劉 羽,劉 婕,王朝元,3,施正香,3,李保明,3
?
規(guī)模奶牛養(yǎng)殖室外運動場春季溫室氣體與氨氣排放特性
劉 羽1,2,劉 婕4,王朝元1,2,3※,施正香1,2,3,李保明1,2,3
(1.中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京 100083; 2. 農(nóng)業(yè)農(nóng)村部設(shè)施農(nóng)業(yè)工程重點實驗室,北京 100083; 3. 北京市畜禽健康養(yǎng)殖環(huán)境工程技術(shù)研究中心,北京 100083; 4. 山東省煙臺市海陽招虎山省級自然保護區(qū)管理處,煙臺 265100)
舍外運動場是中國傳統(tǒng)奶牛養(yǎng)殖場的組成部分,同時也是溫室氣體和氨氣(NH3)的重要排放源。由于開放式生產(chǎn)設(shè)施污染氣體排放的監(jiān)測難度大,目前中國還普遍缺少奶牛運動場溫室氣體和NH3排放通量的直接監(jiān)測數(shù)據(jù)。該試驗采用梯度法對北京地區(qū)春季典型開放式奶牛運動場的甲烷(CH4)、氧化亞氮(N2O)、二氧化碳(CO2)等溫室氣體和NH3濃度及其排放通量進行了監(jiān)測分析,討論了排放特征和關(guān)鍵影響因素,為獲取中國北方地區(qū)奶牛運動場溫室氣體和NH3的排放通量提供了基礎(chǔ)數(shù)據(jù)支撐。測試運動場飼養(yǎng)了52頭荷斯坦奶牛,年均單產(chǎn)約8 t,頭均占地面積為20.77 m2。結(jié)果表明,該奶牛運動場春季CH4、N2O和CO2的排放通量為155.59、3.60和4 869.37 mg/(m2·h),分別占溫室氣體排放總量的42.79%、9.37%和47.83%;NH3的排放通量為66.27 mg/(m2·h);排放峰值一般出現(xiàn)在運動場清糞之后。環(huán)境溫度與CH4、N2O和NH3排放量呈顯著的正相關(guān)關(guān)系(<0.05),同時風(fēng)速在一定范圍內(nèi)會促進CH4、N2O和NH3的排放。奶牛場清糞活動不僅會加快污染氣體的排放通量,還會影響溫度和風(fēng)速對氣體排放通量的作用效果。
溫室氣體;氨氣;排放控制;奶牛運動場;梯度法
農(nóng)業(yè)生產(chǎn)活動所產(chǎn)生的溫室氣體和NH3是全球空氣污染物排放的重要源頭[1-2]。在中國,畜禽養(yǎng)殖業(yè)生產(chǎn)活動排放的CH4、N2O和CO2占總?cè)珖藶闇厥覛怏w排放量的37%、65%和9%[3],而廢棄物儲存及管理過程是這些溫室氣體的主要來源[4],僅畜禽糞便產(chǎn)生的CH4即占農(nóng)業(yè)溫室氣體排放量的15%[5]。北京市規(guī)?;膛霎a(chǎn)生的主要溫室氣體為CH4和CO2,分為占溫室氣體總排放量的80.15%和11.24%[6]。畜牧生產(chǎn)過程中的NH3排放則會對生態(tài)環(huán)境產(chǎn)生重要影響,另外NH3還是細(xì)顆粒物(PM2.5)的前體物質(zhì),對中國東部地區(qū)PM2.5的貢獻已達8%~11%[7]。工業(yè)化國家和地區(qū)大氣中約有80%~90%的NH3排放來自于農(nóng)業(yè)[8],而奶牛糞尿是其中的重點之一[9-11]。
在帶有運動場的奶牛生產(chǎn)系統(tǒng)中,奶牛在運動場的活動時間長、糞尿排泄量大。袁慧軍等[12]研究發(fā)現(xiàn),殘留在運動場上的糞便量約占整個奶牛場糞便總量的一半。因此,奶牛本身、清糞不徹底以及糞尿下滲等會造成運動場大量的溫室氣體和NH3排放。
歐美國家采用反演法等對運動場的污染氣體排放進行過探索性的研究。Leytem等[13]對美國愛達荷州奶牛運動場的監(jiān)測結(jié)果表明,CH4、N2O、CO2和NH3的排放通量分別為0.49、0.01、28.1和0.13 kg/(頭·d),其中N2O、CO2和NH3排放占該場排放總量的57%、80%和78%。Borhan等[14]研究表明,奶牛運動場N2O、CO2和NH3的排放量分別占全場該氣體產(chǎn)生量的72%、51%和63%~95%。
梯度法作為檢測氣體排放量的手段已有40多年的歷史[15],梯度法具有不影響排放源小氣候環(huán)境、可真實反映氣體排放量與規(guī)律等顯著特點,適用于開放性系統(tǒng)氣體排放通量的檢測[16-17]。1977年起,Denmead等[18]就開始采用該方法對NH3排放進行檢測,之后科研人員在此基礎(chǔ)上對梯度法進行了發(fā)展和優(yōu)化。Griffith等[16]在已知氣體排放速率的舍飼散養(yǎng)的奶牛舍內(nèi)采用梯度法對CH4排放進行了檢測,發(fā)現(xiàn)梯度法可較好地反映氣體排放速率,檢測偏差在10%以內(nèi)。
運動場是中國傳統(tǒng)奶牛場的標(biāo)準(zhǔn)配置,多采用三合土、立磚和混凝土地面,目前因為直接檢測的難度大,仍然缺乏運動場溫室氣體和NH3排放的基礎(chǔ)數(shù)據(jù)。同時,由于與西方國家在奶牛養(yǎng)殖模式、設(shè)施類型、糞便管理等存在明顯差異,也無法直接采用歐美發(fā)達國家的研究數(shù)據(jù)預(yù)測國內(nèi)奶牛運動場的污染氣體排放。
本文采用梯度法對中國北京地區(qū)典型開放式奶牛運動場CH4、N2O、CO2和NH3的排放通量進行監(jiān)測,并探究其排放特征和影響因素,為中國奶牛運動場溫室氣體和NH3的排放通量提供基礎(chǔ)數(shù)據(jù)。
試驗在北京延慶縣某奶牛養(yǎng)殖中心進行(40.30°N,115.56°E),奶牛場平面布置圖及試驗運動場如圖1所示。試驗運動場位于養(yǎng)殖中心東南角,長40 m、寬27 m,共飼養(yǎng)52頭荷斯坦泌乳奶牛,頭均年單產(chǎn)約8 t,頭均占地面積為20.77 m2。運動場為立磚地面,運動場每天下午02:00-04:00用鏟車將表面糞便清理并集中堆放于運動場的西北角,之后通過清糞運輸車運往奶牛場堆糞區(qū)自然堆放(如圖1所示)。
1.堆糞場 2.青年牛舍 3.運動場 4.料庫 5.宿舍 6.辦公室7.擠奶廳 8.犢牛舍 9.隔離牛舍 10.低產(chǎn)牛舍 11.高產(chǎn)牛舍 12.氣象站 13.門衛(wèi)
a1,a2.測試區(qū)上邊界1,2,b3,b4.下邊界3,4
1.Waste storage area 2.Heifer barn 3.Open lot 4.Forage & feed storage 5.Accommodation for staff 6.Office building 7.Milking parlour 8.New born calve barn 9.Maternal cow barn 10.Low yield lactating cow barn 11.High yield lactating cow barn 12.Weather station 13.Gatehouse
a1, a2. Upwind boundary 1and 2; b3,b4. Downwind boundary 3 and 4
注:斜線標(biāo)記區(qū)為試驗運動場。
Note: Surveyed open lot is marked with cross lines.
圖1 試驗?zāi)膛銎矫媸疽鈭D
Fig.1 Schematic diagram of surveyed dairy farm
梯度法利用質(zhì)量平衡法原理,根據(jù)排放源的主導(dǎo)風(fēng)向,將上風(fēng)向處的邊界定義為上邊界,下風(fēng)向處的邊界定義為下邊界,通過檢測排放源不同高度處上下邊界目標(biāo)氣體濃度差,采用質(zhì)量差分法計算水平氣流的擴散速率,氣體的檢測高度根據(jù)氣體濃度分布和采樣時間確定[18]。
北京市延慶縣春季以東南風(fēng)為主,按照梯度法測試要求,將運動場東側(cè)和南側(cè)定義為上風(fēng)邊界,西側(cè)和北側(cè)定義為下風(fēng)邊界。每個邊界設(shè)置3個采樣處以連續(xù)測試氣體濃度,每個采樣處設(shè)置3個高度的采樣點,分別距地面1、2和3 m(圖2)。
奶牛運動場氣體濃度在線測量系統(tǒng)由采樣模塊、氣路控制、氣樣分析和基礎(chǔ)參數(shù)采集4部分構(gòu)成。采樣模塊由采氣管和光聲譜氣體監(jiān)測儀(Photoacoustic Field Gas-monitor 1412i,LumaSense Technology,美國)構(gòu)成,對溫室氣體和NH3濃度進行連續(xù)監(jiān)測。通過自制的多路器系統(tǒng)作為氣路控制模塊實現(xiàn)在各個采樣點之間的氣路切換,并由光聲譜氣體監(jiān)測儀完成氣樣分析和基礎(chǔ)參數(shù)采集。
1. 3分路器 2.采樣點 3.抽樣管道 4. 12分路器 5.氣體分析儀 6.氣象站
自制的多路器系統(tǒng)包括1臺12路多路器和12臺3路多路器。每臺多路器由電磁閥、繼電器、Arduino Mega2560、安全開關(guān)、電線、氣路等構(gòu)成。每個采樣處的3個采樣點通過外徑為6 mm的特氟龍管與1個3路多路器連接,并與12路多路器匯合,通過分路器將上風(fēng)邊界和下風(fēng)邊界處的氣體分別輸入2臺氣體監(jiān)測儀中,以保證同時獲得上下風(fēng)邊界相對位置采樣點的氣體濃度。因多路器中氣泵流量為8 L/min,氣體監(jiān)測儀內(nèi)部氣泵流量為4 L/min,為防止過大的氣流對氣體監(jiān)測儀內(nèi)部氣泵的損傷,故最終通過三通閥將多路器與光聲譜氣體監(jiān)測儀連接。檢測完的廢氣通過氣管排至距離下風(fēng)向邊界20 m處。
現(xiàn)場正式測試時間為2016年3月28日到2016年4月3日。3月28日-3月31日氣體濃度采樣時間為08:00-18:00,4月1日-4月3日氣體采樣時間從4月1日上午08:00開始到4月3日上午08:00結(jié)束,進行48 h的連續(xù)監(jiān)測。
采樣間隔為1 min,每個采樣點連續(xù)監(jiān)測3 min,梯度法1個采樣循環(huán)周期為72 min。光聲譜氣體監(jiān)測儀對CH4、N2O、CO2和NH3的測量精度分別為0.11、0.02、3.34和0.05 mg/m3。
將WS500-UMB氣象站(WS500-UMB,8373.U01,德國Lufft測量控制技術(shù)有限公司,德國)立于運動場東南角對環(huán)境溫度、濕度、氣壓、風(fēng)速、風(fēng)向等進行實時監(jiān)測。WS500-UMB傳感器距離地面5 m,保證其相同高度處10 m范圍內(nèi)沒有遮擋物。氣象站溫度測試范圍?40~60 ℃,精度±0.2 ℃;相對濕度范圍0~100% RH,精度±2% RH;氣壓范圍300~1 200 hPa,精度±1.5 hPa;風(fēng)速范圍0~60 m/s,精度±0.3 m/s;風(fēng)向范圍0~359.9°,精度<3°。
本試驗采用綜合流梯度法對CH4、N2O、CO2和NH3的排放通量進行計算,計算式如下
為獲取垂直高度距地面1、2和3 m處的實時風(fēng)速和風(fēng)向,本試驗通過冪率公式推算各個高度處的風(fēng)速,公式如式(2)[19]。
式中V和V分別為高度Z和Z處的風(fēng)速,m/s;為風(fēng)切變指數(shù),取值0.19。
如無特別說明,文中風(fēng)速數(shù)據(jù)均為運動場上方1m處的測量值。試驗數(shù)據(jù)采用Microsoft Excel軟件進行數(shù)據(jù)整理,并用SPSS21.0軟件分析。
運動場上溫度、濕度和風(fēng)速隨時間變化情況如圖3所示。試驗期間奶牛運動場氣溫和相對濕度呈規(guī)律性的周期變化,范圍分別為3~19 ℃和11%~56%。運動場上方1 m處風(fēng)速變化范圍為2.9~20.0 m/s。
試驗期間大氣壓力變化范圍為94.8~96.7 kPa,3月31日氣壓范圍為94.8~95.3 kPa,為試驗期間最低氣壓日,其他幾天氣壓均大于95.3 kPa。
圖3 運動場溫度、濕度、風(fēng)速變化情況
試驗期間,運動場CH4、N2O、CO2和NH3的平均排放通量分別為155.59、3.60、4869.37和66.27 mg/(m2·h)(表1),換算成每頭牛的日均排放量則為77.56、1.79、2 278.05和33.25 g/(頭·d)。
試驗期間運動場溫度、濕度和風(fēng)速變化平穩(wěn),氣體排放通量總體比較穩(wěn)定。3月31日的CH4、N2O和NH3的排放通量明顯升高(<0.05),由圖3可知當(dāng)天的溫度和濕度變化范圍分別為10.8~18.8 ℃和31.4%~44.4%,在測試期間屬于高溫高濕天氣,對糞污中污染氣體的產(chǎn)生與排放產(chǎn)生了影響。運動場上的CO2主要來源于奶牛的呼吸,測試期間的溫?zé)岘h(huán)境處于奶牛舒適區(qū),CO2排放通量沒有明顯變化。
表1 奶牛運動場CH4、N2O、CO2和NH3的排放通量
該結(jié)果中CH4、N2O和CO2的排放通量分別是Ding等[20]采用靜態(tài)箱法對北京某奶牛運動場CH4、N2O和CO2的排放通量的3.6倍、2.6倍和1.7倍。主要是因為靜態(tài)箱法僅能測得其所罩住的排放源(即殘留的糞污)的氣體排放通量,而梯度法所測氣體排放通量為運動場糞污以及奶牛本身所產(chǎn)生的氣體排放量之和。此外,Ding等[20]的試驗布置9個測量點,測量點數(shù)量以及靜態(tài)箱所覆蓋地面上殘留糞便量的差異也會對測量精度產(chǎn)生一定的影響。
運動場上的奶牛飼養(yǎng)密度以及糞便管理方式等,顯著影響運動場氣體排放量。Leytem等[13]對美國愛達荷州某奶牛運動場的測定結(jié)果表明,CH4、N2O和NH3的排放通量分別為52.91、7.5和98.33 mg/(m2·h)。CH4排放通量低于本試驗監(jiān)測結(jié)果,因為CH4主要來源于奶牛的胃腸道發(fā)酵[21-22],而測試運動場的每頭牛占地面積為55.00 m2/頭,高于本研究的20.77 m2/頭,因此排放通量更低。另外,在Leytem等[13]試驗中,工作人員每天會對奶牛運動場耙犁一遍,加快了糞便中N2O和NH3的排放,因此其排放均高于本試驗結(jié)果。Borhan等[14,23]采用動態(tài)箱法對散養(yǎng)青年母牛運動場的N2O和CO2的排放通量進行了監(jiān)測,其中N2O和CO2的排放通量分別為2.2~7.5 和2 824~5 392 g/(頭·d),較本研究的N2O和CO2排放通量更高。分析認(rèn)為,主要是因為其試驗運動場每年僅清理2次糞污,糞尿的大量殘留導(dǎo)致了更高的污染氣體排放量。
春季該奶牛運動場上通過奶牛生理活動和糞便發(fā)酵產(chǎn)生的CH4、N2O和CO2的排放量占比分別為42.79%、9.37%和47.83%,CH4和CO2的排放量占溫室氣體排放總量的比例相當(dāng)。不同氣體排放量占比會受到測試季節(jié)、飼養(yǎng)密度以及糞便管理制度等因素的影響。Ding等[20]的研究結(jié)果表明,奶牛運動場殘留糞便全年的CH4、N2O和CO2的排放量所占比例分別為15.95%、18.75%和65.30%。Leytem等[13]對美國愛達荷州某牛場CH4、N2O和CO2的排放量進行了測算,該牛場每頭牛占地面積為55.00 m2/頭,并且每天對運動場耙犁一遍,測算得CH4、N2O和CO2的排放量比例分別為30.85%、5.96%和63.19%。此外,由于各個牛場使用的飼料因地區(qū)和季節(jié)不同而有所差異,因此推測CH4、N2O和CO2的排放量比例上的差異也可能與飼料成分有關(guān)。
2.4.1 溫度對氣體排放通量的影響
圖4為4月1日至3日CH4、N2O、CO2和NH3的排放通量隨溫度變化的情況。統(tǒng)計結(jié)果顯示,溫度對CH4、N2O和NH3的排放通量有顯著的正相關(guān)性影響(<0.05),而對CO2的影響不顯著。崔曉東等[24]研究也發(fā)現(xiàn)溫度與CO2排放通量相關(guān)性不顯著。
圖4 CH4、N2O、CO2和NH3的排放通量與溫度變化規(guī)律
Fig.4 Emission rate of CH4, N2O, CO2and NH3related of temperature
Ding等[20]研究發(fā)現(xiàn)奶牛運動場上的溫室氣體在夏季排放速率最大,在冬季排放速率最小。說明溫度對溫室氣體的產(chǎn)生有非常積極的影響。Pereira等[25-26]研究表明,當(dāng)環(huán)境溫度從5 ℃上升至35 ℃的過程中,CH4、N2O、CO2和NH3的排放通量明顯增加。當(dāng)溫度低于10 ℃時,脲酶活性下降;當(dāng)溫度處于10~40 ℃時,脲酶活性升高[27]。脲酶活性增加會促進NH4+的生成,進而促進硝化作用和反硝化作用的進行,導(dǎo)致N2O產(chǎn)量的增大[26]。同時NH4+濃度的增加會使液相NH4+/NH3失衡,促使液態(tài)NH3轉(zhuǎn)化為氣態(tài)NH3[27]。隨著溫度的升高,微生物的生物活性和呼吸作用增加,加快了生物降解速率,促進了糞尿中揮發(fā)性脂肪酸等含有有機碳化合物的降解,導(dǎo)致CO2和CH4的產(chǎn)生量增加,從而提高氣體的排放通量[28]。本試驗后期,CO2排放量與溫度變化趨勢相反,可能與當(dāng)時的奶牛活動有關(guān)。
2.4.2 風(fēng)速對氣體排放通量的影響
風(fēng)速與氣體排放速率有很強的相關(guān)性[29],會通過改變排放源表面?zhèn)髻|(zhì)系數(shù)而影響氣體的排放[30]。表2列出了每天17:00時(運動場剛清完糞)所發(fā)生的不同風(fēng)速條件下(距地面1 m處)奶牛運動場CH4、N2O、CO2和NH3的排放通量。這段時間,風(fēng)速范圍為4.05~18.85 m/s,CH4、N2O、CO2和NH3的排放通量范圍分別為180.60~214.26、2.59~8.63、5 546.68~6 795.20及71.00~92.29 mg/(m2·h)。由表2可知風(fēng)速對各個氣體的排放通量有不同程度的影響。
當(dāng)風(fēng)速為4.05和4.75 m/s時,CH4和NH3的排放通量沒有顯著性差異(>0.05)。然而,當(dāng)風(fēng)速增大到5.16 m/s時,CH4和NH3的排放通量顯著高于風(fēng)速為4.75 m/s時的氣體排放通量(<0.05)。在4.05~5.16 m/s的風(fēng)速范圍內(nèi),N2O的排放通量隨風(fēng)速的增加顯著增加(<0.05)。當(dāng)風(fēng)速為18.85 m/s時,CH4、N2O和NH3的排放通量顯著低于風(fēng)速為5.16 m/s時的情況(<0.05)。雖然風(fēng)速增大時,糞堆內(nèi)外表面由于壓差增大會促進氣體的排放[31],但是隨著風(fēng)速的增大,糞堆表層水分的蒸發(fā)會加快,加速糞堆表面結(jié)痂,從而減少氣體的排放[32]。風(fēng)速對CO2的排放通量沒有顯著性影響(>0.05)。因為17:00時,奶牛場開始進行組織擠奶,大部分奶牛不在運動場,導(dǎo)致此時的CO2的排放通量貢獻主要來自于運動場糞污發(fā)酵。
表2 不同風(fēng)速條件下CH4、N2O、CO2和NH3的排放通量
Table 2 Emission rate of CH4, N2O, CO2 and NH3 under different wind speed
注:不同小寫字母表示0.05水平差異顯著。
Note: Different letters indicate significant difference at 0.05 level.
2.4.3 糞污管理制度對氣體排放通量的影響
由圖4可知CH4、N2O、CO2和NH3的排放通量會在17:00-18:00之間出現(xiàn)峰值,主要是因為該運動場每天15:00-16:30會進行清糞,新鮮糞尿的暴露會促進氣體的排放。Leytem等[13]和Bjorneberg等[33]監(jiān)測的奶牛運動場每天除了定時清糞以外,還會對運動場進行耙犁一遍,導(dǎo)致其測出的N2O、CO2和NH3排放通量高于本試驗結(jié)果,也說明了清糞活動會加快氣體的排放速率。Borhan等[14,23]的試驗牛場每年僅清理2次糞污,大量的糞污滯留在運動場使溫室氣體和NH3的產(chǎn)量快速增加,從而提高氣體的排放通量。說明過量或過少地清除運動場糞污對溫室氣體和NH3的排放都有很大的影響,合理的糞污管理制度對控制有害氣體排放非常重要。
從圖4還可看出每天氣體排放通量峰值僅在清糞后(17:00后)出現(xiàn),而在14:00-15:00之間當(dāng)天的氣溫就會達到最高值,如果氣體排放通量僅受溫度影響,則其監(jiān)測值應(yīng)該先持續(xù)增長一段時間然后下降,但是在14:00-17:30之間氣體排放通量持續(xù)增加,說明清糞活動在促進氣體排放的同時也放大了溫度對氣體排放的影響。
此外,糞便管理制度也會改變風(fēng)速對氣體排放的影響效果。圖5反映了奶牛運動場4月2日白天CH4、N2O、CO2和NH3的排放通量和風(fēng)速的變化情況,由圖5可看出運動場在下午清糞期間(15:00-16:30)風(fēng)速持續(xù)下降,這本應(yīng)該會降低氣體的排放通量,但是氣體排放通量卻持續(xù)增加,說明清糞活動對氣體排放通量的促進作用覆蓋了風(fēng)速對氣體排放的影響效果。
圖5 奶牛運動場4月2日CH4、N2O、CO2和NH3排放通量
本文通過對北京地區(qū)奶牛運動場春季溫室氣體和NH3的排放通量的現(xiàn)場測試,證明梯度法可應(yīng)用于開放式系統(tǒng)的氣體排放通量監(jiān)測。結(jié)果表明,春季奶牛運動場CH4、N2O、CO2和NH3的排放通量分別為155.59、3.60、4 869.37和66.27 mg/(m2·h),在每天清糞之后出現(xiàn)排放峰值。環(huán)境溫度顯著影響CH4、N2O和NH3的排放量,風(fēng)速在一定范圍內(nèi)會促進CH4、N2O和NH3的排放。奶牛場清糞活動不僅會加快氣體的排放量,還會影響溫度和風(fēng)速對氣體排放通量的作用效果。
[1] IPCC. Chapter 2: Changes in atmospheric constituents and in radiative forcing[M]//In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the 4thAssessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: New York, NY, USA, 2007.
[2] 曾承. IPCC第四次評估報告分組報告內(nèi)容簡介[J]. 地理教育,2008(1):封2-封3.
Zeng Cheng. A brief introduction to the IPCC fourth assessment report[J]. Education of Geography, 2008(1): F2-F3. (in Chinese with English abstract)
[3] 孟祥海,程國強,張俊飚,等. 中國畜牧業(yè)全生命周期溫室氣體排放時空特征分析[J]. 中國環(huán)境科學(xué),2014,34(8):2167-2176. Meng Xianghai, Cheng Guoqiang, Zhang Junbiao, et al. Analyze on the spatial-temporal characteristics of GHG estimation of livestock’s by life cycle assessment in China[J]. China Environmental Science, 2014, 34(8): 2167-2176. (in Chinese with English abstract)
[4] 王悅,董紅敏,朱志平. 畜禽廢棄物管理過程中碳氮氣體排放及控制技術(shù)研究進展[J]. 中國農(nóng)業(yè)科技導(dǎo)報,2013,15(5):143-149.
Wang Yue, Dong Hongmin, Zhu Zhiping. Research progress on C, N related gas emissions and mitigation technology in animal waste management[J]. Journal of Agricultural Science and Technology, 2013, 15(5): 143-149. (in Chinese with English abstract)
[5] U.S. Environmental Protection Agency. Summary report: Global anthropogenic non-CO2greenhouse gas emissions: 1990-2030[R]. Washington, D C: Office of Atmospheric Programs, Climate Change Division, U.S. Environmental Protection Agency, 2012.
[6] 白玫,馬文林,吳建繁,等. 北京規(guī)?;膛pB(yǎng)殖企業(yè)溫室氣體排放評估[J]. 家畜生態(tài)學(xué)報,2017,38(5):78-85.
Bai Mei, Ma Wenlin, Wu Jianfan, et al. Evaluation on greenhouse gas emission of scale dairy farms in Beijing[J]. Acta Ecologiae Animalis Domastici, 2017, 38(5): 78-85. (in Chinese with English abstract)
[7] Wang S X, Xing J, Jang C, et al. Impactassessment of ammonia emissions on inorganic aerosols in EastChina using response surface modeling technique[J]. Environmental Science Technology, 2011, 45: 9293-9300.
[8] Lamarque J, Kyle G, Meinshausen M, et al.Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways[J]. Climatic Change, 2011, 109: 191-212.
[9] Gupta A, Kumar R, Kumari K M, et al. Measurement of NO2, HNO3, NH3, SO2and related particulate matter at a rural site in Rampur, India[J]. Atmospheric Environment, 2003, 34: 4837-4846.
[10] Aneja V P, Roelle P A, Murray G C, et al. Atmospheric nitrogen compounds II: Emissions, transport, transformation, deposition, and assessment[J]. Atmospheric Environment, 2001, 35: 1903-1911.
[11] Mukhtar S, Mutlu A, Capareda S C, et al. Seasonal and spatial variations of ammonia emissions from an open-lot dairy operation[J]. Journal of the Air & Waste Management Association, 2008, 58: 369-376.
[12] 袁慧軍,高志嶺,馬文奇,等. 應(yīng)用反演式氣體擴散技術(shù)測定奶牛場甲烷的排放特征[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2011,30(4):746-752.
Yuan Huijun, Gao Zhiling, Ma Wenqi, et al. Determination of methane emissions from a dairy feedlot using an inverse dispersion technique[J]. Journal of Agro-Environment Science, 2011, 30(4): 746-752. (in Chinese with English abstract)
[13] Leytem A B, Dungan R S, Bjorneberg D L, et al. Emissions of ammonia, methane, carbon dioxide, and nitrous oxide from dairy cattle housing and manure management systems[J]. Journal of Environment Quality, 2011, 40(5): 1383-1394.
[14] Borhan M S, CaparedaC S, MukhtarS, et al. Greenhouse gas emissions from ground level area sources in dairy and cattle feed yard operations[J]. Atmosphere, 2011, 2: 303-329.
[15] Mulhearn P J. Relations between surface fluxes and mean profiles of velocity, temperature and concentration, downwind of a change in surface roughness[J]. Quarterly Journal of the Royal Meteorological Society, 1977, 103(438): 785-802.
[16] Griffith D W T, Bryant G R, Hsu D, et al. Methane emissions from free-ranging cattle: Comparison of tracer and integrated horizontal flux techniques[J]. Journal of Environment Quality, 2008, 37(2): 582-591.
[17] Denmead O T, Harper L A, Freney J R, et al. A mass balance method for non-intrusive measurements of surface-air trace gas exchange[J]. Atmospheric Environment, 1998, 32(21): 3679-3688.
[18] Denmead O T, Simpson J R, Freney J R. A direct field of measurement of ammonia emission after injection of anhydrous ammonia[J]. Soil Science Society of America Journal, 1977, 41: 827-828.
[19] 王競,馬風(fēng)友. 不同風(fēng)速推算方法的研究[J]. 硅谷,2011,24:192-193.
[20] Ding L Y, Lu Q K, Xie L N, et al. Greenhouse gas emissions from dairy open lot and manure stockpile in northern China: A case study[J]. Journal of the Air & Waste Management Association, 2016, 66(3): 267-279.
[21] Sejian V, Lal R, Lakritz J, et al. Measurement and prediction of enteric methane emission[J]. International Journal of Biometeorology, 2011, 55(1): 1-16.
[22] 國家發(fā)展和改革委員會應(yīng)對氣候變化司. 中華人民共和國氣候變化第二次國家信息通報[M]. 北京:中國經(jīng)濟出版社,2013.
[23] Borhan M S, Capareda C S, Mukhtar S, et al. Determining seasonal greenhouse gas emissions from ground-level area sources in a dairy operation in Central Texas[J]. Journal of the Air & Waste Management Association, 2011, 61: 786-795.
[24] 崔曉東,任康,朱法江,等. 夏季奶牛場污水覆膜存儲池溫室氣體排放分析[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(9):210-215.
Cui Xiaodong, Ren Kang, Zhu Fajiang, et al. Greenhouse gas emission from covered wastewater storage tank on dairy farm in summer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 210-215. (in Chinese with English abstract)
[25] Pereira J, FangueiroD, Misselbrook T H, et al. Ammonia and greenhouse gas emissions from slattedand solid floors in dairy cattle houses: A scale modelstudy[J]. Bioprocess and Biosystems Engineering, 2011, 109:148-157.
[26] Pereira J, Misselbrook T H, Chadwick D R, et al. Effects of temperature and dairycattle excreta characteristics on potential ammonia andgreenhouse gas emissions from housing: A laboratorystudy[J].Bioprocess and Biosystems Engineering, 2012, 112: 138-150.
[27] Sommer S G, Zhang G Q,Bannink A,et al. Algorithms determining ammonia emission from buildings housing cattle and pigs and from manure stores[J]. Advances in Agronomy, 2006, 89: 261-335.
[28] M?ller H B, Sommer S G, Ahring B K. Biologicaldegradation and greenhouse gas emissions during pre-storageof liquid animal manure[J]. Journal of Environmental Quality, 2004, 33: 27-36.
[29] Redeker K R, Baird A J, Teh Y A. Quantifying wind and pressure effects on trace gas fluxes across the soil-atmosphere interface[J]. Biogeoscience, 2015, 12: 7423-7434.
[30] Monteny G J, Erisman J W. Ammonia emission from dairy cow buildings: A review of measurement techniques, influencing factors and possibilities for reduction[J]. Netherlands Journal of Agricultural Science, 1998, 46: 225-247.
[31] Widén B, Lindroth A. A calibration system for soil carbon dioxide-efflux measurement chambers: Description and application[J]. Soil Science Society of America Journal, 2003, 67(1): 327-334.
[32] 王業(yè)健. 奶牛糞便自然堆放過程中溫室氣體和氨氣排放模擬試驗研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2016.
Wang Yejian. Experimental Study on the Emissions of GHG and Ammonia from Stockpiled Dairy Manure[D]. Beijing: China Agricultural University, 2016. (in Chinese with English abstract)
[33] Bjorneberg D L, LeytemA B, Westermann D T, et al. Measurement of atmospheric ammonia, methane, and nitrous oxide at a concentrated dairy production facility in Southern Idahousing open-path FTIR spectrometry[J]. Transactions of ASABE, 2009, 52(5): 1749-1756.
Emission characteristic of greenhouse gases and ammonia from open lot of scale dairy farm in spring
Liu Yu1,2, Liu Jie4, Wang Chaoyuan1,2,3※, Shi Zhengxiang1,2,3, Li Baoming1,2,3
(1.100083,; 2.100083,; 3.100083,; 4.265100)
Climate change is currently a global concern, which is mainly caused by excessive emission of greenhouse gases to the atmosphere, in particular the emission of CH4, N2O and CO2from agricultural production process. Greenhouse gas produced from manure management in livestock and poultry production is an important source of greenhouse gas emission. Besides, fermentation process of animal manure may generate large amount of NH3, which is considered as an important contaminant gas to the environmental and ecological system. Among agricultural sector, dairy farm is a big source of greenhouse gas and NH3emission. In China, a barn with a fully open lot, where the cows are freely accessible, is a typical operation for dairy cattle. Manure on the surface of the open lots is typically removed from days to weeks depending the climate and management in the farms, while the remained manure, liquid penetration and the cows on the lot are important sources of contaminated gas emissions. However, there are few field studies on the emissions from the lot because of its open characterization, relative low gas concentration and the potential impact on the daily management of the farms. In this paper, an integrated horizontal flux method, based on the mass balance principle, was used to calculate the emission fluxes of CH4, N2O, CO2and NH3from a typical dairy open lot in Beijing in spring season by continuous measurement of their concentrations with the purpose to provide fundamental information on the emissions. As the emission source, the open lot, which was 40 m in length by 27 m in width and kept with 52 milking cows, was divided into upwind boundary and downwind boundary according to the dominating wind directions. The emission rate was calculated based on the concentration differences of the target gases continuously measured from the upwind and downwind boundaries at three different heights of 1, 2 and 3 m by a photoacoustic field gas-monitor (INNOVA 1412i) and self-developed multiplexer. The results showed the overall emission rates of CH4, N2O, CO2and NH3from the dairy open lot were 155.59, 3.60, 4 869.37 and 66.27 mg/(m2·h) during the field measurement, respectively. The emissions of all the gases reached their daily peaks after manure removal in late afternoon. The emissions of CH4, N2O and CO2(based on CO2equivalents) of the open lot accounted for 42.79%, 9.37% and 47.83% of the total greenhouse gases emissions, respectively; and their proportions were related to the climate, manure management strategies of the lot, and feed in gredients as well. Additionally, CH4, N2O and NH3emission rates were significantly and positively affected by ambient temperature (<0.05). CH4, N2O and NH3emission rates could also be enhanced by wind speed within some limits. When the surface wind speed was around 5.16 m/s, which was measured on the point 1 m above the ground, the emissions of the three gases were significantly differed from those under 4.05 and 4.75 m/s (<0.05). While, when the wind speed was at 18.85 m/s, the emission rates were decreased, which could be explained by the crust formed on the manure surface due to the drying process under much higher wind speed and its prevention on the emissions. Besides, manure removal activity increased the emissions of gases, and the impacts of ambient temperature and wind speed on the gas emission may also be altered to some extent.
greenhouse gases; ammonia; emission control; dairy open lot; integrated horizontal flux method
劉 羽,劉 婕,王朝元,施正香,李保明. 規(guī)模奶牛養(yǎng)殖室外運動場春季溫室氣體與氨氣排放特性[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(22):178-184. doi:10.11975/j.issn.1002-6819.2018.22.022 http://www.tcsae.org
Liu Yu, Liu Jie, Wang Chaoyuan, Shi Zhengxiang, Li Baoming. Emission characteristic of greenhouse gases and ammonia from open lot of scale dairy farm in spring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 178-184. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.022 http://www.tcsae.org
10.11975/j.issn.1002-6819.2018.22.022
S815.4
A
1002-6819(2018)-22-0178-07
2018-05-29
2018-09-29
國家自然科學(xué)基金(31472132、31172244)、國家奶牛產(chǎn)業(yè)技術(shù)體系(CARS-36)
劉 羽,博士生,研究方向為設(shè)施畜禽養(yǎng)殖環(huán)境與控制。 Email:xiaohaizhibei@cau.edu.cn
王朝元,教授,博士生導(dǎo)師,研究方向為設(shè)施畜禽養(yǎng)殖過程控制與環(huán)境。Email:gotowchy@cau.edu.cn
中國農(nóng)業(yè)工程學(xué)會高級會員:王朝元(E041200616S)