趙榮琦,王 飛,王 林
(中國船舶重工集團(tuán)公司第七二三研究所,江蘇 揚(yáng)州225101)
由于電子對(duì)抗技術(shù)的不斷進(jìn)步,干擾與抗干擾之間的斗爭(zhēng)日趨激烈。面對(duì)日益復(fù)雜的電子干擾環(huán)境,雷達(dá)必須提高其抗干擾能力才能在現(xiàn)代戰(zhàn)爭(zhēng)中生存,才能發(fā)揮其正常效能。雷達(dá)有源干擾的智能識(shí)別具有重要的軍事戰(zhàn)略意義,通常有源干擾類型識(shí)別是基于特征參數(shù)進(jìn)行分析的[1],其基本流程如圖1所示。
在識(shí)別干擾前需要分析各種典型干擾模式的產(chǎn)生機(jī)理,將不同類型的干擾信號(hào)在時(shí)域、頻域上的特征進(jìn)行歸納。在處理頻域特征時(shí),通過分析樣本數(shù)據(jù)進(jìn)行功率譜分析,估算出被分析對(duì)象的能量隨頻率分布的情況[2],為信號(hào)特征識(shí)別算法中信號(hào)的頻域特征分析提供數(shù)據(jù)。為此,本文基于現(xiàn)場(chǎng)可編程門陣列,采用基4-FFT算法完成1 024點(diǎn)快速傅里葉變換,利用改進(jìn)的周期圖譜分析方法對(duì)1.28 GHz采樣數(shù)據(jù)進(jìn)行處理,完成了高分辨功率譜設(shè)計(jì),為干擾噪聲的特征識(shí)別提供頻譜數(shù)據(jù)。
功率譜作為采樣數(shù)據(jù)在頻域內(nèi)統(tǒng)計(jì)特征的描述,在許多技術(shù)領(lǐng)域內(nèi)有著廣泛應(yīng)用。信號(hào)的功率譜密度反映了信號(hào)的功率在頻域隨頻率的分布。利用給定的N個(gè)樣本數(shù)據(jù)估計(jì)一個(gè)平穩(wěn)隨機(jī)信號(hào)的功率譜密度叫做譜估計(jì)[3]。取平穩(wěn)隨機(jī)信號(hào)x(n)的有限個(gè)采樣點(diǎn)x(0),x(1)...x(n),對(duì)采樣數(shù)據(jù)直接進(jìn)行傅里葉變換,進(jìn)行譜估計(jì)得到功率譜:
由于序列x(n)的離散傅里葉變換(DFT)具有周期性,因此這種功率譜同樣具有周期性,被稱為周期譜。在實(shí)際工作中進(jìn)行的觀測(cè)必然是在有限范圍內(nèi)進(jìn)行的,因此可用數(shù)據(jù)長(zhǎng)度N來限制。同時(shí),不同的觀測(cè)數(shù)據(jù)所得的周期圖也存在差異,由于這種隨機(jī)起伏大,使得周期圖不能得到相對(duì)穩(wěn)定的估值。
為此,改進(jìn)的周期圖譜估計(jì)方法是先把分段的數(shù)據(jù)乘以窗函數(shù)進(jìn)行加窗處理,分別計(jì)算其周期圖,然后進(jìn)行平均,將分段的譜估計(jì)結(jié)果的平均值作為最終的功率譜估計(jì)值:
式中:L為每段的數(shù)據(jù)長(zhǎng)度,各段數(shù)據(jù)可以有部分交疊覆蓋。
為了得到較好的功率譜估值,加窗和平均處理應(yīng)當(dāng)兼顧減小隨機(jī)起伏和保證足夠的譜分辨率這2個(gè)方面。同時(shí),各段的數(shù)據(jù)可以認(rèn)為是相互獨(dú)立的,這樣獲得的譜估計(jì)的方差將減小到每段估計(jì)結(jié)果的1/M。
數(shù)字信號(hào)處理中通常是取其有限的時(shí)間片段進(jìn)行分析,信號(hào)的截?cái)鄷?huì)產(chǎn)生能量泄漏,而用FFT算法計(jì)算頻譜又會(huì)產(chǎn)生柵欄效應(yīng)。在FFT分析中為了減少或消除頻譜能量泄漏與柵欄效應(yīng),常采用不同的截取函數(shù)對(duì)信號(hào)進(jìn)行截短,截短函數(shù)稱為窗函數(shù)[4]。
能量泄漏與窗函數(shù)頻譜的兩側(cè)旁瓣有關(guān),窗函數(shù)的選用要從保持最大信息和消除旁瓣的綜合效果出發(fā)來考慮,因此窗函數(shù)頻譜中的主瓣寬度應(yīng)盡量窄,旁瓣衰減應(yīng)盡量大,但這2個(gè)要求通常無法被同時(shí)滿足。圖2對(duì)比了幾種常用的窗函數(shù)對(duì)信號(hào)頻譜特征的影響。
圖2 窗函數(shù)特征對(duì)比
由圖2可以看出,矩形窗函數(shù)有較大的旁瓣,并有負(fù)旁瓣,導(dǎo)致變換中帶進(jìn)了高頻干擾和泄漏,因此常用在僅對(duì)主瓣頻率精度有要求,而不考慮幅值精度的情況;布萊克曼窗主瓣寬,旁瓣小,頻率識(shí)別精度低,幅值識(shí)別精度高,常用來檢測(cè)2個(gè)頻率相近、幅度不同的信號(hào);漢寧窗旁瓣幅度小,常用來分析窄帶信號(hào);對(duì)于隨時(shí)間按指數(shù)衰減的函數(shù),可采用高斯窗。信號(hào)的加窗處理,重要的問題是在于根據(jù)信號(hào)的性質(zhì)和研究目的來選用窗函數(shù)。
FFT是在DFT基礎(chǔ)上,根據(jù)DFT的奇偶、虛實(shí)特性對(duì)其進(jìn)行改進(jìn)的一種快速算法。1組有限長(zhǎng)序列x(n)的離散傅里葉變換表示為:
利用旋轉(zhuǎn)因子的周期性、對(duì)稱性、可約性,將式(3)中的x(n)分解成4個(gè)N/4點(diǎn)的序列,分別計(jì)算DFT可得:
將式(4)進(jìn)行多級(jí)分解后便可以通過4點(diǎn)的DFT逐層迭代完成整個(gè)運(yùn)算,該方法稱為蝶形運(yùn)算[5],蝶形運(yùn)算單元如圖3所示。
圖3 基4蝶形運(yùn)算單元結(jié)構(gòu)圖
本文所設(shè)計(jì)的高分辨率功率譜具體實(shí)現(xiàn)流程是將1.28 GHz的連續(xù)采樣數(shù)據(jù)進(jìn)行加窗處理,將每段加窗后的數(shù)據(jù)作1 024點(diǎn)FFT運(yùn)算,計(jì)算出1組數(shù)據(jù)的頻譜信息,將多組連續(xù)數(shù)據(jù)的頻譜取平均作為最終的功率譜。
連續(xù)采樣數(shù)據(jù)首選經(jīng)過窗函數(shù)作加窗處理。在干擾信號(hào)識(shí)別的復(fù)雜信號(hào)環(huán)境中,如果信號(hào)中有許多遠(yuǎn)離被測(cè)頻率的干擾頻率分量,應(yīng)選擇旁瓣衰減速度較快的窗函數(shù);如果干擾頻率分量緊鄰被測(cè)頻率時(shí),需選擇旁瓣峰值較小的窗函數(shù)[6]。因此,本設(shè)計(jì)中選擇旁瓣低且衰減快的窗函數(shù)。同時(shí),窗函數(shù)頻譜中旁瓣越小,使能量相對(duì)集中在主瓣,就可以較為接近真實(shí)的頻譜[7]。參考文獻(xiàn)[7]提出了一種旁瓣最低與最速下降(FDMS)窗函數(shù)的分析與設(shè)計(jì)方法,可以減少頻譜泄露,提高對(duì)不同頻率信號(hào)的提取能力。
FDMS窗是一類余弦組合窗,其時(shí)域表達(dá)式為:
式中:M為窗函數(shù)的項(xiàng)數(shù);n=1,2,…,N-1。
典型的FDMS窗函數(shù)和其他窗函數(shù)旁瓣性能對(duì)比見表1。
表1 窗函數(shù)性能比較
由表1可見,4項(xiàng)FDMS窗的旁瓣漸近衰減速率為18 dB/oct,旁瓣峰值電平達(dá)到了-93 dB,具有較理想的旁瓣特性,其中系數(shù)a1=0.355 768,a2=0.487 396,a3=0.144 232,a4=0.012 604[7]。將FDMS窗與常用窗函數(shù)中旁瓣較小的布萊克曼窗進(jìn)行對(duì)比,結(jié)果如圖4所示。在旁瓣衰減速率相同的情況下,FDMS窗的旁瓣峰值更小,能量更集中在主瓣。因此,本文采用4項(xiàng)FDMS窗對(duì)輸入信號(hào)進(jìn)行處理,旁瓣電平小且漸近衰減速率大的窗函數(shù)能抑制頻譜泄漏的影響,提高頻譜分析的準(zhǔn)確度。生成1 024點(diǎn)窗函數(shù)系數(shù)后,在FFT運(yùn)算前將每組采樣數(shù)據(jù)與窗函數(shù)相乘,完成加窗操作[8]。
圖4 FDMS窗與布萊克曼窗對(duì)比
1 024點(diǎn)FFT運(yùn)算是實(shí)現(xiàn)高分辨率功率譜的關(guān)鍵環(huán)節(jié)。功率譜中1 024點(diǎn)FFT算法整體架構(gòu)如圖5所示,其中包括5級(jí)基-4蝶形運(yùn)算。
圖5 1 024點(diǎn)FFT算法整體架構(gòu)
根據(jù)圖3蝶形運(yùn)算單元結(jié)構(gòu),每個(gè)運(yùn)算單元需要3個(gè)復(fù)數(shù)乘法器和12個(gè)復(fù)數(shù)加法器,其中復(fù)數(shù)乘法運(yùn)算如下:
根據(jù)式(7),一次復(fù)數(shù)乘法包括4次實(shí)數(shù)乘法和3次實(shí)數(shù)加法,將復(fù)數(shù)乘法作如下轉(zhuǎn)換可減少其中實(shí)數(shù)乘法的數(shù)量:
根據(jù)公式(6),用Matlab預(yù)先計(jì)算出旋轉(zhuǎn)因子的值,生成各級(jí)蝶形運(yùn)算的旋轉(zhuǎn)因子表,在程序執(zhí)行時(shí)直接查表,節(jié)省時(shí)間,提高運(yùn)算速度。本文對(duì)旋轉(zhuǎn)因子的實(shí)虛部采用16位有符號(hào)數(shù)據(jù)存儲(chǔ),將旋轉(zhuǎn)因子值擴(kuò)大215,以便參與蝶形運(yùn)算中的定點(diǎn)運(yùn)算。
在每個(gè)蝶形運(yùn)算單元中,旋轉(zhuǎn)因子的值是固定不變的,因此將cosθ-sinθ、cosθ+sinθ的值存儲(chǔ)于旋轉(zhuǎn)因子ROM中,能夠?qū)⒚總€(gè)復(fù)數(shù)乘法簡(jiǎn)化為3次實(shí)數(shù)乘法和4次實(shí)數(shù)加法,這將大大減少FPGA中邏輯資源的消耗。
為驗(yàn)證該功率譜,本文對(duì)干擾模擬器發(fā)出的多種干擾信號(hào)進(jìn)行了測(cè)試。設(shè)置中心頻率320 MHz、帶寬50 MHz的窄帶噪聲,通過本文設(shè)計(jì)的功率譜得到的頻譜特性如圖6所示。由圖6可以看出,2條最大的譜線出現(xiàn)在320 MHz和960 MHz頻率處,譜線寬為50 MHz,窄帶噪聲測(cè)試正確。中心頻率320 MHz、帶寬100 MHz的寬帶噪聲干擾信號(hào)的頻譜特性測(cè)試結(jié)果如圖7所示。相比于圖6,寬帶噪聲的功率譜寬明顯增加。
圖6 窄帶噪聲阻塞干擾信號(hào)的功率譜
圖7 寬帶噪聲阻塞干擾信號(hào)的功率譜
設(shè)置干擾信號(hào)為梳狀譜噪聲,測(cè)得的頻譜特性如圖8所示。圖8有明顯的藍(lán)色梳狀譜梳齒,可以分析出梳齒的數(shù)量、頻率、寬度與間隔信息。
圖8 梳狀譜干擾信號(hào)的功率譜
測(cè)試結(jié)果表明,高分辨率功率譜的分析結(jié)果達(dá)到預(yù)期設(shè)計(jì)要求,能夠?yàn)楹罄m(xù)的干擾特征識(shí)別提供正確的頻譜特征數(shù)據(jù)。
本文對(duì)功率譜的設(shè)計(jì)原理進(jìn)行了分析,給出了有源干擾類型識(shí)別背景下,基于FPGA的高分辨率功率譜的設(shè)計(jì)與實(shí)現(xiàn)結(jié)果。結(jié)果表明該功率譜分析結(jié)果正確,能夠?yàn)楦黝惛蓴_信號(hào)特征的識(shí)別提供良好的頻域特征數(shù)據(jù)。