国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

溫度及吹脫沼氣中CO2比例對(duì)沼液氨吹脫效果的影響

2019-01-18 00:39:12彭靖靖張秀之張如峰梅自力
關(guān)鍵詞:沼液沼氣氨氮

艾 平,彭靖靖,席 江,張秀之,湯 煒,張如峰,梅自力※

?

溫度及吹脫沼氣中CO2比例對(duì)沼液氨吹脫效果的影響

艾 平1,2,彭靖靖1,席 江2,張秀之1,湯 煒1,張如峰1,梅自力2※

(1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070;2. 農(nóng)業(yè)農(nóng)村部農(nóng)村可再生能源開(kāi)發(fā)利用重點(diǎn)實(shí)驗(yàn)室,成都 610041)

氨吹脫是一種對(duì)養(yǎng)殖場(chǎng)沼液進(jìn)行深度處理和氮回收的技術(shù),利用沼氣對(duì)沼液進(jìn)行氨吹脫可通過(guò)沼氣反復(fù)循環(huán)吹脫實(shí)現(xiàn)沼氣提純和沼液氨氮脫除耦合,是氨吹脫的新型研究方向,但目前缺乏相關(guān)工藝參數(shù)?;诖?,該文利用CH4和CO2混合氣體模擬沼氣,研究了吹脫溫度(70、80、90 ℃)和氣體中CO2比例(10%、20%、40%)對(duì)沼液氨氮脫除過(guò)程參數(shù)和氨氮脫除效果的影響。結(jié)果表明:在試驗(yàn)條件下,溫度較高,CO2比例較低時(shí)沼液氨氮脫除效果較好。在90℃、吹脫氣體中CO2比例為10%時(shí),吹脫6 h后沼液的最終氨氮去除率達(dá)到99.28%,出水氨氮質(zhì)量濃度低于60 mg/L,且在40 min內(nèi)沼液的氨氮去除率達(dá)到92.15%,反應(yīng)動(dòng)力學(xué)常數(shù)為1.034 h-1,可依靠脫除沼液中的酸性物質(zhì)使得沼液的pH值上升至9.92。對(duì)吹脫后沼液水質(zhì)分析表明,利用模擬沼氣對(duì)沼液進(jìn)行氨吹脫,沼液中的化學(xué)需氧量(chemical oxygen demand,COD)去除率達(dá)到23.53%~42.20%,總磷(total phosphorus, TP)去除率達(dá)到15.85%~32.97%,濁度去除率為20.79%~29.74%。研究結(jié)果為利用富CO2氣體對(duì)沼液進(jìn)行氨吹脫工藝提供參考。

沼液;溫度;pH值;氨吹脫;CO2負(fù)荷

0 引 言

隨著中國(guó)生豬養(yǎng)殖向規(guī)?;?、集約化發(fā)展,畜禽糞污處理壓力日益加大,養(yǎng)殖污水屬于高濃度有機(jī)廢水,氮磷含量高,含有大量碳水化合物、蛋白質(zhì)、油脂、木質(zhì)纖維素等成分,且有各種病原微生物[1]。厭氧發(fā)酵產(chǎn)沼氣技術(shù)是中國(guó)目前處理畜禽糞污的主要方法,但大型沼氣工程中沼液產(chǎn)生量大,且沼液中氮磷含量高,若處置不當(dāng),易造成空氣污染和水體富營(yíng)養(yǎng)化[2]?;厥照右褐械牡谞I(yíng)養(yǎng)元素,可促進(jìn)沼液深度處理技術(shù)的發(fā)展,建立基于營(yíng)養(yǎng)成分循環(huán)的新型低氮養(yǎng)殖系統(tǒng)。

目前從廢水中去除氨氮的研究已有很多,但存在反應(yīng)條件要求高,營(yíng)養(yǎng)元素回收效率低等不足[3]。對(duì)于養(yǎng)殖場(chǎng)沼液等高氨氮含量的污水,氨吹脫相比于其他脫氮技術(shù),是一種更為可行的氨回收處理方法,具有方法簡(jiǎn)單,投資少,可承受較高污水固體濃度,較低能量需求等優(yōu)點(diǎn)[4-5],易與已有沼氣工程相結(jié)合處理沼液。沼液吹脫除氨還可使用酸吸收吹脫氣體中的氨,高效制取銨鹽化肥,實(shí)現(xiàn)增值化副產(chǎn)品生產(chǎn)[5-6]。

利用沼氣對(duì)沼液進(jìn)行吹脫除氨是目前氨吹脫研究的方向,即采用系統(tǒng)內(nèi)部生成的沼氣作為吹脫氣體對(duì)沼液進(jìn)行循環(huán)吹脫,實(shí)現(xiàn)沼液脫氨和沼氣提純的同步耦合[7-8]。其原理在于利用豬場(chǎng)沼液作為沼氣中CO2組分的吸收劑,實(shí)現(xiàn)對(duì)吹脫沼氣中的CO2組分分離,并通過(guò)沼氣的反復(fù)循環(huán)吹脫,逐步提高沼氣中甲烷含量,達(dá)到沼氣提純的目的。較多研究者分析了以沼氣為吹脫氣體的氨吹脫技術(shù)的可行性,發(fā)現(xiàn)氨氮去除效率與吹脫氣體中CO2含量呈負(fù)相關(guān)[9-11],其主要難點(diǎn)在于沼氣中CO2濃度遠(yuǎn)高于空氣,吹脫氣體中CO2分壓增大,使沼液中CO2進(jìn)入氣相變得困難,進(jìn)而影響沼液中的碳酸鹽緩沖系統(tǒng)[10,12-13]。所以當(dāng)采用沼氣作為吹脫氣體時(shí),為確保吹脫效率,需采用提高吹脫溫度、增加沼液pH值等配套方案。

溫度和pH值是影響沼液氨吹脫效率的2個(gè)主要因素,同時(shí)也是導(dǎo)致其操作成本增加最敏感的參數(shù)[14-15]。沼液pH值調(diào)節(jié)成本高,且會(huì)增加沼液后續(xù)處理的難度[16-17],所以本研究主要探究不調(diào)節(jié)沼液pH值,僅提高吹脫溫度的沼液氨吹脫工藝。升高吹脫溫度可有效增加氨分離的傳質(zhì)動(dòng)力[18-19],在大型沼氣工程中,利用沼氣發(fā)電的大量余熱進(jìn)行沼液的高溫氨吹脫是可行的[20],但沼氣中CO2比例不同,對(duì)溫度的要求也不同,根據(jù)不同沼氣比例選擇較佳的吹脫溫度,有利于降低吹脫成本。

基于此,本研究在不調(diào)節(jié)沼液初始pH值的情況下,采用不同CO2比例的沼氣在高溫條件下對(duì)沼液進(jìn)行氨吹脫,以獲得低耗高效的以沼氣為吹脫氣體進(jìn)行沼液氨氮脫除工藝的參數(shù),并考察吹脫后沼液的水質(zhì),為后續(xù)沼液處理提供參考。

1 材料與方法

1.1 試驗(yàn)原料

沼液取自湖北鄂州豬場(chǎng)的沼氣工程,該工程以豬糞為主要原料,配合添加少量生活污水,在 35 ℃下中溫完全發(fā)酵,沼液取回后在常溫(25±5)℃下密封保存3個(gè)月,在其物化性質(zhì)穩(wěn)定階段進(jìn)行試驗(yàn)。沼液水質(zhì)參數(shù)如表1。

表1 沼液基本參數(shù)(25 ℃)

1.2 試驗(yàn)方法及裝置

1.2.1 試驗(yàn)方法

Serna-Maza等[21]利用沼氣對(duì)沼液進(jìn)行吹脫,發(fā)現(xiàn)在35和55 ℃時(shí)沼液氨氮幾乎沒(méi)有去除,當(dāng)溫度為70 ℃時(shí)調(diào)節(jié)其初始pH值沼液中氨氮去除率才達(dá)到58.8%。本研究選取較高的吹脫溫度(70、80、90 ℃)與吹脫氣體中CO2比例(10%、20%、40%)2個(gè)因素進(jìn)行試驗(yàn)。吹脫沼液量為500 mL,氣體流量為3.4 L/min,吹脫時(shí)間為6 h。吹脫過(guò)程中,前2 h間隔20 min取樣分析,2 h后間隔1 h,每次取樣5 mL,并添加5 mL原沼液,以降低吹脫過(guò)程中沼液量受取樣的影響。每組試驗(yàn)重復(fù)3次。

1.2.2 試驗(yàn)裝置

圖1為試驗(yàn)裝置示意圖。采取人工配置不同比例CH4和CO2混合氣模擬不同比例的沼氣。高純CH4(99.9%)和高純CO2(99.9%)通過(guò)質(zhì)量流量控制器(D07-7p型,北京七星華創(chuàng)電子股份有限公司)控制流量,并通過(guò)數(shù)字化流量積算儀(D08-8C型,北京七星華創(chuàng)電子股份有限公司)調(diào)節(jié)混合氣體流量。吹脫瓶中進(jìn)氣管路末端接有直徑2.2 cm,高為4.7 cm的圓柱形曝氣石,以保證氣體通入吹脫瓶后與沼液有較大的接觸面。利用恒溫水浴鍋(KHW-S-8,上海汗諾儀器有限公司)進(jìn)行溫度控制。因本試驗(yàn)處理沼液量較少且處理溫度較高,吹脫瓶上端出口接球形冷凝管對(duì)脫出的氣體進(jìn)行冷凝達(dá)到減少水汽蒸發(fā)損失的目的。球形冷凝管與低溫冷卻循環(huán)泵(DLSB-5 25L,鞏義市予華儀器有限責(zé)任公司)相連,通過(guò)冷卻液的循環(huán)達(dá)到對(duì)球形冷凝管的冷卻效果。吹脫后氣體分別由0.5 mol/L的H2SO4和3 mol/L NaOH溶液吸收。若試驗(yàn)過(guò)程出現(xiàn)泡沫富集在液體表面的現(xiàn)象,則滴加0.5 mL植物油來(lái)消除泡沫。

1,2. 質(zhì)量流量控制器 3. 氣體混合瓶 4. 水浴鍋 5. 吹脫瓶 6. 曝氣石 7. H2SO4吸收瓶 8. NaOH吸收瓶 9. 冷凝器

1.3 分析方法

1.3.1 測(cè)試指標(biāo)及方法

總固體質(zhì)量分?jǐn)?shù)(total solid, TS)和揮發(fā)性固體質(zhì)量分?jǐn)?shù)(tolatile solids, VS)采用質(zhì)量分析法測(cè)試;氨氮(ammonia nitrogen)、總氮(total nitrogen,TN)、總磷(total phosphorus,TP)濃度采用FIAstar 5000型間斷流動(dòng)注射儀(瑞士安捷倫科技有限公司)測(cè)量;化學(xué)需氧量(chemical oxygen demand,COD)采用重鉻酸鉀氧化法通過(guò)CM-03型便攜式COD水質(zhì)測(cè)定儀(北京雙暉京承電子產(chǎn)品有限公司)測(cè)試,pH值采用METTLER TOLEDO FE28型pH計(jì)(上海梅特勒-托利多有限公司)測(cè)試;濁度由WZT-1型光電濁度儀(上海勁佳科學(xué)儀器有限公司)測(cè)試;CO2負(fù)荷由酸堿滴定法測(cè)定[9]。

1.3.2 數(shù)據(jù)分析處理

采用SAS 8.2處理試驗(yàn)數(shù)據(jù),對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行單因素試驗(yàn)的顯著性分析,用Origin2015軟件繪圖。

沼液的pH值會(huì)影響沼液中游離氨的比例,沼液中和銨根離子的濃度關(guān)系可由式(1)確定[6,20]:

pKa=–log10[Ka],可表示為溫度的函數(shù)[16]:

pKa=4×10–83+9×10–52–0.035 6+10.07 (2)

式中[NH3]表示沼液中游離氨的濃度,mol/L;[NH3+ NH4+]表示沼液中的氨氮總量的濃度,mol/L;[H+]表示沼液中的氫離子的濃度,mol/L;Ka表示氨的酸解離常數(shù);表示溶液溫度,℃。

不同初始質(zhì)量濃度的氨氮脫除一級(jí)反應(yīng)動(dòng)力學(xué)方程如式(3)所示[21-23]:

t=0·e–kt(3)

氨氮去除率可用式(4)進(jìn)行計(jì)算:

式中t表示時(shí)刻吹脫瓶中沼液氨氮質(zhì)量濃度,mg/L;0表示沼液初始氨氮質(zhì)量濃度,mg/L;為氨氮脫除的一級(jí)反應(yīng)動(dòng)力學(xué)常數(shù),h-1;為氨吹脫時(shí)間,h;表示沼液中氨氮去除率,%。

2 結(jié)果與分析

2.1 不同溫度和沼氣中CO2比例對(duì)氨吹脫效果的影響

如圖2所示,當(dāng)吹脫氣體中CO2比例為10%時(shí),沼液的氨氮吹脫效率最高,70、80、90 ℃下最終沼液的氨氮去除率分別為96.81%、98.65%、99.28%,無(wú)顯著差異(>0.05),出水氨氮質(zhì)量濃度均低于60 mg/L,滿足畜禽業(yè)排放標(biāo)準(zhǔn)(<80 mg/L)[24]。當(dāng)吹脫氣體中CO2比例為20%時(shí),在70、80和90 ℃下氨氮去除率分別為72.81%、84.00%和88.39%,有顯著性差異(<0.05);當(dāng)吹脫氣體中CO2比例達(dá)到40%時(shí),在3個(gè)不同吹脫溫度下氨氮去除率分別為62.94%、75.23%和83.29%,差異極顯著(<0.01)。氣體中CO2的存在對(duì)沼液氨氮去除有不利影響,Budzianowski等[25]發(fā)現(xiàn)當(dāng)液體中有較高CO2存在時(shí),液相中氨的傳質(zhì)效率會(huì)降低15%~35%,這是由于相同條件下CO2的溶解度遠(yuǎn)小于NH3的溶解度,溶液中CO2的脫除效率要高于NH3,弱堿氨的傳質(zhì)受弱酸CO2傳質(zhì)的影響。吹脫氣體中CO2比例的增加會(huì)造成氣相中CO2分壓的提高,從而不利于沼液中CO2的質(zhì)量傳輸,影響沼液中氨的質(zhì)量傳輸。而提高溫度可降低沼液中氣體的溶解度,同時(shí)降低沼液中獲得高游離氨濃度所需pH值,利于提高氨氮的吹脫效率,同時(shí)減弱吹脫氣體中較高比例CO2的消極影響[11]。

當(dāng)吹脫氣體中CO2比例為10%時(shí),90 ℃下在40 min內(nèi)沼液氨氮去除率達(dá)到92.15%,接近氨氮的最終去除率,而80和70 ℃分別在2 h和3 h時(shí)后沼液氨氮脫除率才達(dá)到90%以上。較高的吹脫溫度可增加沼液中的游離氨質(zhì)量濃度,提高氨的傳質(zhì)速率,減少氨氮脫除所需的時(shí)間,有利于氨吹脫的進(jìn)行[6]。從工程應(yīng)用角度出發(fā),平衡能量輸出和氨吹脫效率,低CO2含量的沼氣氣體有利于氨吹脫過(guò)程。

圖2 溫度和CO2比例對(duì)沼液中氨氮質(zhì)量濃度和氨氮去除率的影響

2.2 不同吹脫條件的吹脫過(guò)程參數(shù)

2.2.1 沼氣中CO2比例對(duì)沼液CO2負(fù)荷的影響

沼液的酸性緩沖系統(tǒng)主要由高濃度的酸性物質(zhì)組成,通過(guò)移除過(guò)飽和的CO2、溶解碳酸鹽和碳酸氫鹽等酸性物質(zhì),可提高沼液的pH值[9]。由公式(1)可知,沼液pH值的提高可增加沼液中的游離氨濃度,更有利于氨吹脫過(guò)程。沼液中CO32–和HCO3–離子濃度總和可通過(guò)測(cè)定CO2負(fù)荷得到。

隨著混合氣體中CO2比例的提高,進(jìn)一步降低沼液CO2負(fù)荷的難度增加。70 ℃下,CO2比例為10%時(shí)沼液中CO2負(fù)荷從初期的0.17 mol/L降至0.058 mol/L,而CO2比例為20%和40%時(shí),僅降至0.1 mol/L和0.127 mol/L,二者之間存在極顯著差異(<0.01)(圖3a)。溫度提高到80 ℃時(shí),依舊表現(xiàn)為CO2比例越高,吹脫末期的沼液CO2負(fù)荷越高,CO2比例為20%和40%時(shí),沼液中CO2負(fù)荷降至0.058 mol/L和0.078 mol/L,二者之間差異顯著(<0.05)(圖3b),此時(shí)沼液中殘留的CO2負(fù)荷差距變??;90 ℃時(shí),10% CO2比例可達(dá)到最低的CO2負(fù)荷0.04 mol/L,CO2比例為20%和40%時(shí)沼液的最終CO2負(fù)荷降至0.065 mol/L,兩條曲線幾乎重合,二者之間變化無(wú)顯著差異(>0.05),說(shuō)明隨著吹脫溫度升高,吹脫氣體中CO2比例對(duì)沼液中CO2脫除的影響減小。吹脫氣體中CO2比例為20%時(shí),90 ℃時(shí)沼液最終CO2負(fù)荷略高于80 ℃時(shí)沼液最終CO2負(fù)荷,但整個(gè)吹脫過(guò)程均為90 ℃的CO2負(fù)荷更低,80和90 ℃條件下二者吹脫過(guò)程中CO2負(fù)荷變化無(wú)顯著性差異(>0.05)。

氣體的溶解度隨溫度的升高而降低[8-9],在溫度較低時(shí),溶液中CO2的溶解度較高,吹脫氣體中CO2比例較高時(shí)沼液中會(huì)吸收保存部分CO2,此時(shí)吹脫氣體CO2比例對(duì)沼液CO2負(fù)荷影響較大;而提升溫度則降低CO2溶解度,此時(shí)吹脫氣體中的高CO2含量對(duì)沼液中的CO2負(fù)荷影響較小。

2.2.2 沼氣中CO2比例對(duì)沼液pH值的影響

為保證沼液后期應(yīng)用安全性,本研究中采取不調(diào)節(jié)pH值的高溫氨吹脫方式,但隨著吹脫過(guò)程酸堿緩沖系統(tǒng)的CO2負(fù)荷變化,沼液的pH值會(huì)隨之變化,進(jìn)而對(duì)氨氮的脫除造成影響。圖4可見(jiàn),當(dāng)混合氣體中CO2比例為10%時(shí),3個(gè)吹脫溫度下沼液pH值總體持續(xù)上升,溫度從70 ℃提升至90 ℃,pH值從初期的8.42分別上升至9.28、9.64和9.92,90 ℃時(shí)已接近采用空氣吹脫的pH值10.0[26];當(dāng)混合氣體中CO2比例提高至20%時(shí),僅90 ℃時(shí)pH值升高到9.43后保持持平?jīng)]有下降;當(dāng)CO2比例提高到40%后,僅90 ℃條件下pH值有一定提高,但在1 h后也呈現(xiàn)緩慢下降趨勢(shì)。結(jié)合圖2和圖3可知,CO2的脫除速率高于NH3,因此吹脫初期沼液中CO2的去除發(fā)生較快,初期吹脫時(shí)以沼液中CO2氣體脫除為主,導(dǎo)致最初的pH值迅速上升,后期則沼液中的氨氮脫除占主導(dǎo)地位,同時(shí)由于吹脫氣體中較高的CO2的影響,吹脫后期沼液中CO2負(fù)荷較高,pH值的提升有限且有下降的趨勢(shì),這與Bousek等[14]的研究結(jié)果一致。

圖3 溫度和CO2比例對(duì)沼液中CO2負(fù)荷的影響

圖4 溫度和CO2比例對(duì)沼液中pH值的影響

氨吹脫依賴于溶液中溶解的游離氨穿過(guò)氣液界面,向氣相轉(zhuǎn)移,從而達(dá)到氨氮脫除的目的,溶液中游離氨所占比例即是吹脫過(guò)程中理論可得到的最大氨氮去除率,提高氨吹脫效率必須提高沼液中游離氨的比例[19]。

由式(1)和式(2)可知溶液中的游離氨比例取決于溶液的pH值和溫度,可根據(jù)各試驗(yàn)組吹脫過(guò)程中沼液最大pH值計(jì)算出沼液中的最大游離氨比例,即吹脫可達(dá)到的最大理論氨氮去除率(表2),對(duì)比本研究中的實(shí)際氨氮去除率,當(dāng)溫度為90 ℃時(shí),沼液中pH值可基本維持最大pH值,沼液中游離氨比例在90%以上,可通過(guò)延長(zhǎng)吹脫時(shí)間使得沼液中游離氨逸出,使得其氨氮去除率達(dá)到90%。而在80和70 ℃時(shí),當(dāng)沼液中CO2比例為10%時(shí),沼液pH值沒(méi)有下降,可通過(guò)延長(zhǎng)吹脫時(shí)間使得沼液氨氮去除率達(dá)到90%,而在20%和40%的CO2比例下,由于沼液中的游離氨比例較低,無(wú)法通過(guò)延長(zhǎng)吹脫時(shí)間使氨氮去除率達(dá)到90%。

表2 沼液中最大pH值、游離氨比例與實(shí)際氨氮去除率

2.3 氨吹脫對(duì)沼液出水水質(zhì)的影響

沼液初始TN質(zhì)量濃度為(4 009.25±136.98)mg/L,吹脫后TN為383.25~1 235.25 mg/L,TN去除率為69.19%~90.40%,與上文中氨氮去除率較一致,實(shí)現(xiàn)了沼液中TN的高效去除[16]。沼液初始COD質(zhì)量濃度為(3 722.40±126.98)mg/L,吹脫后為2 151.44~2 846.56 mg/L,COD去除率為23.53%~42.20%;同時(shí),沼液初始TP質(zhì)量濃度為(35.7±1.2)mg/L,吹脫后為23.93~30.04 mg/L,TP去除率達(dá)15.85%~32.97%,高于龔川南等[27]研究的不添加堿的沼液氨吹脫后的數(shù)值,吹脫后沼液濁度去除率為20.79%~29.74%。本研究中僅使用富CO2氣體對(duì)沼液進(jìn)行吹脫,未涉及到堿性物質(zhì)或吸附性物質(zhì)添加,造成COD和TP去除較好的原因是由于沼液中存在過(guò)飽和氣體,影響了懸浮磷顆粒的自然絮凝和沉降過(guò)程,在一定吹脫條件下,隨著沼液中CO2氣體溢出,沼液內(nèi)氣泡減少使顆粒懸浮狀態(tài)改變,促進(jìn)懸浮物自然絮凝沉淀形成[17,28]。沼液中懸浮物質(zhì)量濃度下降,使沼液中以懸浮物質(zhì)存在的不溶性有機(jī)物和無(wú)機(jī)物形成沉淀析出,從而促進(jìn)沼液的濁度、TP以及COD的下降[29]。

表3 不同吹脫條件下出水沼液濁度、COD、TP和TN的變化量

2.4 吹脫條件對(duì)沼液氨氮脫除動(dòng)力學(xué)常數(shù)的影響

不同操作條件下氨吹脫的反應(yīng)動(dòng)力學(xué)常數(shù)如表4。同一氣體流量條件下,隨著溫度升高,反應(yīng)動(dòng)力學(xué)常數(shù)值也隨之增加,本研究中固定CO2比例為10%時(shí),吹脫溫度在70,80,90 ℃的值分別為0.892、0.923和1.034 h–1?;旌蠚怏w中CO2比例對(duì)值影響更大,其原因在于吹脫氣體中CO2比例增加將限制沼液pH值的升高,導(dǎo)致對(duì)氨氮的脫除速率影響較大。本研究中吹脫溫度為90 ℃時(shí),混合氣體中CO2比例從10%提高到20%,40%時(shí),值從1.034降至0.322和0.115 h–1,降幅明顯。

對(duì)比于其他沼液吹脫的研究,Walker等[23]發(fā)現(xiàn)在吹脫氣體流量較小的情況下,初始pH值變化對(duì)反應(yīng)速率影響不顯著,沼液pH值從8.70上升到11.43,其值從0.032 6上升至0.035 9 h–1,上升幅度較小,低于本研究中相同條件下反應(yīng)速率;由Zhang等[30]的研究可知,當(dāng)沼液初始pH值從7.7提升至9.0時(shí),其值僅提升了2倍,當(dāng)吹脫氣體流量從1提升至10 L/min,其值提升了13倍,這說(shuō)明在吹脫氣體流量較低的情況下,相對(duì)于增加沼液初始pH值,提高吹脫氣體流量對(duì)增加吹脫效率更有效。本研究中采取不調(diào)節(jié)沼液初始pH值的方式,在較高吹脫氣體流量和溫度條件下,可提高沼液中的游離氨比例,增強(qiáng)氨的傳質(zhì)速率,使用富CO2氣體對(duì)沼液進(jìn)行氨吹脫,可獲得較好氨氮去除率。

表4 不同條件下沼液氨氮脫除的反應(yīng)動(dòng)力學(xué)常數(shù)k值

3 結(jié) 論

1)采用沼氣進(jìn)行沼液氨吹脫時(shí),隨著混合氣體中CO2比例的提高,吹脫效率降低。在70 ℃下,當(dāng)CO2比例從10%提高到40%時(shí),沼液的氨氮去除率從96.81%降至62.94%。高溫有利于提高沼液氨吹脫效率,降低吹脫氣體中CO2的不利影響。90 ℃時(shí),CO2比例從10%提高到40%,沼液的氨氮去除率從99.28%降至83.29%。采用90 ℃和10%的CO2比例沼液吹脫效果較佳,最終氨氮去除率為99.28%。

2)隨著吹脫氣體中CO2比例增加,沼液中CO2負(fù)荷增加,沼液pH值提升受限,氨吹脫效率降低。提高溫度可降低CO2溶解度,使沼液pH值上升。吹脫后沼液的COD去除率為23.53%~42.20%,TP去除率達(dá)15.85%~32.97%,濁度去除率為20.79%~29.74%。

3)隨著溫度升高,反應(yīng)動(dòng)力學(xué)常數(shù)值也隨之增加,但混合氣體中CO2比例對(duì)值影響更大。吹脫溫度為90 ℃時(shí),混合氣體中CO2比例從10%提高到20%,40%,值從1.034降至0.322和0.115 h-1,降幅明顯。

[1] 宋立,劉刈,王智勇,等. 豬場(chǎng)污水處理與綜合利用技術(shù)[J]. 中國(guó)畜牧雜志,2015,51(10):51-57. Song Li, Liu Yao, Wang Zhiyong, et al. Technology of swine wastewater treatment and utilization[J]. Chinese Journal of Animal Science, 2015, 51(10): 51-57. (in Chinese with English abstract)

[2] 李偉,吳樹彪,Bah H,等. 沼氣工程高效穩(wěn)定運(yùn)行技術(shù)現(xiàn)狀及展望[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(7):187-196. Li Wei, Wu Shubiao, Bsh H, et al. Status analysis and development prospect of biogas engineering technology[J]. Transactions of the Chinese Society for Agricultural Machinery(Transactions of the CSAM), 2015, 46(7): 187-196. (in Chinese with English abstract)

[3] Liu Y H, Kumar S, Kwag J H, et al. Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(2): 181–189.

[4] Eskicioglu C,Galvagno G, Cimon C. Approaches and processes for ammonia removal from side-streams of municipal effluent treatment plants [J]. Bioresource Technology, 2018, 268(23): 797-810

[5] Shi L, Simplicio W S, Wu G, et al. Nutrient recovery from digestate of anaerobic digestion of livestock manure: A review[J]. Current Pollution Reports, 2018, 4 (9): 1-10.

[6] 賀清堯,王文超,劉璐,等. 沼液氨氮減壓蒸餾分離性能與反應(yīng)動(dòng)力學(xué)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(17): 191-197. He Qingyao, Wang Wenchao, Liu Lu, et al. Ammonia nitrogen separation performance and kinetics from bioslurry using vacuum distillation method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 191-197. (in Chinese with English abstract)

[7] Liu B, Giannis A, Zhang J, et al. Air stripping process for ammonia recovery from source‐separated urine: Modeling and optimization[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(12): 2208-2217.

[8] He Q Y, Xi J, Wang W C, et al. CO2absorption using bioslurry: Recovery of absorption performance through CO2vacuum regeneration[J]. International Journal of Greenhouse Gas Control, 2017, 58(3): 103-113.

[9] Yan S P, He Q Y, Wang W C, et al. CO2absorption using bioslurry: CO2absorption enhancement induced by biomass ash[J]. Energy Procedia, 2017, 114(9): 890-897.

[10] Serna-Maza A, Heaven S, Banks C J. In situ biogas stripping of ammonia from a digester using a gas mixing system[J]. Environmental Technology, 2017, 38(24): 3216-3224.

[11] Ma D L R, Walker M, Heaven S, et al. Preliminary trials of in situ ammonia stripping from source segregated domestic food waste digestate using biogas: effect of temperature and flow rate[J]. Bioresource Technology, 2010, 101(24):9486-9492.

[12] Serna-Maza A, Heaven S, Banks C J. Ammonia removal in food waste anaerobic digestion using a side-stream stripping process[J]. Bioresour Technology, 2014, 152(2): 307-315.

[13] Provolo G, Perazzolo F, Mattachini G, et al. Nitrogen removal from digested slurries using a simplified ammonia stripping technique[J]. Waste Management, 2017, 69(11): 154-161.

[14] Bousek J, Scroccaro D, Sima J, et al. Influence of the gas composition on the efficiency of ammonia stripping of biogas digestate[J]. Bioresource Technology, 2016, 203(5): 259-266.

[15] Jiang A P, Zhang T, Zhao Q B, et al. Evaluation of an integrated ammonia stripping, recovery, and biogas scrubbing system for use with anaerobically digested dairy manure[J]. Biosystems Engineering, 2014, 119(3): 117-126.

[16] 隋倩雯,董紅敏,朱志平,等. 提高豬場(chǎng)沼液凈化處理效果的氨吹脫控制參數(shù)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(11):205-211. Sui Qianwen, Dong Hongmin, Zhu Zhiping, et al. Ammonia stripping control parameters for improving effluent treatment effect in anaerobic digesters of piggery wastewater. [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(11): 205-211. (in Chinese with English abstract)

[17] Zhang L, Jahng D. Enhanced anaerobic digestion of piggery wastewater by ammonia stripping: effects of alkali types[J]. J Hazard Mater, 2010, 182(1): 536-543.

[18] Limoli A, Langone M, Andreottola G. Ammonia removal from raw manure digestate by means of a turbulent mixing stripping process[J]. Journal of Environmental Management, 2016, 176(12): 1-10.

[19] Zhang W, Heaven S, Banks C J. Continuous operation of thermophilic food waste digestion with side-stream ammonia stripping[J]. Bioresource Technology, 2017, 244(Pt 1): 611-620.

[20] 蒲小東,鄧良偉,尹勇,等. 大中型沼氣工程不同加熱方式的經(jīng)濟(jì)效益分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(7):281-284. Pu Xiaodong, Deng Liangwei, Yin Yong, et al. Economic benefit analysis on large and middle-scale biogas plants with different heating methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(7): 281-284. (in Chinese with English abstract)

[21] Serna-Maza A, Heaven S, Banks C J. Biogas stripping of ammonia from fresh digestate from a food waste digester[J]. Bioresour Technol, 2015, 190(16): 66-75.

[22] Liao P H, Chen A, Lo K V. Removal of nitrogen from swine manure wastewaters by ammonia stripping[J]. Bioresource Technology, 1995, 54(1): 17-20.

[23] Walker M, Iyer K, Heaven S, et al. Ammonia removal in anaerobic digestion by biogas stripping: An evaluation of process alternatives using a first order rate model based on experimental findings[J]. Chemical Engineering Journal, 2011, 178(24): 138-145.

[24] 畜禽養(yǎng)殖業(yè)污染物排放標(biāo)準(zhǔn):GB 18596-2001[S].

[25] Budzianowski W, Koziol A. Stripping of ammonia from aqueous solutions in the presence of carbon dioxide: Effect of negative enhancement of mass transfer[J]. Chemical Engineering Research & Design, 2005, 83(2): 196-204.

[26] Zhao Q B, Ma J, Zeb I, et al. Ammonia recovery from anaerobic digester effluent through direct aeration[J]. Chemical Engineering Journal, 2015, 279(21): 31-37.

[27] 龔川南,陳玉成,黃磊. 曝氣吹脫法用于牛場(chǎng)沼液污染物的去除[J]. 環(huán)境工程學(xué)報(bào),2016,10(5):2291-2296. Gong Chuannan, Chen Yucheng, Huang Lei. Pollutants removal characteristics by air stripping with aeration treating bioslurry of cattle manure[J]. Chinese Journal of Environmental Engineering,2016, 10(5): 2291-2296. (in Chinese with English abstract)

[28] Doherty L, Zhao Y, Zhao X, et al. A review of a recently emerged technology: Constructed wetland--Microbial fuel cells[J]. Water Research, 2015, 85(18): 38-45.

[29] Battistoni P, Fava G, Pavan P, et al. Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals: Preliminary results[J]. Water Research, 1997, 31(11): 2925-2929.

[30] Zhang L, Lee Y W, Jahng D. Ammonia stripping for enhanced biomethanization of piggery wastewater[J]. Journal of Hazardous Materials, 2012, 199(1): 36-42.

Effect of temperature and CO2ratio of stripping biogas on biogas slurry stripping of ammonia

Ai Ping1,2, Peng Jingjing1, Xi Jiang2, Zhang Xiuzhi1, Tang Wei1, Zhang Rufeng1, Mei Zili2※

(1.430070; 2.610041,)

Ammonia stripping is an effective treatment technology for recovery of nitrogen from the anaerobic digestate (biogas slurry). Biogas stripping of ammonia from anaerobic digestate can realize biogas purification and ammonia removal coupling through recycled of biogas, which is a new research direction of ammonia stripping. However, the main difficulty is that the ammonia stripping performance is negatively correlated to the CO2ratio in the stripping gas. In this study, the effect of temperature (70、80、90 ℃) and the ratio of CO2(10%、20%、40%) in biogas on the removal efficiency of ammonia were studied. The ammonia removal rate () and kinetics constant () were adopted to evaluate the ammonia removal performance. The results indicated that the ammonia removal rate from the biogas slurry were 96.81%、98.65%、99.28%, respectively at 70 ℃, 80 ℃ and 90 ℃when the ratio of CO2in the stripping gas was 10%, and ammonia concentration was lower than 60 mg/L after biogas slurry stripping. The ammonia removal rates were 72.81%、84.00% and 88.39%, respectively at 70 ℃, 80 ℃ and 90 ℃ when the ratio of CO2in stripping gas was 20%. While CO2ratio in stripping gas reached 40%, the ammonia removal rate were 62.94%、75.23% and 83.29%, respectively at different stripping temperatures. As the temperature of stripping gas increase, the ammonia nitrogen rate increased, however as the ratio of CO2in the stripping gas increase, the ammonia removal rate decreased. Increase of temperature is beneficial to reduce inhibitory effect of CO2on ammonia removal efficiency in biogas. And the ammonia removal rate of biogas slurry reached 90% within 40 min at 90 ℃ while the maximum removal rate of ammonia were close to 2 h and 3 h at 80 ℃ and 70 ℃, respectively. Ammonia stripping can raised pH value to above 8.6 relying on the removal of acidic substances in the biogas slurry by mixed gas of CH4and CO2. Theoretical maximum ammonia removal rate in biogas slurry can be calculated according to the maximum pH value in biogas slurry during the ammonia stripping process. And the result showed that when the temperature was 90 ℃, even the ratio of CO2in the stripping gas was 40%, and the removal time can be extended to make the ammonia removal rate in the biogas slurry reach 92.15%. At 80 ℃ and 70 ℃, when ratio of CO2in stripping gas was 10%, the maximum ammonia removal rate can reach 90% by extending stripping time. The calculation result of kinetic constantindicates when the CO2ratio was 40%, thevalue of the ammonia removal reaction of the biogas slurry at different temperatures was more than 0.075 h-1. The water quality analysis showed that the COD removal rate reached 23.53%-43.2%, a total phosphorus removal rate reached 15.85%-32.97%, and a turbidity removal rate reached 20.79%-29.74%. The results provide a reference for the use of biogas on biogas slurry stripping of ammonia.

biogas slurry; temperature; pH value; ammonia stripping; CO2loading

2018-07-05

2018-12-06

國(guó)家自然科學(xué)基金(51406064);湖北省自然科學(xué)基金(2018CFB512)

艾 平,副教授,主要從事厭氧發(fā)酵技術(shù)研究。 Email:aiping@mail.hzau.edu.cn

梅自力,研究員,主要研究農(nóng)業(yè)廢棄物沼氣化利用。 Email:13880233242@163.com

10.11975/j.issn.1002-6819.2019.01.025

S216.4

A

1002-6819(2019)-01-0206-07

艾 平,彭靖靖,席 江,張秀之,湯 煒,張如峰,梅自力.溫度及吹脫沼氣中CO2比例對(duì)沼液氨吹脫效果的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):206-212. doi:10.11975/j.issn.1002-6819.2019.01.025 http://www.tcsae.org

Ai Ping, Peng Jingjing, Xi Jiang, Zhang Xiuzhi, Tang Wei, Zhang Rufeng, Mei Zili.Effect of temperature and CO2ratio of stripping biogas on biogas slurry stripping of ammonia [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 206-212. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.01.025 http://www.tcsae.org

猜你喜歡
沼液沼氣氨氮
懸浮物對(duì)水質(zhì)氨氮測(cè)定的影響
化工管理(2022年14期)2022-12-02 11:43:52
改進(jìn)型T-S模糊神經(jīng)網(wǎng)絡(luò)的出水氨氮預(yù)測(cè)
云南化工(2021年8期)2021-12-21 06:37:36
第四章 化糞土為力量——沼氣能
第四章 化糞土為力量——沼氣能
《中國(guó)沼氣》征稿簡(jiǎn)則
氧化絮凝技術(shù)處理高鹽高氨氮廢水的實(shí)驗(yàn)研究
水泡糞工藝制沼氣及沼氣的凈化提純
上海煤氣(2016年1期)2016-05-09 07:12:35
沼液能否預(yù)防病蟲
大棚絲瓜沼液高產(chǎn)栽培技術(shù)
上海蔬菜(2016年5期)2016-02-28 13:18:05
間位芳綸生產(chǎn)廢水氨氮的強(qiáng)化處理及工程實(shí)踐
静安区| 诸城市| 沙坪坝区| 武邑县| 平罗县| 太保市| 会理县| 松阳县| 长治县| 湄潭县| 新建县| 武定县| 卓资县| 饶平县| 历史| 商城县| 无为县| 炎陵县| 普兰县| 陇西县| 兴安盟| 阜新| 水富县| 金川县| 石泉县| 庆云县| 东阳市| 东丽区| 错那县| 高密市| 靖边县| 沁水县| 华容县| 万全县| 社旗县| 奎屯市| 五河县| 临泽县| 永康市| 安泽县| 犍为县|