高成 王怡豪 張雨琪 黃姣英
關(guān)鍵詞: 電學(xué)法; 達(dá)林頓管; 穩(wěn)態(tài)熱阻; 測量方法; 誤差修正; 結(jié)溫
中圖分類號: TN389?34 ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識碼: A ? ? ? ? ? ? ? ? ? ? ? ? ?文章編號: 1004?373X(2019)01?0108?05
Abstract: Thermal resistance as an important thermal performance parameter of the power device influences the junction temperature, and is used to determine the junction temperature and safe operating temperature range of the power device. The thermal resistance of each device has a certain deviation due to the technology problem, so the accurate thermal resistance value can′t be gotten from the product manual. According to the principle of using electrical method to measure the junction temperature, the Darlington tube BDW47G is taken as the test object, and its temperature coefficient [M] is -1.835 8 mV/℃ obtained by measurement and calculation. The measurement circuit is designed, the error caused by the delay time in the measurement is analyzed and corrected, and the accurate junction temperature of the Darlington tube is obtained when the delay time is zero. The measurement and calculation method of steady?state thermal resistance of Darlington tube is obtained. The method is helpful to obtain the critical thermal performance parameter of the device, and is convenient to obtain the accurate junction temperature for the tests (such as aging test).
Keywords: electrical method; Darlington tube; steady?state thermal resistance; measurement method; error correction; junction temperature
器件的穩(wěn)態(tài)熱阻是指在施加恒定功率后,結(jié)溫[TJ]與殼溫[TC]均達(dá)到穩(wěn)定狀態(tài)下所測得的熱阻。而瞬態(tài)熱阻是指在器件的功耗產(chǎn)生階躍性變化后,結(jié)溫[TJ]還未達(dá)到穩(wěn)態(tài)時測得的熱阻,此時殼溫[TC]可能未變也可能未達(dá)到穩(wěn)態(tài)[1]。達(dá)林頓管或者其他一些器件瞬態(tài)熱阻測量方法國內(nèi)外均有所涉及,但是由于瞬態(tài)熱阻是一種不穩(wěn)定狀態(tài)下的測試結(jié)果,熱敏感參數(shù)變化過小,對于測試儀器精度要求高,因此很難取得準(zhǔn)確結(jié)果。而穩(wěn)態(tài)熱阻測試條件接近于器件實際工作狀態(tài),可良好反映出器件工作狀態(tài)下的熱性能參數(shù),因此其應(yīng)更加準(zhǔn)確的給出,具有工程應(yīng)用意義。
要實現(xiàn)器件穩(wěn)態(tài)熱阻的測量,首先需要實現(xiàn)結(jié)溫的測量,目前的測量方法有紅外熱像法[2]與電學(xué)法[3?4]。紅外熱像法利用器件工作時的紅外輻射來確定溫度,但這種方法只能測量未封裝的器件,不能測量成品器件[5]。電學(xué)法利用器件電參數(shù)來表征器件內(nèi)部溫度,是一種非破壞性、易操作且可用于批量檢測的方法[6?7]。
國內(nèi)對于熱阻測量有成熟的技術(shù)與設(shè)備,如坤道公司生產(chǎn)的T3 Ster,其主要應(yīng)用電學(xué)法測量原理,既能測試穩(wěn)態(tài)熱阻,也能測試瞬態(tài)熱阻,但主要應(yīng)用于各種三極管、二極管等器件。
1) 溫度系數(shù)[M]的測量利用高溫箱,步進溫度測量多點數(shù)據(jù),進行線性擬合得出最終結(jié)果-1.835 8 mV/℃。試驗結(jié)果線性指數(shù)接近1且具有高精度,避免了單點測量可能帶來的誤差。
2) 針對[ΔVCE?t12d]冷卻模型進行試驗,所得數(shù)據(jù)線性關(guān)系強烈,保證了外推[ΔVCE]([t12d]=0)值的準(zhǔn)確,并對誤差進行歸一化處理,得到通用的誤差處理方法。
3) 本文所述達(dá)林頓管穩(wěn)態(tài)熱阻的測量方法可以很好地減小測量誤差,為提供器件較為準(zhǔn)確的穩(wěn)態(tài)熱阻提供依據(jù)。
本文僅完成了方法階段的研究工作,給出了穩(wěn)態(tài)熱阻測量方法,為實現(xiàn)其在工程上的應(yīng)用價值,還需要在以下幾點努力:
1) 為使測量方法的精度更高,仍需要優(yōu)化電路設(shè)計使之盡量自動化控制,并自動采集電信號。
2) 本文試驗驗證采用外推法、歸一化處理來處理由于延遲時間[td]造成的誤差,此種方法是可行的。但是同一種型號產(chǎn)品不同器件所得到的誤差修正系數(shù)[k(td)]具有一定的離散性,需要進行批量測試,后期采取統(tǒng)計分析工作,為確定同一型號產(chǎn)品可信度高的[k(td)]提供依據(jù)。
參考文獻(xiàn)
[1] 陸國權(quán),李潔,梅云輝,等.大功率IGBT模塊瞬態(tài)熱阻的測試方法與裝置[J].天津大學(xué)學(xué)報(自然科學(xué)與工程技術(shù)版),2017(7):669?675.
LU Guoquan, LI Jie, MEI Yunhui, et al. Measurement method and device for transient thermal impedance of high power IGBT module [J]. Journal of Tianjin University (science and technology), 2017(7): 669?675.
[2] MAHALINGAM M, MARES E. Infrared temperature characte?rization of high power RF devices [C]// 2011 IEEE MTT?S International Microwave Symposium Digest. Phoenix, Arizona, USA: IEEE, 2011: 2199?2202.
[3] 曲曉文,王振民.達(dá)林頓管瞬態(tài)熱阻測試方法的研究[J].電子產(chǎn)品可靠性與環(huán)境試驗,2014,32(2):47?50.
QU Xiaowen, WANG Zhenmin. On the detection method of transient thermal impedance of Darlington transistor [J]. Electronic product reliability and environmental testing, 2014, 32(2): 47?50.
[4] 李汝冠,廖雪陽,堯彬,等.GaN基HEMTs器件熱測試技術(shù)與應(yīng)用進展[J].電子元件與材料,2017(9):1?8.
LI Ruguan, LIAO Xueyang, YAO Bin, et al. Progress of technologies and applications of temperature measurements for GaN?based HEMTs [J]. Electronic components and materials, 2017(9): 1?8.
[5] 王魁松,萬寧,叢密芳,等.LDMOS熱阻的電學(xué)法測試與分析[J].微電子學(xué),2015(6):825?828.
WANG Kuisong, WAN Ning, CONG Mifang, et al. Electrical test and analysis on thermal resistance of LDMOS [J]. Microelectronics, 2015(6): 825?828.
[6] 魏濤,錢吉裕,孔祥舉,等.某GaAs MMIC功率放大器熱特性的電學(xué)法測量[J].電子機械工程,2014(2):26?29.
WEI Tao, QIAN Jiyu, KONG Xiangju, et al. Thermal properties measurement by electrical method for a GaAs MMIC power amplifier [J]. Electro?mechanical engineering, 2014(2): 26?29.
[7] 陳君,張小玲,謝雪松,等.一種IGBT熱阻測試系統(tǒng)的研制[J].半導(dǎo)體技術(shù),2015(1):68?72.
CHEN Jun, ZHANG Xiaoling, XIE Xuesong, et al. Research and implementation of an IGBT thermal resistance test system [J]. Semiconductor technology, 2015(1): 68?72.
[8] 李霽紅.控制結(jié)溫的功率晶體管穩(wěn)態(tài)工作壽命試驗方法研究[D].北京:北京航空航天大學(xué),2005.
LI Jihong. Research on steady?state working life test method of power transistor controlling junction temperature [D]. Beijing: Beihang University, 2005.
[9] 林達(dá)儒,劉強輝.大功率LED正向電壓與溫度的變化關(guān)系研究[J].中國照明電器,2017(1):14?17.
LIN Daru, LIU Qianghui. Research on the variation of forward voltage drop with temperature in the high?power LED [J]. China light & lighting, 2017(1): 14?17.
[10] 翟玉衛(wèi),鄭世棋,程曉輝,等.電學(xué)法熱阻測試儀校準(zhǔn)方法研究[J].計算機與數(shù)字工程,2015,43(1):1?3.
ZHAI Yuwei, ZHENG Shiqi, CHENG Xiaohui, et al. Calibration method of thermal resistance tester based on electrical method [J]. Computer & digital engineering, 2015, 43(1):1?3.
[11] 張本云.IGBT熱特性的電學(xué)法測試系統(tǒng)研制[D].北京:北京工業(yè)大學(xué),2014.
ZHANG Benyun. Development of electrical measurement system for IGBT thermal characteristics [D]. Beijing: Beijing University of Technology, 2014.
[12] 董晨曦,王立新.功率VDMOS熱阻的溫度系數(shù)特性研究[J].微電子學(xué),2014(1):110?114.
DONG Chenxi, WANG Lixin. Study on temperature coefficient characteristics of thermal resistance for power VDMOS [J]. Microelectronics, 2014(1): 110?114.