劉珍黎,徐峰,他得安
?
振動聲激發(fā)超聲導波評估皮質(zhì)骨厚度的研究
劉珍黎,徐峰,他得安
(復旦大學電子工程系,上海 200433)
長骨皮質(zhì)骨;超聲導波;振動聲激發(fā);厚度估計
表1 牛脛骨的材料參數(shù)[14]
圖 1 牛脛骨板的相速度頻散曲線圖
在超聲波的激勵下,組織受到的聲輻射力可表示為[15]
低頻聲波經(jīng)骨板上下表面的反射、折射以及橫縱波耦合后,最終形成可穩(wěn)定傳播的導波信號。
圖 2 骨板厚度評估的仿真實驗?zāi)P?/p>
本文以3 mm為步長,記錄傳播距離為100~121 mm范圍內(nèi)的接收信號。仿真材料選用牛脛骨板,具體的材料參數(shù)如表1所示,骨板厚度設(shè)置為2~6 mm。共聚焦換能器的示意圖如圖2(b)所示,其中、、、分別代表換能器的焦距、內(nèi)圓半徑、圓環(huán)內(nèi)半徑和圓環(huán)外半徑。
兩路高頻超聲激勵信號可表達為
最終的厚度估計結(jié)果如圖6所示,其中黑色實線為理論曲線,紅色星形點代表估計所得的厚度。可以觀察到估計結(jié)果與理論曲線非常接近,進一步的計算表明,估計結(jié)果的平均誤差僅為2.61%,最大誤差為8.45%。因此采用振動聲激發(fā)超聲導波的方法可以對骨板的厚度進行有效的評估。
圖4 A0模式的相速度隨頻率與骨板厚度乘積的變化
圖5 A0模式的波數(shù)隨頻率與骨板厚度乘積的變化
圖6 厚度估計結(jié)果
本文采用三維有限元仿真的方法,探討在骨板中基于振動聲激發(fā)的超聲導波的傳播特性,并將其應(yīng)用于骨板的厚度估計。本文提出的方法通過采用高頻共聚焦換能器,實現(xiàn)了在一定低頻范圍內(nèi)任意頻率超聲導波的激發(fā),提高了激勵的靈活性。仿真結(jié)果表明,采用振動聲激發(fā)超聲導波的方法可以有效地評估骨板的厚度。該方法對長骨皮質(zhì)骨的厚度估計具有一定的應(yīng)用價值。下一步的工作將建立長骨的三維管狀模型,并探討將該方法應(yīng)用于在體測量的可行性。
[1] LI Y, LIU D, XU K, et al. Transverse and oblique long bone fracture evaluation by low order ultrasonic guided waves: a simulation study[J]. BioMed Res Int, 2017, 2017(4): 3083141.
[2] TA D, WANG W, WANG Y Y, et al. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone[J]. Ultrasound med biol, 2009, 35(4): 641-652.
[3] KILAPPA V, XU K, MOILANEN P, et al. Assessment of the fundamental flexural guided wave in cortical bone by an ultrasonic axial-transmission array transducer[J]. Ultrasound in Medicine & Biology, 2013, 39(7): 1223-1232.
[4] MOILANEN P, SALMI A, KILAPPA V, et al. Phased laser diode array permits selective excitation of ultrasonic guided waves in coated bone-mimicking tubes[J]. Journal of Applied Physics, 2017, 122(14): 144901.
[5] FATEMI M, GREENLEAF J F. Ultrasound-stimulated vibro-acoustic spectrography[J]. Science, 1998, 280(5360): 82-85.
[6] ALIZAD A, WHALEY D H, GREENLEAF J F, et al. Potential applications of vibro-acoustography in breast imaging[J]. Technology in Cancer Research & Treatment, 2005, 4(2): 151-158.
[7] MITRI F G, KINNICK R R. Vibroacoustography imaging of kidney stones in vitro[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(1): 248-54.
[8] ALIZAD A, URBAN M W, MORRIS J C, et al. In vivo, thyroid vibro-acoustography: a pilot study[J]. Bmc Medical Imaging, 2013, 13(1): 12.
[9] MACCABI A, TAYLOR Z, BAJWA N, et al. An examination of the elastic properties of tissue-mimicking phantoms using vibro-acoustography and a muscle motor system[J]. Review of Scientific Instruments, 2016, 87(2): 341-350.
[10] MOILANEN P. Ultrasonic guided waves in bone[J]. IEEE trans on UFFC, 2008, 55(6): 1277-1286.
[11] XU K, TA D, MOILANEN P, WANG W. Mode separation of Lamb waves based on dispersion compensation method[J]. J Acoust Soc Am, 2012, 131(4): 2714-2722.
[12] SU Z, YE L, LU Y. Guided Lamb waves for identification of damage in composite structures: a review[J]. Journal of Sound & Vibration, 2006, 295(3-5): 753-780.
[13] VIKTOROV I A. Rayleigh and Lamb waves: physical theory and applications[M]. New York: Plenum Press, 1967.
[14] LAUGIER P, HA?AT G. Bone quantitative ultrasound[M]. Dordrecht: Springer, 2011.
[15] 劉珍黎, 宋亮華, 白亮, 等. 長骨中振動聲激發(fā)超聲導波的方法[J]. 物理學報, 2017, 66(15):169-176.
LIU Zhenli, SONG Lianghua, BAI Liang, et al. Vibro-acoustic stimulating ultrasonic guided waves in long bone[J]. Acta Phys Sin, 2017, 66(15): 169-176.
Estimation of cortical bone thickness by vibro-acoustic excited ultrasonic guided waves
LIU Zhen-li, XU Feng, TA De-an
(Department of Electronic Engineering, Fudan University, Shanghai 200433, China)
long cortical bone; ultrasonic guided wave; vibro-acoustic stimulating; thickness estimation
TB559
A
1000-3630(2018)-05-0442-04
10.16300/j.cnki.1000-3630.2018.05.007
2017-09-30;
2017-11-15
國家自然科學基金項目(11525416、11604054)
劉珍黎(1993-), 女, 重慶人, 碩士, 研究方向為醫(yī)學超聲及超聲信號處理。
他得安,E-mail: tda@fudan.edu.cn