国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一種O2O教學(xué)環(huán)境中的用戶信任度計算方法

2018-10-29 11:09吳彥文常棟杰韓得娟
軟件導(dǎo)刊 2018年8期
關(guān)鍵詞:個性化推薦社交網(wǎng)絡(luò)信任度

吳彥文 常棟杰 韓得娟

摘要:O2O教學(xué)環(huán)境中,基于信任的個性化服務(wù)定制是O2O教學(xué)模式為用戶提供智能性、便捷性的一項關(guān)鍵支撐技術(shù),是O2O教學(xué)服務(wù)中重要的研究內(nèi)容之一??紤]O2O教學(xué)環(huán)境中社交網(wǎng)絡(luò)的特點,提出一種新的用戶信任度計算算法,將信任分為3個維度考慮:熟悉性信任度、社會信任度以及相似信任度。仿真測試驗證了該計算方法相比單一的用戶信任度計算方法,能夠取得更精準的個性化推薦效果。

關(guān)鍵詞:O2O;社交網(wǎng)絡(luò);信任度;圖模型;個性化推薦

DOIDOI:10.11907/rjdk.173241

中圖分類號:TP312

文獻標識碼:A 文章編號文章編號:1672-7800(2018)008-0102-04

英文摘要Abstract:In O2O teaching environment, trust-based personalized customization service is a key technology in O2O mode to provide users with intelligence and convenience. It is one of the important research contents in O2O teaching service. Combined with the characteristics of social network in O2O teaching environment, a new hybrid trust calculation algorithm is proposed , and the trust is divided into three dimensions :familiarity trust degree, social trust degree and similarity trust degree. The simulation results show that the hybrid trust algorithm is more accurate than the single user trust algorithm.

英文關(guān)鍵詞Key Words:O2O; social network; trust; graph model; personalized recommendation

0 引言

教育信息化背景下,越來越多O2O教學(xué)平臺將社交功能引入,將教學(xué)與社交相結(jié)合,構(gòu)建新型的O2O教學(xué)環(huán)境。在新型的O2O教學(xué)環(huán)境中,用戶可通過社交網(wǎng)絡(luò)選擇其信任的老師在線交流、線下約教,選擇其信任的伙伴進行協(xié)作學(xué)習(xí)、交友聊天。社交網(wǎng)絡(luò)的引入,很大程度上促進了O2O教學(xué)環(huán)境中用戶的聯(lián)系與交流,教學(xué)效果顯著提升。如何通過O2O教學(xué)環(huán)境中的社交網(wǎng)絡(luò)為用戶提供基于信任的教學(xué)服務(wù),逐漸成為O2O教學(xué)的研究熱點。

用戶信任度的計算重點是如何合理、全面運用用戶的社交網(wǎng)絡(luò)信息。王玉祥等[1]根據(jù)用戶之間的信任評分度量用戶之間的信任度,并將其應(yīng)用到移動服務(wù)選擇機制中。黃武漢等[2]通過分析移動用戶之間的通信行為計算信任度,將其應(yīng)用在移動推薦系統(tǒng)中,并通過仿真實驗驗證了引入信任度可以緩解協(xié)同過濾算法中的稀疏性問題。移動用戶之間的信任度不僅與用戶之間的交互行為有關(guān),而且還受上下文信息、社會影響力、偏好相似度影響。文獻[3]提出從初始信任、交互信任、推薦信任3個方面進行建模研究信任度計算。文獻[4]提出的I-Trust模型,則是將用戶信任度分為相似信任、交互信任、全局信任3個維度。

在參考已有研究的基礎(chǔ)上,考慮O2O教學(xué)環(huán)境中的信任關(guān)系特征、信任關(guān)系的有向性、不對稱性以及時間因素對信任關(guān)系的影響,將用戶信任度分為熟悉性信任度、社會信任度、相似信任度,對圖模型算法進行適當改進,提出了O2O教學(xué)環(huán)境中的用戶信任度計算方法。

1 基于圖模型的信任度

圖模型常用于描述社交用戶之間的相互關(guān)系??紤]到信任關(guān)系的有向不對稱性,即用戶B為用戶A信任的人,不等于B也同樣信任A,將社交網(wǎng)絡(luò)描述為G(N,E,W),其中N表示O2O網(wǎng)絡(luò)中所有節(jié)點的集合;E為(E_(x→y),E_(y→x)),E_(x→y)和E_(y→x)為網(wǎng)絡(luò)節(jié)點x與y之間的有向邊,代表用戶之間的信息交互關(guān)系;W為(W_(x→y),W_(y→x)),W_(x→y)和W_(y→x)表示有向邊的權(quán)重,代表用戶之間的信息交流數(shù)量[5]。由此得到用戶有向交互如圖1所示。

1.1 熟悉性信任度計算

根據(jù)六度空間理論,以圖1中A為根節(jié)點,將圖1轉(zhuǎn)化為圖2所示的用戶有向社交關(guān)系。同心圓的第一層為A的一級聯(lián)系節(jié)點,第二層為A的二級聯(lián)系節(jié)點,例如B、C節(jié)點為A的一級聯(lián)系節(jié)點,D、H為A的二級聯(lián)系節(jié)點,依此類推[6]。

在現(xiàn)實社交網(wǎng)絡(luò)中,不可避免會存在孤立節(jié)點,將孤立節(jié)點保留,由于孤立節(jié)點與根節(jié)點直接信息交流數(shù)量為0,因此孤立節(jié)點與A節(jié)點的熟悉性信任度為0。在圖2中,節(jié)點A到節(jié)點D有4條路徑{(A→B→D),(A→C→D,(A→B→C→D),(A→C→B→D)},根據(jù)最短路徑原則,A到D所經(jīng)過的節(jié)點越少,其信任度越高[7],因此計算兩節(jié)點間的信任度時,僅考慮最短路徑,此處節(jié)點A與D有兩條最短路徑{(A→B→D),(A→C→D)}。

1.2 基于直接信任的社會信任度

社會信任度間接反映了一個人的社會地位,是社會對其信譽認可的體現(xiàn),社交網(wǎng)絡(luò)中不存在顯式的信譽評分機制,因此無法直接獲得用戶的社會信譽度[9]。文獻[10]中用群體信任度算法和區(qū)塊鏈思想提供的信任問題解決思路,對其進行適當改進??紤]用戶的社會信任度,即為其余用戶對其信任度的加權(quán)信任評分,在計算用戶社會信任度時,讓所有節(jié)點都有公平的投票權(quán)利,任意節(jié)點的信任度得分均依賴于其它節(jié)點的評分,防止由于少數(shù)節(jié)點作惡而修改評分結(jié)果。以下給出本文社會信任度計算公式:

1.4 綜合信任度算法

O2O社交網(wǎng)絡(luò)上的關(guān)系網(wǎng)絡(luò)極其復(fù)雜:其一,人與人之間的信任關(guān)系可以從其交流關(guān)系的強度簡單得出,但是不夠全面;其二,信任關(guān)系具有有向性、不對稱、漸變等特點;其三,O2O社交網(wǎng)絡(luò)用戶之間的信任關(guān)系,不僅源于親戚朋友、興趣相投,而且可以來源于其良好的社會信譽評分[14]。綜上,提出一種O2O教學(xué)環(huán)境中的用戶信任度計算方法,考慮用戶之間的信任關(guān)系由熟悉信任度、社會信任度、相似信任度3個維度組成,更加平衡合理地評價用戶之間的信任關(guān)系,計算公式如式(8)所示。

2 實驗結(jié)果與分析

上述綜合信任度計算方法用于O2O教學(xué)環(huán)境中根據(jù)用戶社交屬性等信息進行好友個性化推薦。實驗數(shù)據(jù)集來源于KDD CUP 2012 track 1活動所提供的騰訊微博數(shù)據(jù)。實驗采用數(shù)據(jù)集中的3個文檔作實驗分析:user_pfofile文檔包含用戶ID、年齡、性別、所發(fā)微博數(shù)、興趣標簽共計5個屬性;user_sns文檔包含關(guān)注者和被關(guān)注者2個屬性;user_action文檔包括用戶ID、動作目標ID、@行為、轉(zhuǎn)發(fā)行為、評論行為5個屬性。

首先將實驗所需數(shù)據(jù)導(dǎo)入mysql數(shù)據(jù)庫,對數(shù)據(jù)集進行預(yù)處理:剔除用戶興趣標簽為0和所發(fā)微博數(shù)少于10的用戶;剔除user_action表中動作目標為自己的數(shù)據(jù)。從數(shù)據(jù)集中無法直接獲得任意兩用戶建立好友關(guān)系的時間,以兩用戶中微博數(shù)較少的一個用戶所發(fā)微博數(shù)作為其有向好友關(guān)系建立時長。如用戶A與n,A所發(fā)微博數(shù)為2017,n所發(fā)微博數(shù)為85,則其好友建立時長為85。目前鮮有@、評論、互動權(quán)重關(guān)系的研究,賦予3種屬性同樣的權(quán)重[15]。

選取個性化推薦領(lǐng)域的推薦準確率(Precision)、召回率(Recall)以及綜合二者的F1-measure作為評價指標。實驗中定義如下:

Precison=推薦結(jié)果中已關(guān)注對象數(shù)量推薦結(jié)果數(shù)量

Recall=推薦結(jié)果中已關(guān)注對象數(shù)量用戶關(guān)注對象數(shù)量

F1-measure=2×Precison×RecallPrecison+Recall

實驗中選取推薦數(shù)量取值分別為5、10、15、20、30、40、50,結(jié)果見圖5-圖7。

由圖5-圖7的實驗結(jié)果可知,隨著推薦數(shù)量增加,準確率降速緩慢下降,最終趨于穩(wěn)定;召回率增速緩慢上升,最終趨于穩(wěn)定;綜合準確率和召回率的F1-measure緩慢增加,增速放緩趨于穩(wěn)定。綜合3個維度的用戶信任度計算方法相較于其它3種單個信任度算法,取得了較好的性能,推薦效果優(yōu)于其它3種單一算法,說明綜合社交圖譜熟悉性、用戶社會信任度及用戶相似度的用戶信任度算法利用了更多用戶信息,能取得更好的推薦效果。

3 結(jié)語

O2O教學(xué)環(huán)境下的好友個性化推薦中,綜合考慮基于圖模型的用戶熟悉信任度、社會信任度和相似信任度3個因素,找到最適當?shù)臋?quán)重參數(shù),可以獲得更加精確的推薦結(jié)果,獲得令用戶滿意的效果。本文在計算用戶熟悉度時,考慮了信任的有向性與不對稱性,在計算用戶社會信任度和用戶相似度時不僅考慮了節(jié)點的直接相鄰節(jié)點,而且深度挖掘了用戶間接相鄰節(jié)點的有用信息,提高了推薦質(zhì)量。

參考文獻:

[1] 王玉祥,喬秀全,李曉峰,等.上下文感知的移動社交網(wǎng)絡(luò)服務(wù)選擇機制研究[J].計算機學(xué)報,2010,33(11):2126-2135.

[2] 黃武漢,孟祥武,王立才.移動通信網(wǎng)中基于用戶社會化關(guān)系挖掘的協(xié)同過濾算法[J].電子與信息學(xué)報,2011,33(12):3002-3007.

[3] 付蕾.社交網(wǎng)絡(luò)中用戶的信任度計算方法[J].現(xiàn)代計算機,2013,(12):9-13+24.

[4] 杜嬌龍.微博社交網(wǎng)絡(luò)的用戶信任度模型研究[D].北京:首都經(jīng)濟貿(mào)易大學(xué),2016.

[5] 喬秀全,楊春,李曉峰,等.社交網(wǎng)絡(luò)服務(wù)中一種基于用戶上下文的信任度計算方法[J].計算機學(xué)報,2011,34(12):2403-2413.

[6] 劉乾.基于社交網(wǎng)絡(luò)和地理位置信息的好友推薦方法研究[D].杭州:浙江大學(xué),2013.

[7] 陳婷,朱青,周夢溪,等.社交網(wǎng)絡(luò)環(huán)境下基于信任的推薦算法[J].軟件學(xué)報,2017,28(3):721-731.

[8] 史嶺峰.基于社交網(wǎng)絡(luò)好友關(guān)系的圖查詢算法研究與應(yīng)用[D].南京:南京理工大學(xué),2012.

[9] 何靜,郭進利,徐雪娟.微博用戶行為統(tǒng)計特性及其動力學(xué)分析[J].現(xiàn)代圖書情報技術(shù),2013(Z1):94-100.

[10] 文俊浩,何波,胡遠鵬.基于社交網(wǎng)絡(luò)用戶信任度的混合推薦算法研究[J].計算機科學(xué),2016,43(1):255-258.

[11] ZIEGLER C N,GOLBECK J.Investigating interactions of trust and interest similarity[J].Decision Support Systems,2007,43(2):460-475.

[12] 孟祥武,劉樹棟,張玉潔,等.社會化推薦系統(tǒng)研究[J].軟件學(xué)報,2015,26(6):1356-1372.

[13] 鄧瑩瑩.社交網(wǎng)站中基于用戶社會活動和好友網(wǎng)絡(luò)的推薦技術(shù)研究[D].上海:復(fù)旦大學(xué),2014.

[14] XU J,ZHONG Y S,ZHU W Q,et al.Trust-based context-aware mobile social network service recommendation[J].Wuhan University Journal of Natural Sciences,2017(2):149-156.

[15] WANG D,HUANG H,XIE C.A novel web service recommendation approach based on credible user comment[C].Pattaya:International Conference on Machinery,2015.

(責任編輯:何 麗)

猜你喜歡
個性化推薦社交網(wǎng)絡(luò)信任度
全球民調(diào):中國民眾對政府信任度最高
基于信任度評估的移動自組織網(wǎng)絡(luò)路由協(xié)議
2014,如何獲得信任