付雪仙
分層走班教學(xué),就是學(xué)生根據(jù)自己現(xiàn)有的知識基礎(chǔ)以及學(xué)習(xí)能力,結(jié)合任課教師的意見,自主選擇不同層次的教學(xué)班,學(xué)生分別去相應(yīng)層次班級上課,原有的行政班保持不變.這是一種流動性的學(xué)習(xí)模式,是一種活動式的、大范圍的分層,分層教學(xué)的特點是教師根據(jù)不同層次的學(xué)生重新組織教學(xué)內(nèi)容,確定與學(xué)生基礎(chǔ)相適應(yīng)的教學(xué)目標(biāo),從而既降低了學(xué)困生的學(xué)習(xí)難度,又滿足了學(xué)優(yōu)生擴大知識面的需求.分層教學(xué)以個性發(fā)展為本,尊重學(xué)生自主選擇,使學(xué)生個性特長得到充分發(fā)揮。
一次初中數(shù)學(xué)課堂教學(xué)多樣化觀摩研討會上,王老師的分層教學(xué)給筆者留下了深刻印象,回望來時路,我校率先在筆者所在年級開展數(shù)學(xué)、科學(xué)分層走班教學(xué)試驗,分類教學(xué)探索,根據(jù)學(xué)生的理解能力及接受情況,將學(xué)生分為了A、B層(A層為基礎(chǔ)層,B層為提高層),按照同樣的教學(xué)內(nèi)容不同的教學(xué)方式,不斷打造A、B層精品課堂,一年多下來,分層教學(xué)逐漸成熟,學(xué)生取得了更好的發(fā)展。
下面展示某次外校老師考察我校時,吳老師開設(shè)的校級公開課《平行四邊形及性質(zhì)》,教研組的多次磨課過程,呈現(xiàn)了兩種層次的教學(xué)方式,通過一課多磨,締造出分層走班教學(xué)的高效課堂。
1三進三出磨“引入”,一心一意激“情趣”
1.1初磨“引入”,去粗取精
第一次上課(A班), “引入”部分課堂回顧一:
拼圖游戲:有兩塊形狀和大小完全相同的直角三角形紙片,如圖1,把相等的兩邊疊放在一起,你能拼出哪些圖形?畫出示意圖。(三分鐘后,有些學(xué)生有所思考,有些學(xué)生還不知所云)
生1:可拼出三角形和平行四邊形,還有長方形。
師:你能將它們分類嗎?
生2:分為三角形和平行四邊形。
師:什么是平行四邊形?
生3:……
磨課環(huán)節(jié)俗話說“良好的開端是成功的一半”,聽課教師一致認為,這一環(huán)節(jié)花費了大量的時間,最后學(xué)生還是沒有說出什么叫平行四邊形,這是引入的敗筆,問題根源在于題目的描述不夠清楚;直角三角形紙片太特殊,導(dǎo)致學(xué)生容易拼出三角形,大家一致認為改為一般三角形,同時問題指向再明確些。A班的學(xué)生在認知上能力有限,需要問題指向更加明確,減少理解上的偏頗,因此在第一次的基礎(chǔ)上做了一些修改,課堂環(huán)節(jié)更加自然。
1.2再磨“引入”,去偽存真
第二次上課(A班),“引入”部分課堂回顧二:
師:如圖2,有兩塊形狀和大小完全相同的三角形紙片,把相等的兩邊疊在一起,能拼出哪些圖形?
生1:可以拼出6種圖形,如圖3所示。
師:你能叫出它們的名字嗎?
生2:四邊形和平行四邊形。
師:哪些是平行四邊形?為什么叫它們是平行四邊形?
生2:②③⑤是平行四邊形,因為有兩組對邊分別平行。
師:非常好!
磨課環(huán)節(jié) 蔡老師認為這次的拼圖指向比第一次明確,學(xué)生也沒有出現(xiàn)拼出三角形的情況;陳老師談到教學(xué)過程較第一次更加流暢,時間節(jié)省了不少;王老師總結(jié)到教學(xué)設(shè)計是課堂的靈魂,對學(xué)生的思維啟發(fā)有著相當(dāng)大的影響,雖然A班學(xué)生在題目的認知度上相對B班更慢,但若教師點撥得當(dāng),學(xué)生同樣有精彩的表現(xiàn),即便如此,我們幾位老師還是建議,能否在此題上再進一步優(yōu)化,因此便有了第三次磨課。
1.3三磨“引入”,精益求精
第三次上課(A班),“引入”部分展現(xiàn)完美:
師:如圖4,有兩塊形狀和大小完全相同的三角形紙片,把相等的兩邊疊在一起(紙片不重疊),你能拼出哪些四邊形? (兩人合作完成)
生1:將同一邊重合,有兩個四邊形,三角形共有三條邊,所以共有六個四邊形,其中三個是平行四邊形,三個是一般四邊形,如圖5所示.
師:很好。(老師不斷點頭)其實這個拼圖過程中體現(xiàn)了什么數(shù)學(xué)思想?
生2:分類討論。(A班學(xué)生能答出這個真不簡單)
師:你們怎么知道是平行四邊形呢? (答案呼之欲出)
生3:因為紙片全等,所以內(nèi)錯角相等,兩直線平行,小學(xué)學(xué)過“兩組對邊分別平行的四邊形是平行四邊形”。
師:你真棒!……
磨課環(huán)節(jié) 俞老師用紙片拼圖對A班學(xué)生而言是非常好的教學(xué)設(shè)計,它形象直觀地呈現(xiàn)了原本枯燥的數(shù)學(xué)定理或定義,也很好地啟發(fā)了學(xué)生的思維。
B班的引入原本也采用拼圖活動,但考慮到學(xué)生思維的發(fā)展,后來改成“畫一畫(畫鄰邊分別為2cm,3cm的平行四邊形,說出你畫圖的依據(jù))”,盡管不是每位學(xué)生都畫出一樣的平行四邊形,但通過推平行線的方法畫出圖形,學(xué)生順理成章歸納出平行四邊形的定義,由此可見,教學(xué)要因材施教,分層走班優(yōu)化了教師備課環(huán)節(jié)中“備好學(xué)生這一關(guān)”,分層教學(xué)毫無疑問達到了這一目的。
2爭一回梯度清晰,磨一次柳暗花明
2.1反復(fù)質(zhì)疑、權(quán)衡,最終勇敢定奪
在得出平行四邊形的性質(zhì)后,兩個班級都設(shè)計了“數(shù)平行四邊形”的環(huán)節(jié)。
磨課環(huán)節(jié)筆者認為,對A班學(xué)生來說,能清楚數(shù)出3個平行四邊形,并正確表示出來,運用定義簡單說明理由,就達到了掌握平行四邊形的定義這一目的,但對B班學(xué)生而言,感覺意猶未盡,因此備課組討論作一些變式。
生1:共有9個平行四邊形.先數(shù)單個的平行四邊形有4個,接著兩個組合的有4個,最后四個組合的有1個,共9個。
師:其實你采用了分類的思想,很好!我們再看一題。
磨課環(huán)節(jié) 筆者認為在這個問題的處理上,雖然學(xué)生回答正確,但教師包辦學(xué)生提出分類的思想,且沒有對題目加深挖掘,感覺淺嘗輒止。
師:你們數(shù)出了幾個?
生1:15個。
生2:不對,應(yīng)是16個。
生3:好像是18個。(同學(xué)們面面相覷,有些摸不著頭腦,到底是幾個呢?)
2.2備課組討論,困惑一產(chǎn)生
磨課環(huán)節(jié) 王老師認為雖然學(xué)生采用了分類討論的方法是正確的,但如果連分類都出現(xiàn)了漏洞,那肯定會出現(xiàn)漏數(shù)或多數(shù)的情況:生2漏掉了三個組合或四個組合的情況,生1甚至連六個組合也遺漏,怎樣可以避免分類時不重不漏呢?備課組第一次陷入了思考……
2.3趁熱打鐵,乘勝追擊,困惑一解除
磨課環(huán)節(jié) 備課組沒有回避這個問題,大家都絞盡腦汁,后來陳老師想到,數(shù)平行四邊形其實就是數(shù)幾組鄰邊,只要鄰邊確定,平行四邊形就確定了,因此可以轉(zhuǎn)化為數(shù)AB和BC邊上的線段條數(shù)。
圖9中,BC(圖6)邊上有三條線段,分別是BE,BC,EC,每條線段都能與AB(或EF)組成平行四邊形,即有3個平行四邊形。
圖7中,AB邊上有三條線段AB,AG,GB,它們都能與BC邊上的三條線段BE,BC,EC圍成平行四邊形,所以有3x3=9個。
陳老師的轉(zhuǎn)化思想很新穎,也避免了重復(fù)或遺漏的情況,但當(dāng)時筆者又產(chǎn)生了新的思考。
2.4備課組討論,困惑二產(chǎn)生
磨課環(huán)節(jié) 圖9中找BC邊上的三條線段對學(xué)生而言沒有難度,加上AB邊只有一條線段,學(xué)生容易得出是3個平行四邊形,但圖7中AB邊有3條線段,BC邊也有3條線段,直接用3x3=9對有些學(xué)生而言理解不透,這里出現(xiàn)了思維的跳躍,不連貫,怎樣處理?備課組再次陷入思考……筆者建議先將GH改成平行于EF的線段,為學(xué)生的思維做一個鋪墊,如圖12,可以數(shù)出BC邊上有3+2+1=6條線段,即圖中有6個平行四邊形,但陳老師堅持圖7,繼續(xù)保持原來的想法……
第二次B班課堂,學(xué)生的反應(yīng)證實了筆者的顧慮,多數(shù)學(xué)生不能接受為什么突然變成3x3=9個,所以后面的環(huán)節(jié)學(xué)生思維出現(xiàn)了筆者所意料之中的冷場,筆者認為根本原因在平行四邊形的確定需要兩組鄰邊的確定,如果一組鄰邊都沒有數(shù)清楚,那么學(xué)生的思維面前是一道無法逾越的鴻溝。
2.5逆水行舟,勇敢嘗試,困惑二解除
第三次磨課時,吳老師根據(jù)筆者的思路,調(diào)整了自己的思路,做了一系列的變式,將本題拓展到極致。
本題學(xué)生自主完成,有了前面的鋪墊,學(xué)生很容易數(shù)出平行四邊形有(1+2+3)×(1+2+3)=36個,甚至還有學(xué)生大膽猜測出規(guī)律,推廣到每條鄰邊有N個點(包括端點)的圖形中平行四邊形的個數(shù),課堂悄然走向高潮……
前面的多次磨課,締造了高效的分層走班,吳老師成功地開出了同內(nèi)容不同模式的兩種課堂,兩種上課模式都獲得了外??疾靾F的一致好評,他們對“數(shù)平行四邊形”這一亮點特別感興趣,興致勃勃地交流,意猶未盡,更可喜的是我們發(fā)現(xiàn)學(xué)生課間也在討論,確實收獲了不少驚喜。
前蘇聯(lián)教育心理學(xué)家維果茨基的“最近發(fā)展區(qū)”理論認為,每個學(xué)生都存在著兩種發(fā)展水平:一是現(xiàn)有水平,二是潛在水平,它們之間的區(qū)域被稱為“最近發(fā)展區(qū)”(“最佳教學(xué)區(qū)”).教學(xué)只有從這兩種水平的個體差異出發(fā),把最近發(fā)展區(qū)轉(zhuǎn)化為現(xiàn)有發(fā)展水平,并不斷地創(chuàng)造更高水平的最近發(fā)展區(qū),才能促進學(xué)生的發(fā)展,教學(xué)法一旦觸及學(xué)生的情緒和意志領(lǐng)域,觸及學(xué)生的精神需要,這種教學(xué)方法就能發(fā)揮高度有效的作用。
3分層走班是趨勢,提高效率多反思
從平時的分層走班到公開課的磨課、上課,我們所有參與者都深切體會到分層走班帶來的教學(xué)效果,其重要意義表現(xiàn)如下:
3.1教學(xué)模式改革的必然趨勢
新課程標(biāo)準(zhǔn)確立了以學(xué)生發(fā)展為本的理念,體現(xiàn)出教育的個性化——尊重學(xué)生的個人學(xué)習(xí)程度、方法和能力的差異性,將學(xué)生分成不同的類別和層次,實施分類、分層教學(xué),所以學(xué)校必須從實際出發(fā),因材施教,使不同類別的學(xué)生都能在原有程度上學(xué)有所得,逐步提升。
3.2有利于課堂效率的提高
采用分層教學(xué),教師可以采用不同的教學(xué)流程,使得實際教學(xué)過程更加具有針對性,提高師生合作、交流的效率;也使得不同層次的學(xué)生都能夠體驗學(xué)習(xí)成功的喜悅,獲得學(xué)習(xí)樂趣。
“寶劍鋒從磨礪出,梅花香自苦寒來”,分層教學(xué)的來時路,我們走得艱難坎坷,但同時我們也收獲更多,不經(jīng)歷風(fēng)雨,怎能見彩虹,我們堅信分層教學(xué)必將引領(lǐng)教育者在這條道上走得更好,走得更遠!
參考文獻
[1]孔進,初中數(shù)學(xué)復(fù)習(xí)階段分層走班教學(xué)模式的探索[J].數(shù)學(xué)教學(xué)通訊,2014(6):9-10
[2]駱如意.經(jīng)歷分層探索積累活動經(jīng)驗[J].數(shù)學(xué)教學(xué)通訊,2014(7):13-14