩(wěn)定的入滲速率。該結(jié)果證明了生物結(jié)皮影響了水分入滲的過(guò)程,從入滲的角度解釋了裸土坡面與生物結(jié)皮坡面在不同降雨歷時(shí)表現(xiàn)出產(chǎn)流特征差異的原因。

生物結(jié)皮的覆蓋顯著地降低了暴雨降雨條件下坡面的流速(圖6a),從而改變了坡面徑流的佛汝德數(shù)(值),裸土坡面的值顯著高于結(jié)皮坡面,平均值是生物結(jié)皮坡面的6.8~7.6倍。Savat和Ploey[27]的試驗(yàn)表明,當(dāng)坡面徑流的佛汝德數(shù)為2~3時(shí),細(xì)溝發(fā)育的概率很大。張科利等[28]認(rèn)為佛汝德數(shù)≥1是細(xì)溝發(fā)生的水動(dòng)力臨界值。這意味著生物結(jié)皮的存在能夠?qū)⑵旅嫠鞯牧鲬B(tài)從急流變?yōu)榫徚?,減少侵蝕發(fā)生的可能性。本試驗(yàn)中裸土坡面的值隨降雨歷時(shí)增加呈波浪式上升的趨勢(shì),而生物結(jié)皮坡面的變化趨勢(shì)則相對(duì)平穩(wěn),這表明裸土坡面表層土壤狀態(tài)在降雨過(guò)程中一直不斷變化,物理結(jié)皮發(fā)育經(jīng)歷形成-破壞-再形成的過(guò)程[29],因此,裸土坡面的流態(tài)變化趨勢(shì)起伏較大,而生物結(jié)皮坡面由于結(jié)皮的結(jié)構(gòu)穩(wěn)定,徑流的流態(tài)變化相對(duì)較平緩。該結(jié)果也表明,生物結(jié)皮改變了暴雨條件下坡面徑流的流態(tài),裸土坡面徑流流態(tài)隨降雨歷時(shí)變化劇烈,而生物結(jié)皮坡面流態(tài)隨降雨歷時(shí)變化平緩,生物結(jié)皮減少了徑流侵蝕力,避免坡面出現(xiàn)溝蝕,這也是降雨中后期生物結(jié)皮坡面較裸土坡面產(chǎn)流更少的原因之一。

在本次試驗(yàn)中,降雨歷時(shí)不同,生物結(jié)皮對(duì)產(chǎn)流的影響截然不同,裸土坡面在降雨前30 min的產(chǎn)流率與生物結(jié)皮坡面并無(wú)顯著差異,降雨45 min后顯著高于高蓋度結(jié)皮坡面。試驗(yàn)結(jié)果表明,考慮生物結(jié)皮因素的野外降雨試驗(yàn),降雨歷時(shí)不少于45 min得到的結(jié)果是比較可靠的。除降雨歷時(shí)外,坡面產(chǎn)流還受降雨類(lèi)型、土壤性質(zhì)、結(jié)皮類(lèi)型等多種因素的影響[30-32],當(dāng)以上影響因素發(fā)生改變時(shí),本試驗(yàn)揭示的產(chǎn)流規(guī)律是否仍然適用,是下一步亟待解決的問(wèn)題,還需要做更多的試驗(yàn)研究。

4 結(jié) 論

1)生物結(jié)皮坡面較翻耕后的裸土坡面顯著降低了初始產(chǎn)流時(shí)間,裸土初始產(chǎn)流時(shí)間是生物結(jié)皮坡面的1.59~3.04倍。生物結(jié)皮蓋度與初始產(chǎn)流時(shí)間之間呈顯著的負(fù)相關(guān)關(guān)系。

2)降雨15 min時(shí)與60 min時(shí)生物結(jié)皮對(duì)坡面徑流的影響發(fā)生逆轉(zhuǎn),90 mm/h的雨強(qiáng)下,當(dāng)降雨歷時(shí)為15 min時(shí),生物結(jié)皮坡面較裸土坡面增加75.42%的徑流;當(dāng)降雨歷時(shí)為60 min時(shí),生物結(jié)皮坡面徑流較裸土坡面降低52.42%。

3)生物結(jié)皮影響了土壤水分入滲速率,導(dǎo)致生物結(jié)皮坡面與裸土坡面隨降雨歷時(shí)變化的產(chǎn)流特征出現(xiàn)差異,裸土坡面60 min時(shí)的入滲率較15 min時(shí)降低了34.30%,高蓋度生物結(jié)皮坡面只降低了6.38%。

4)生物結(jié)皮對(duì)坡面入滲產(chǎn)流的影響與降雨歷時(shí)有極大的關(guān)系,降雨歷時(shí)不同,很可能得到截然相反的結(jié)論,因此考慮生物結(jié)皮因素的野外降雨試驗(yàn),降雨歷時(shí)應(yīng)不少于45 min。這為解釋生物結(jié)皮影響坡面入滲產(chǎn)流方面存在的分歧提供了數(shù)據(jù)參考。

[1]Belnap J. Biological soil crusts in deserts: A short review of their role in soil fertility, stabilization, and water relations[J]. Archiv Fur Hydrobiologie Algological Studies, 2003, 148(4): 113-126.

[2]張?jiān)? 荒漠地表生物土壤結(jié)皮的微結(jié)構(gòu)及其早期發(fā)育特征[J]. 科學(xué)通報(bào),2005,50(1):42-47.

[3]楊凱,趙允格,馬昕昕. 黃土丘陵區(qū)生物土壤結(jié)皮層水穩(wěn)性[J]. 應(yīng)用生態(tài)學(xué)報(bào),2012,23(1):173-177.

Yang Kai, Zhao Yunge, Ma Xinxin. Water stability of biological soil crusts in hilly regions of Loess Plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(1): 173-177. (in Chinese with English abstract)

[4]張培培,趙允格,王媛,等. 黃土高原丘陵區(qū)生物結(jié)皮土壤的斥水性[J]. 應(yīng)用生態(tài)學(xué)報(bào),2014,25(3):657-663.

Zhang Peipei, Zhao Yunge, Wang Yuan, et al. Impact of biological soil crusts on soil water repellence in the hilly Loess Plateau region, China[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 657-663. (in Chinese with English abstract)

[5]王媛,趙允格,姚春竹,等. 黃土丘陵區(qū)生物土壤結(jié)皮表面糙度特征及影響因素[J]. 應(yīng)用生態(tài)學(xué)報(bào),2014,25(3):647-656.

Wang Yuan, Zhao Yunge, Yao Chunzhu, et al. Surface roughness characteristics of biological soil crusts and its influencing factors in the hilly Loess Plateau region, China[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 647-656. (in Chinese with English abstract)

[6]Loope W L, Gifford G F. Influence of a soil microfloral crust on select properties of soils under pinyon-juniper in southeastern Utah[J]. Journal of Soil & Water Conservation, 1972, 27(4): 164-167.

[7]Galun M, Bubrick P, Garty J. Structural and metabolic diversity of two desert lichen populations[J]. Journal- Hattori Botanical Laboratory, 1982, 53: 321-324.

[8]Greene R, Chartres C J, Hodgkinson K C. The effects of fire on the soil in a degraded semiarid woodland. I. Cryptogam cover and physical and micromorphological properties[J]. Australian Journal of Soil Research, 1990, 28(5): 755-777.

[9]Eldridge D J. Cryptogams, vascular plants, and soil hydrological relations: some preliminary results from the semiarid woodlands of eastern Australia[J]. Great Basin Naturalist, 1993, 53(1): 48-58.

[10]肖波,趙允格,邵明安. 黃土高原侵蝕區(qū)生物結(jié)皮的人工培育及其水土保持效應(yīng) [J]. 草地學(xué)報(bào),2008,16(1):28-33.

Xiao Bo, Zhao Yunge, Shao Mingan. Artificial cultivation of biological soil crust and its effects on soil and water conservation in water-wind erosion crisscross region of Loess Plateau, China[J]. Acta Agrestia Sinica, 2008, 16(1): 28-33. (in Chinese with English abstract)

[11]Al-Qinna M I, Abu-Awwad A M. Infiltration rate measurements in arid soils with surface crust[J]. Irrigation Science, 1998, 18(2): 83-89.

[12]Rodríguez-Caballero E, Cantón Y, Jetten V. Biological soil crust effects must be included to accurately model infiltration and erosion in drylands: An example from Tabernas Badlands[J]. Geomorphology, 2015, 241: 331-342.

[13]李新榮,馬鳳云,龍立群,等. 沙坡頭地區(qū)固沙植被土壤水分動(dòng)態(tài)研究[J]. 中國(guó)沙漠,2001,21(3):217-222.

Li Xinrong, Ma Fengyun, Long Liqun, et al. Soil water dynamics under sand-fixing vegetation in Shapotou area[J]. Journal of Desert Research, 2001, 21(3): 217-222. (in Chinese with English abstract)

[14]Zhao Yunge, Xu Mingxiang. Runoff and soil loss from revegetated grasslands in thehilly Loess Plateau region, China: Influence of biocrust patches and plant canopies[J]. Journal of Hydrologic Engineering, 2013, 18(4): 387-393.

[15]Booth W E. Algaeas pioneers in plant succession and their importance in erosion control[J]. Ecology, 1941, 22(1): 38-46.

[16]Eldridge D J, Tozer M E, Slangen S. Soil hydrology is independent of microphytic crust cover: Further evidence from a wooded semiarid Australian rangeland[J]. Arid Soil Research & Rehabilitation, 1997, 11(2): 113-126.

[17]Chamizo S, Cantón Y, Rodríguez-Caballero E, et al. Biocrusts positively affect the soil water balance in semiarid ecosystems[J]. Ecohydrology, 2016, 9(7): 1208-1221.

[18]王一賀,趙允格,李林,等. 黃土高原不同降雨量帶退耕地植被-生物結(jié)皮的分布格局 [J]. 生態(tài)學(xué)報(bào),2016,36(2):377-386.

Wang Yihe, Zhao Yunge, Li Lin, et al. Distribution patterns and spatial variability of vegetation and biocrusts in revegetated lands in different rainfall zones of the Loess Plateau region, China[J]. Acta Ecologica Sinica, 2016, 36(2): 377-386. (in Chinese with English abstract)

[19]葉菁,卜崇峰,楊永勝,等. 翻耙干擾下生物結(jié)皮對(duì)水分入滲及土壤侵蝕的影響[J]. 水土保持學(xué)報(bào),2015,29(3):22-26.

Ye Jing, Bu Chongfeng, Yang Yongsheng, et al. Influences of biological soil crusts on water infiltration and soil erosion under harrowing disturbance[J]. Journal of Soil and Water Conservation, 2015, 29(3): 22-26. (in Chinese with English abstract)

[20]謝申琦,高麗倩,趙允格,等. 模擬降雨條件下生物結(jié)皮坡面產(chǎn)流產(chǎn)沙對(duì)雨強(qiáng)的響應(yīng)[J]. 應(yīng)用生態(tài)學(xué)報(bào),2019,30(2):35-41.

Xie Shenqi, Gao Liqian, Zhao Yunge, et al. Responses of runoff and soil loss from biological soil crustal slope to rainfall intensity under simulated rainfall[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 35-41. (in Chinese with English abstract)

[21]謝云,林小鵑,劉英娜,等. 槽式擺噴頭下噴式人工模擬降雨機(jī)的雨強(qiáng)及其空間分布率定[J]. 水土保持通報(bào),2008,28(4):1-6.

Xie Yun, Lin Xiaojuan, Liu Yingna, et al. Calibration of simulated rainfall intensity and its spatial distribution for trough rainfall simulator[J]. Bulletin of Soil and Water Conservation, 2008, 28(4): 1-6. (in Chinese with English abstract)

[22]許明祥,劉國(guó)彬,溫仲明,等. 黃土丘陵區(qū)小流域土壤特性時(shí)空動(dòng)態(tài)變化研究[J]. 水土保持通報(bào),2000,20(1):20-23.

Xu Mingxiang, Liu Guobin, Wen Zhongming, et al. Temporal and spatial variation of soil characters in small catchment of Loess Hilly areas[J]. Bulletin of Soil and Water Conservation, 2000, 20(1): 20-23. (in Chinese with English abstract)

[23]張寬地,王光謙,孫曉敏,等. 模擬植被覆蓋條件下坡面流水動(dòng)力學(xué)特性[J]. 水科學(xué)進(jìn)展,2014,25(6):825-834.

Zhang Kuandi, Wang Guangqian, Sun Xiaomin, et al. Hydraulic characteristic of overland flow under different vegetation coverage[J].Advances in Water Science, 2014, 25(6): 825-834. (in Chinese with English abstract)

[24]肖波,趙允格,邵明安. 陜北水蝕風(fēng)蝕交錯(cuò)區(qū)兩種生物結(jié)皮對(duì)土壤飽和導(dǎo)水率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(12):35-40.

Xiao Bo, Zhao Yunge, Shao Mingan. Effects of biological soil crust on saturated hydraulic conductivity in water-wind erosion crisscross region, North of Shaanxi Province, China[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2007, 23(12): 35-40. (in Chinese with English abstract)

[25]劉俊娥,王占禮,高素娟. 黃土坡面片蝕過(guò)程試驗(yàn)研究[J]. 水土保持學(xué)報(bào),2011,25(3):35-39.

Liu June, Wang Zhanli, GaoSujuan. Experimental study of sheet erosion processes on Loess Hill slope[J]. Journal of Soil and Water Conservation, 2011, 25(3): 35-39. (in Chinese with English abstract)

[26]秦寧強(qiáng),趙允格. 生物土壤結(jié)皮對(duì)雨滴動(dòng)能的響應(yīng)及削減作用[J]. 應(yīng)用生態(tài)學(xué)報(bào),2011,22(9):2259-2264.

Qin Ningqiang, Zhao Yunge. Responses of biological soil crust to and its relief effect on raindrop kinetic energy[J]. Chinese Journal of Applied Ecology, 2011, 22(9): 2259-2264. (in Chinese with English abstract)

[27]Savat J, Ploey J D. Sheetwash and rill development by surface flow[C]//Badland Geomorphology and Piping, Norwich: Geobooks, 1998: 113-126.

[28]張科利,鐘德鈺. 黃土坡面溝蝕發(fā)生機(jī)理的水動(dòng)力學(xué)試驗(yàn)研究[J]. 泥沙研究,1998(3):76-82.

Zhang Keli, Zhong Deyu. The study of gully erosion mechanism of the hydrodynamic experimental on loess slope surface[J]. Journal of Sediment Research, 1998(3): 76-82. (in Chinese with English abstract)

[29]蔡強(qiáng)國(guó),陸兆熊. 黃土發(fā)育表土結(jié)皮過(guò)程和微結(jié)構(gòu)分析的試驗(yàn)研究[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),1996(4):363-370.

Cai Qiangguo, Lu Zhaoxiong. Experimental study of surface crusts process and microfabric analysis on loess soil[J]. Journal of Basic Science and Engineering, 1996(4): 363-370. (in Chinese with English abstract)

[30]鄔鈴莉,王云琦,王晨灃,等. 降雨類(lèi)型對(duì)北方土石山區(qū)坡面土壤侵蝕的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):157-164.

Wu Lingli, Wang Yunqi, Wang Chenfeng, et al. Effect of rainfall patterns on hillslope soil erosion in rocky mountain area of North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 157-164. (in Chinese with English abstract)

[31]吳秋菊,吳發(fā)啟,王林華. 土壤結(jié)皮坡面流水動(dòng)力學(xué)特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(1):73-80.

Wu Qiuju, Wu Faqi, Wang Linhua. Hydrodynamic characteristics of overland flow under soil crusts condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 73-80. (in Chinese with English abstract)

[32]彭浩,李忠武,劉春,等. 湘中低山丘陵區(qū)坡面產(chǎn)流輸沙對(duì)降雨、土壤類(lèi)型及水保措施的綜合響應(yīng)特征[J]. 水土保持學(xué)報(bào),2019,33(2):60-67.

Peng Hao, Li Zhongwu, Liu Chun, et al. Comprehensive response characteristics of runoff and sediment yield on rainfall, soil type and water conservation measures in hilly area of central Hunan Province[J]. Journal of Soil and Water Conservation, 2019, 33(2): 60-67. (in Chinese with English abstract)

Characteristics of runoff on biological soil crust slope in different rainfall durations

Yang Kai1,2, Zhao Jun2, Zhao Yunge2,4※, Zhang Zihui1, Sun Hui3, Gu Kangmin1, Guo Yali1, Wang Shanshan4

(1.,,712100,;2,,,712100,; 3.,,712100,; 4.,100049,)

The Loess Plateau in China is one of the most severely eroded regions of the world. Since the implementation of “Grain for Green” ecological restoration project, biological soil crusts (biocrusts) were widely distributed in this region, which significantly affected surface runoff. Numerous studies have explored the effect of biocrusts on runoff. However, the conclusions were still widely different. In the Loess Plateau region, rainfall is mostly concentrated in June to September, and the rainfall duration is not fixed, which may affect the runoff characteristics of biocrust slopes. This study investigated characteristics of runoff from biocrust slope in different rainfall durations in the Loess Plateau region by using artificial simulated rainfall experiment. The experiment was conducted in the revegetated grassland of northern Shaanxi Provence, China. The experiment site was about 80 m×20 m, and the slope gradient was approximately 15°. The biocrust types were mainly moss crust and moss cyanobacteria mixed crust in this site and their average coverage was 79.2%. The dimensions of the experimental plots were 10 m×2.1 m (length×width).Canopy of higher plants in the plots was removed with scissors. According to the range of local biocrust coverage, two treatments were set: 1) slopes with undisturbed biocrust as a high coverage biocrust (the average biocrust coverage were 79.2%); 2) the slopes with removal of a part of the biocrusts by shovels, which simulated the low biocrust cover situation (the average biocrust coverage were 43.6%). Meanwhile, ploughing plots were set as the control group. The rainfall intensity was set as 90mm/h and the duration was1 hour. The results showed that the initial runoff time of biocrust slope was significantly reduced compared to the bare soil slope. The initial runoff yield time of bare soil was 1.59-3.04 times that of the biocrust slopes. There was a significant negative correlation between biocrust coverage and initial runoff generation time; Conclusion of the influence of biocrusts on runoff yield was contradictory during the first 15 min and 60 min. For 90 mm/h rainfall intensity, runoff from biocrust slope increased by 75.42% compared to bare soil when the rainfall duration was the 15 min. While, runoff from biocrust slope was decreased by 52.42% compared to the bare soil when the rainfall lasted to 60 min; the infiltration rate of soil moisture was affected by biocrusts. The infiltration rate of bare soil slope with 60 min rainfall was 34.30% lower than that with 15 min. The infiltration rate of high coverage biocrust slope with 60 min rainfall was only 6.38% lower than that with 15 min, which may cause the difference of runoff yield between bare soil slope and biocrust slope; the effect of biocrust on slope infiltration and runoff is closely related to rainfall duration. Different periods of rainfall are likely to lead to inconsistent conclusions. Therefore, the duration of rainfall experiment considering the factors of biocrust should be no less than 45 min. The study provides scientific evidences for explaining the differences in the effect of biocrusts on infiltration and runoff, and further clarifies the hydrological effect of biocrusts in arid and semi-arid areas.

runoff; hydrodynamics; biological soil crust; initial runoff time; runoff coefficient

楊 凱,趙 軍,趙允格,張子輝,孫 會(huì),谷康民,郭雅麗,王閃閃. 生物結(jié)皮坡面不同降雨歷時(shí)的產(chǎn)流特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(23):135-141.doi:10.11975/j.issn.1002-6819.2019.23.017 http://www.tcsae.org

Yang Kai, Zhao Jun, Zhao Yunge, Zhang Zihui, Sun Hui, Gu Kangmin, Guo Yali, Wang Shanshan. Characteristics of runoff on biological soil crust slope in different rainfall durations[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 135-141. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.23.017 http://www.tcsae.org

2019-07-12

2019-11-12

國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(41830758);國(guó)家自然科學(xué)基金面上項(xiàng)目(41571268)

楊 凱,博士生,主要從事生物結(jié)皮抗侵蝕方面的研究。Email:yangkai0409@163.com。

趙允格,博士,研究員,博士生導(dǎo)師,主要從事生物結(jié)皮生態(tài)功能及土壤系統(tǒng)中水、溶質(zhì)運(yùn)移研究。Email:zyunge@ms.iswc.ac.cn

10.11975/j.issn.1002-6819.2019.23.017

S157.1; S181

A

1002-6819(2019)-23-0135-07

猜你喜歡
產(chǎn)流土坡歷時(shí)
產(chǎn)流及其研究進(jìn)展
不同坡面單元人工降雨產(chǎn)流試驗(yàn)與分析
量詞“只”的形成及其歷時(shí)演變
常用詞“怠”“惰”“懶”的歷時(shí)演變
對(duì)《紅樓夢(mèng)》中“不好死了”與“……好的”的歷時(shí)考察
經(jīng)驗(yàn)相關(guān)圖法在洪水預(yù)報(bào)中的應(yīng)用分析
歷時(shí)九年的星際穿越
退耕還林對(duì)黃家河產(chǎn)流影響淺析
上海SMP公園土坡場(chǎng)
土釘加固黏性土坡加載的離心模型試驗(yàn)研究
临沭县| 明光市| 沅陵县| 南阳市| 土默特左旗| 含山县| 临猗县| 万盛区| 高淳县| 新泰市| 苗栗县| 库伦旗| 黄梅县| 宜宾县| 靖远县| 克东县| 丽水市| 谷城县| 巩义市| 临海市| 繁昌县| 溧水县| 屏边| 平安县| 吉隆县| 祁阳县| 顺义区| 大渡口区| 九江县| 崇礼县| 奉节县| 张家川| 方城县| 紫阳县| 临泉县| 双峰县| 白河县| 银川市| 东乌| 台北县| 中西区|