雷 斌,李召行,鄒 俊,熊進(jìn)剛,丁成平
?
荷載與腐蝕凍融耦合作用下再生混凝土耐久性能試驗(yàn)
雷 斌,李召行,鄒 俊,熊進(jìn)剛※,丁成平
(南昌大學(xué)建筑工程學(xué)院,南昌 330031)
現(xiàn)有的荷載與環(huán)境多因素研究大多是通過給試塊設(shè)計安裝一套夾具,然后擰緊螺絲或者用千斤頂對試塊施加荷載(應(yīng)力),再用此帶著夾具的試塊進(jìn)耐久性試驗(yàn),此方法操作困難、繁瑣,極易發(fā)生應(yīng)力損失,使研究的準(zhǔn)確性急劇降低。該文提出了一種具有操作簡便、控制精準(zhǔn)等優(yōu)點(diǎn)的耦合作用機(jī)制,采用先加載再腐蝕凍融,且以此循環(huán)作用的方式來模擬混凝土真實(shí)工作狀態(tài),并對普通混凝土及再生混凝土在多因素耦合作用下耐久性能進(jìn)行研究。該文試驗(yàn)加載制度分別采用0、40%、70%應(yīng)力水平的重復(fù)荷載與25次腐蝕凍融交替2次,并對此耦合作用下再生混凝土與普通混凝土進(jìn)行了宏觀和微細(xì)觀試驗(yàn)研究。試驗(yàn)結(jié)果顯示:在宏觀方面,隨著應(yīng)力水平的從0增加至70%,再生混凝土和普通混凝土的抗壓強(qiáng)度損失率分別增加27.2%和100%,再生混凝土在多因素耦合作用下的耐久性能表現(xiàn)更佳,荷載會使普通混凝土和再生混凝土的劣化速度加快;在微觀方面,在腐蝕凍融50次后,再生混凝土和普通混凝土的顯微硬度損失率分別為8.1%和23.8%,環(huán)境掃描電鏡(environmental scanning electron microscope, ESEM)結(jié)果也可以看出界面過渡區(qū)是混凝土中較薄弱的環(huán)節(jié),且在凍融循環(huán)作用前,天然粗骨料界面過渡區(qū)處黏結(jié)強(qiáng)度和塑性變形能力較強(qiáng),凍融循環(huán)作用后,再生粗骨料界面過渡區(qū)處抗凍融腐蝕能力更好。該結(jié)果為普通混凝土耐久性改進(jìn)及再生混凝土的推廣應(yīng)用提供理論參考。
應(yīng)力;荷載;凍融;腐蝕;再生混凝土;耦合作用;耐久性能
隨著自然資源的消耗和建筑廢棄物的堆積,再生骨料混凝土引起了廣泛的關(guān)注和研究,一些研究發(fā)現(xiàn)普通混凝土的性能優(yōu)于再生混凝土[1-3],另一些研究認(rèn)為再生骨料來源好[4]且提前預(yù)浸起到的內(nèi)養(yǎng)護(hù)作用[5-6],老砂漿的多孔性致使砂漿之間的同性粘結(jié)大于骨料與砂漿之間的異性粘結(jié)[7]等原因?qū)е略偕炷列阅軓?qiáng)于普通混凝土。已有研究從應(yīng)力狀態(tài)[8-11]、氯離子滲透[12-14]、硫酸鹽侵蝕[15-17]、凍融循環(huán)[18-20]等單一荷載或者環(huán)境因素作用下再生混凝土或混凝土的耐久性方面進(jìn)行了研究;也有一些研究從荷載加硫酸鹽[21-24]、氯離子加硫酸鹽[25-27]、凍融加硫酸鹽[28-29]等多個環(huán)境因素作用下再生混凝土或混凝土的耐久性方面進(jìn)行了研究,而混凝土在實(shí)際的工作狀態(tài)大多是處于荷載與環(huán)境多因素耦合作用,單純的考慮環(huán)境因素的影響無法模擬復(fù)雜環(huán)境下材料真實(shí)狀態(tài)。現(xiàn)有的荷載與環(huán)境多因素研究[30-31]大多是通過給試塊設(shè)計安裝一套夾具,然后擰緊螺絲或者用千斤頂對試塊施加荷載(應(yīng)力),再用此帶著夾具的試塊進(jìn)耐久性試驗(yàn),此方法操作困難、繁瑣,極易發(fā)生應(yīng)力損失,使研究的準(zhǔn)確性急劇降低。該文提出了一種具有操作簡便、控制精準(zhǔn)等優(yōu)點(diǎn)的耦合作用機(jī)制,采用先加載再腐蝕凍融,且以此循環(huán)作用的方式來模擬混凝土真實(shí)工作狀態(tài),并對普通混凝土及再生混凝土在多因素耦合作用下耐久性能進(jìn)行研究,以期為普通混凝土耐久性改進(jìn)及再生混凝土的推廣應(yīng)用提供理論參考。
荷載和復(fù)雜環(huán)境因素耦合作用的實(shí)驗(yàn)室模擬的理想狀態(tài)是在復(fù)雜環(huán)境場中施加工作荷載。但環(huán)境模擬空間有限,安裝加力裝置復(fù)雜,試驗(yàn)十分困難。本試驗(yàn)研究擬采用對再生混凝土試件施加重復(fù)荷載與耐久性試驗(yàn)交替進(jìn)行的加載制度來實(shí)現(xiàn)荷載與復(fù)雜環(huán)境耦合作用下的耐久性能試驗(yàn)。荷載和環(huán)境耦合作用對耐久性能影響的微觀機(jī)理主要表現(xiàn)為:再生混凝土在重復(fù)荷載作用下產(chǎn)生的微結(jié)構(gòu)損傷可能會加速腐蝕、凍融破壞,另一方面,腐蝕凍融產(chǎn)生的非均勻劣化同樣會導(dǎo)致加載過程的應(yīng)力重分布及微結(jié)構(gòu)損傷路徑改變。本試驗(yàn)設(shè)計的這種加載制度能盡量反映這2種損傷的相互影響。試驗(yàn)具體耦合作用機(jī)制如下:先將試件進(jìn)行重復(fù)加載,然后按照慢凍法標(biāo)準(zhǔn)[32]在?19 ℃中冰凍4 h以上,再將其取出放入常溫下盛滿10%濃度的硫酸鈉、氯化鈉、氯化鎂復(fù)合鹽溶液中融化4 h以上,當(dāng)試件循環(huán)凍融至25次數(shù)后再進(jìn)行重復(fù)加載,然后繼續(xù)凍融循環(huán)25次,耦合作用結(jié)束。其中試件重復(fù)加載的具體操作為:每組試件先用15%破壞應(yīng)力水平的荷載進(jìn)行試壓,確保壓力機(jī)正常工作并使試件與壓力機(jī)上下表面貼合,避免出現(xiàn)應(yīng)力集中現(xiàn)象,然后均勻線性加載至目標(biāo)應(yīng)力水平,保載30 s,再均勻線性的卸載至無應(yīng)力狀態(tài)(加載、卸載速率為0.5 MPa[33]),重復(fù)加載5次。
化合物 3A02:質(zhì)譜 ESI/MS(negative mode),m/z 234,[M-H]-。 1H NMR(500 MHz,CDCl3,TMS),δ為7.25~7.28(t,J=9.0 Hz,2H),7.05(t,J=9.0 Hz,2H),6.83(br.s,1H,NH),5.97(s,2H),4.46(d,J=5.5 Hz,2H)。
為了研究應(yīng)力水平以及腐蝕凍融在50次凍融過程中對混凝土耐久性的影響,本次試驗(yàn)進(jìn)行0、40%、70%應(yīng)力水平重復(fù)荷載與25次腐蝕凍融交替2次,耦合機(jī)制詳見圖1。
高中語文閱讀教學(xué)具有特殊性,而農(nóng)村高中又具有它自身的特點(diǎn)。農(nóng)村高中學(xué)生在校時間長,課外時間短;課業(yè)占用時間多,而課外自由時間少;自主閱讀能力較弱,興趣興趣不高。鑒于此,我們確定了以課堂為主陣地,以教師選擇篇目為主方向,引導(dǎo)學(xué)生認(rèn)識并接受多文本閱讀,從而提高學(xué)生連續(xù)閱讀能力的教學(xué)形式。
圖1 耦合機(jī)制圖
配制強(qiáng)度等級為C40再生混凝土與普通混凝土,再生混凝土中再生粗骨料取代率為100%?;炷林猩安捎泌M江河砂,為中砂,表觀密度為2 687.9 kg/m3;水泥采用海螺牌P.O 42.5普通硅酸鹽水泥,終凝時間為237 min,混凝土配合比為:水泥398 kg/m3,砂546 kg/m3,粗骨料1 161 kg/m3,水195 kg/m3,水灰比為0.49;再生粗骨料與天然粗骨料的粒徑為5~31.5 mm,其中再生粗骨料通過人工破碎某質(zhì)檢站28 d強(qiáng)度測試后廢棄的C30混凝土試塊獲得,各粗骨料參數(shù)見表1,在拌制混凝土前,將再生粗骨料預(yù)濕處理[34];試驗(yàn)用水為試驗(yàn)室自來水;腐蝕溶液為硫酸鈉、氯化鈉、氯化鎂復(fù)合鹽溶液(按1∶1∶1的比例配制成濃度10%的混合溶液)。微觀試驗(yàn)使用摻骨料的水泥凈漿試件,水灰比為0.49。
表1 粗骨料物理性能
注:RCA為再生粗骨料,NCA為天然粗骨料。
Note: RCA represents recycled concrete aggregate, NCA represents natural concrete aggregate.
采用上述配合比,宏觀試驗(yàn)中混凝土試塊按應(yīng)力水平、荷載交替次數(shù)分成不同組,每組4塊,并澆筑于100 mm× 100 mm×100 mm的模具中,養(yǎng)護(hù)28 d后按上述耦合機(jī)制進(jìn)行試驗(yàn),試件見圖2。微觀試驗(yàn)試件取水灰比0.49,配制成水泥凈漿,將其澆筑于40 mm×40 mm×30 mm的棱柱體模具,振搗密實(shí),并將天然、再生骨料按壓入水泥凈漿中,然后將腐蝕凍融后的棱柱體試件用線切割機(jī)分別切割成40 mm×40 mm×5 mm、10 mm×10 mm×5 mm大小的芯樣,進(jìn)行顯微硬度及SEM試驗(yàn)。試驗(yàn)裝置見圖3,試件編號如表2所示。
圖2 腐蝕溶液浸泡試件圖
圖3 凍融和顯微硬度試驗(yàn)設(shè)備
表2 試件編號
注:RC表示再生混凝土,NC表示普通混凝土;0、50表示凍融腐蝕次數(shù)、應(yīng)力水平為0,50表示凍融腐蝕50次;2表示重復(fù)荷載與25次腐蝕凍融循環(huán)交替2次;40%、70%分別表示加載時施加40%、70%的應(yīng)力水平;“—”表示無數(shù)據(jù)。
Note: RC represents recycled concrete, NC represents natural concrete; 0 represents the times of freeze-thaw corrosion and the stress level is zero, 50 represents the times of freeze-thaw corrosion is 50; 2 represents alternate 2 times between repetitive load and 25 corrosion freeze-thaw cycles; 40%, 70% represent stress level with the load applied 40%, 70% respectively; “—”represents no data.
隨著腐蝕凍融次數(shù)的增加,試件表面都出現(xiàn)的裂縫不斷擴(kuò)展、加深,且出現(xiàn)了明顯的帶狀白色鹽類結(jié)晶附著于裂縫表面,同時試件表面也出現(xiàn)了顆粒狀的白色鹽類結(jié)晶,部分試件在腐蝕凍融作用下變脆,表面出現(xiàn)片狀砂漿剝落現(xiàn)象,提前破壞失效,見圖4。
其中,部分試件在凍融試驗(yàn)期間失效破壞,所以在耦合作用后的平均抗壓強(qiáng)度值為0。
圖4 凍融40次后試件破壞
采用規(guī)范(GBT50082-2009)《普通混凝土長期性能和耐久性能試驗(yàn)方法標(biāo)準(zhǔn)》中抗凍耐久性能的計算方法,計算耦合作用下混凝土抗壓強(qiáng)度損失率,如公式(1)所示,計算結(jié)果見表3。
圖5 50次腐蝕凍融后試件加載圖
各試件經(jīng)耦合作用后測得的平均抗壓強(qiáng)度值如表3所示。
表3 耦合作用后混凝土的平均抗壓強(qiáng)度值及其損失率
一天晚上,我起夜的時候已經(jīng)是凌晨3點(diǎn),但萬姐房間的燈仍然亮著。她坐在床邊,一針一針地縫著衣服。我走到門口,她都沒有發(fā)覺?!叭f姐,你這是給誰做衣服啊?”萬姐被我的聲音嚇了一跳,怔了一下說:“給我女兒。”
當(dāng)腐蝕凍融進(jìn)行到50次時,隨著加載應(yīng)力水平的增大,混凝土試件裂縫的數(shù)量及寬度也在逐步增加,混凝土更易破壞失效同時試件表面砂漿剝落現(xiàn)象也更加明顯,如圖5所示。由圖5還可以發(fā)現(xiàn),在相同凍融腐蝕及同應(yīng)力水平的加載條件下,普通混凝土在腐蝕凍融后脆性增大,骨料與砂漿的黏結(jié)力嚴(yán)重削弱,部分試件出現(xiàn)骨料剝離現(xiàn)象,且在腐蝕凍融后期出現(xiàn)明顯片狀砂漿剝離現(xiàn)象,相較于普通混凝土,再生混凝土在耦合作用后試件較為密實(shí),整體性表現(xiàn)良好。
由表3可以看出,隨著加載時應(yīng)力水平的提高,各組混凝土的抗壓強(qiáng)度損失率均表現(xiàn)出增大的趨勢。普通混凝在70%加載應(yīng)力下試件的抗壓強(qiáng)度損失率達(dá)到了100%,而再生混凝土強(qiáng)度損失率只有27.2%;當(dāng)應(yīng)力水平為40%時,普通及再生混凝土的抗壓強(qiáng)度損失率分別為71.3%和1.8%,相對于普通混凝土,再生混凝土均只出現(xiàn)了小幅度的強(qiáng)度損失。可以看出,在相同應(yīng)力、凍融次數(shù)的曲線中,再生混凝土的抗壓強(qiáng)度損失率均小于普通混凝土,再生混凝土的耐久性能強(qiáng)于普通混凝土。這可能是由于骨料來源較好[4],且在試驗(yàn)前已對再生骨料進(jìn)行了預(yù)濕處理,使得老砂漿中未完全水化的水泥得以繼續(xù)水化,起到內(nèi)養(yǎng)護(hù)的作用[5-6];再生混凝土的多孔性使得其與新砂漿有更好的同性粘結(jié)[7],且可以吸取更多界面處的水分,使得界面處水灰比降低,從而強(qiáng)度得到提高。
式中cun為50次腐蝕凍融循環(huán)后第組加載機(jī)制下混凝土試件的相對抗壓強(qiáng)度損失率;cu50為50次腐蝕凍融循環(huán)后未加荷載混凝土試件的抗壓強(qiáng)度測定值,MPa;cun為50次腐蝕凍融循環(huán)后第組加載機(jī)制下混凝土試件的抗壓強(qiáng)度測定值,MPa。
濕磨料與干磨料在各自最優(yōu)參數(shù)下,都能達(dá)到對線材表面幾乎完全去除的效果,從圖8a中可觀察到,干磨料處理后的線材表面形貌有很明顯的凹坑,粗糙度值大;從圖8b中可以看出,濕磨料處理后的線材表面形貌良好,粗糙度值小。
由表4可知,與界面處距離從0增加至0.3 mm,試樣RC-0、RC-50、NC-0、NC-50的顯微硬度值分別從64.5、59.3、81.9、62.4 MPa增加至125.1、85.5、140.3、89.3 MPa,再生骨料試件及天然骨料試件的顯微硬度值均在界面處最小,距離界面處越遠(yuǎn),顯微硬度逐漸增大,界面過渡區(qū)是混凝土中最薄弱的環(huán)節(jié),且凍融后試件顯微硬度值均降低。再生骨料試件及天然骨料試件界面處在50次腐蝕凍融前后的顯微硬度損失率分別為8.1%和23.8%。經(jīng)過50次腐蝕凍融后,天然骨料試件界面處強(qiáng)度降低較多、劣化明顯,再生骨料界面處抗凍融能力更強(qiáng)。兩種骨料與凈漿界面較遠(yuǎn)處的顯微硬度損失率很接近。
針對羊肚菌人工栽培大面積不出菇和產(chǎn)量不穩(wěn)定等問題,郝哲還主持實(shí)施了“羊肚菌栽培設(shè)施設(shè)計建造技術(shù)研究”“羊肚菌適宜品種篩選及其設(shè)施高效栽培技術(shù)研究”和“羊肚菌產(chǎn)業(yè)化生產(chǎn)技術(shù)研究與示范”等項目,結(jié)合北方風(fēng)沙區(qū)的自然氣候特點(diǎn)和羊肚菌的生理特性,通過分離提純野生羊肚菌菌種,選育出適于北方風(fēng)沙區(qū)人工栽培的羊肚菌優(yōu)良菌株。利用適宜的栽培設(shè)施,模仿本地野生羊肚菌生態(tài)環(huán)境條件,攻克了北方風(fēng)沙區(qū)羊肚菌人工栽培技術(shù)難題,獲得授權(quán)專利1項,培育出適宜北方栽培的羊肚菌優(yōu)良菌株4個,實(shí)現(xiàn)了羊肚菌在北方風(fēng)沙區(qū)的規(guī)模化發(fā)展。
表4 各試件顯微硬度及其損失率
注:界面處為0刻度。
Note: Scale 0 is at the interface of aggregate and cement paste.
從界面處至凈漿依次取刻度0、10、20、30(單位為0.01 mm),測得各組試件的顯微硬度值及腐蝕凍融50次前后的顯微硬度損失率見表4。其中摻天然骨料與摻再生骨料試件在0刻度(取界面處為0刻度)處分別為骨料-凈漿界面與骨料-老砂漿界面,摻天然骨料水泥凈漿在大于0刻度處為凈漿,摻再生骨料水泥凈漿在大于0刻度處為老水泥凈漿。
由圖6c可見,天然粗骨料界面過渡區(qū)在腐蝕凍融之前,水泥凈漿中的C-S-H凝膠形成了空間立體的基團(tuán),微觀結(jié)構(gòu)緊密,形成了較強(qiáng)的粘聚力,經(jīng)過50次腐蝕凍融后,天然粗骨料界面過渡區(qū)出現(xiàn)許多孔洞,界面處水泥凈漿黏結(jié)力變差,如圖6d所示。
(3)凌文輇、張治燦與方俐洛通過對5000名員工的7輪預(yù)測和2000名員工的正式測驗(yàn),編制出了由情感承諾、理想承諾、規(guī)范承諾、機(jī)會承諾和經(jīng)濟(jì)承諾五因素構(gòu)成的“中國職工組織承諾量表”。該量表的總方差解釋量達(dá)66.11%,相關(guān)分析也表明,各因素與效標(biāo)的相關(guān)均達(dá)到非常顯著水平,各因素的信度在0.7-0.89之間,量表的信度和效度良好。因?yàn)榇朔萘勘硎窃谥袊幕尘跋戮幹频?,因而對國?nèi)的研究有很大的指導(dǎo)意義。
再生粗骨料試件骨料-老凈漿界面和天然粗骨料試件骨料-凈漿界面的ESEM結(jié)果見圖6所示。由圖6a可見,再生粗骨料界面過渡區(qū)在腐蝕凍融之前,水泥凈漿的結(jié)構(gòu)呈顆粒狀均布,顆粒成分主要為C-S-H凝膠,各個顆粒凝膠之間結(jié)合松散,黏聚力不強(qiáng);經(jīng)過50次腐蝕凍融后,再生粗骨料界面過渡區(qū)出現(xiàn)長條形的裂縫,內(nèi)部C-S-H基團(tuán)減少,水泥凈漿與骨料黏結(jié)力降低,界面過渡區(qū)劣化明顯,如圖6b所示。
圖6 再生骨料和天然骨料試件界面過渡區(qū)微觀結(jié)構(gòu)圖
對比圖6中各圖可以看出,RC-0試件與NC-0試件界面過渡區(qū)的微觀結(jié)構(gòu)相類似,兩者都是由C-S-H凝膠附著在骨料表面,但是NC-0試件在界面過渡區(qū)的C-S-H凝膠更大,形成了粒徑大小不一凝膠基團(tuán),構(gòu)成了空間立體的微觀孔隙結(jié)構(gòu),其中,較小粒徑的凝膠基團(tuán)滲入大凝膠基團(tuán)的縫隙中,起到了填充作用,使得天然粗骨料的界面過渡區(qū)結(jié)構(gòu)更加致密,而RC-0試件的界面過渡區(qū)C-S-H凝膠較松散,因而天然粗骨料界面過渡區(qū)黏結(jié)強(qiáng)度和塑性變形能力高于再生粗骨料界面過渡區(qū);對比圖6b和6d可得,經(jīng)過50次腐蝕凍融后,RC-50試件和NC-50試件都出現(xiàn)了不同程度的劣化現(xiàn)象,在兩者界面過渡區(qū)處都出現(xiàn)了明顯的裂縫和孔隙,NC-50試件出現(xiàn)了比RC-50試件更大的裂縫,但是在這種縫隙中,RC-50試件產(chǎn)生了更多的C-S-H凝膠將縫隙填充,這使得再生粗骨料界面過渡區(qū)的抗凍融能力要強(qiáng)于天然粗骨料界面過渡區(qū)。
本文提出了一種具有操作簡便、控制精準(zhǔn)等優(yōu)點(diǎn)的耦合作用機(jī)制,并對再生混凝土和普通混凝土在多因素耦合作用下耐久性能進(jìn)行試驗(yàn)研究,結(jié)果表明:
1)隨著加載時應(yīng)力水平的增加,再生及普通混凝土試件裂縫的數(shù)量及寬度均有增加,且在相同耦合機(jī)制作用后,普通混凝土的脆性增大,抗耦合作用能力較再生混凝土差。
2)隨著應(yīng)力水平從0增加至70%,再生混凝土和普通混凝土在出耦合作用后的抗壓強(qiáng)度損失率為27.2%和100%,再生混凝土的在多因素耦合作用下的耐久性能表現(xiàn)更佳,高應(yīng)力水平的加載機(jī)制會使混凝土的劣化速度加快。
3)界面過渡區(qū)是混凝土的薄弱環(huán)節(jié),隨著與界面過渡區(qū)距離的增加,顯微硬度值越高,且在凍融循環(huán)作用下,再生骨料界面過渡區(qū)處抗腐蝕凍融能力優(yōu)于天然骨料。
4)在凍融腐蝕之前,天然粗骨料周圍的界面過渡區(qū)黏結(jié)強(qiáng)度和塑性變形能力高于再生粗骨料;在50次凍融腐蝕后,再生混凝土和普通及的顯微硬度損失率分別為8.1%和23.8%,再生粗骨料的界面過渡區(qū)的抗凍融腐蝕能力比天然粗骨料更佳。
[1] Marco Bassani, Luca Tefa. Compaction and freeze-thaw degradation assessment of recycled aggregates from unseparated construction and demolition waste[J]. Construction and Building Materials, 2018,160: 180-195.
[2] Wu J, Jing X, Wang Z. Uni-axial compressive stress-strain relation of recycled coarse aggregate concrete after freezing and thawing cycles[J]. Construction & Building Materials, 2017, 134: 210-219.
[3] Richardson A, Coventry K, Bacon J. Freeze/thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete[J]. Journal of Cleaner Production, 2011, 19(2): 272-277.
[4] Thomas C, Setién J, Polanco J A, et al. Durability of recycled aggregate concrete[J]. Construction & Building Materials, 2013, 40: 1054-1065.
[5] Evangelista L, Brito J. Mechanical behaviour of concrete made with fine recycled concrete aggregates[J]. Cement & Concrete Composites, 2007, 29(5): 397-401.
[6] Yildirim S T, Meyer C, Herfellner S. Effects of internal curing on the strength, drying shrinkage and freeze–thaw resistance of concrete containing recycled concrete aggregates[J]. Construction & Building Materials, 2015, 91: 288-296.
[7] Domingo-Cabo A, Lázaro C, López-Gayarre F, et al. Creep and shrinkage of recycled aggregate concrete[J]. Construction & Building Materials, 2009, 23(7): 2545-2553.
[8] 韓冰,曹健,董敬勛. 持續(xù)荷載作用對粉煤灰混凝土凍融性能的影響[J]. 中國鐵道科學(xué),2012,33(2):33-37. Han Bing, Cao Jian, Dong Jingxun. Influence of sustained loading on freezing-thawing performance of fly ash concrete[J]. China Railway Science, 2012, 33(2): 33-37. (in Chinese with English abstract)
[9] Gao D, Zhang L, Nokken M. Compressive behavior of steel fiber reinforced recycled coarse aggregate concrete designed with equivalent cubic compressive strength[J]. Construction & Building Materials, 2017, 141: 235-244.
[10] Li W, Luo Z, Long C, et al. Effects of nanoparticle on the dynamic behaviors of recycled aggregate concrete under impact loading[J]. Materials & Design, 2016, 112: 58-66.
[11] He A, Cai J, Chen Q J, et al. Axial compressive behaviour of steel-jacket retrofitted RC columns with recycled aggregate concrete[J]. Construction & Building Materials, 2017, 141: 501-516.
[12] Dimitriou G, Savva P, Petrou M. Enhancing mechanical and durability properties of recycled aggregate concrete[J]. Construction & Building Materials, 2018, 158: 228-235.
[13] Vázquez E, Barra M, Aponte D, et al. Improvement of the durability of concrete with recycled aggregates in chloride exposed environment[J]. Construction & Building Materials, 2014, 67: 61-67.
[14] Iii W V S. Stochastic service-life modeling of chloride-induced corrosion in recycled-aggregate concrete[J]. Cement & Concrete Composites, 2015, 55: 103-111.
[15] Bulatovi? V, Mele?ev M, Radeka M, et al. Evaluation of sulfate resistance of concrete with recycled and natural aggregates[J]. Construction & Building Materials, 2017, 152: 614-631.
[16] Qi B, Gao J, Chen F, et al. Evaluation of the damage process of recycled aggregate concrete under sulfate attack and wetting-drying cycles[J]. Construction & Building Materials, 2017, 138: 254-262.
[17] Zega C J, Santos G S C D, Villagrán-Zaccardi Y A, et al. Performance of recycled concretes exposed to sulphate soil for 10 years[J]. Construction & Building Materials, 2016, 102: 714-721.
[18] Shang H S, Zhao T J, Cao W Q. Bond behavior between steel bar and recycled aggregate concrete after freeze-thaw cycles[J]. Cold Regions Science & Technology, 2015, 118: 38-44.
[19] Bassani M, Tefa L. Compaction and freeze-thaw degradation assessment of recycled aggregates from unseparated construction and demolition waste[J]. Construction & Building Materials, 2018, 160: 180-195.
[20] Yildirim S T, Meyer C, Herfellner S. Effects of internal curing on the strength, drying shrinkage and freeze-thaw resistance of concrete containing recycled concrete aggregates[J]. Construction & Building Materials, 2015, 91: 288-296.
[21] Schneider U, Chen S W. The Chemomechanical Effect and the mechanochemical effect on high-performance concrete subjected to stress corrosion[J]. Cement & Concrete Research, 1998, 28(4): 509-522.
[22] 逯靜洲,朱孔峰,邵艷明,等. 荷載歷史和硫酸鹽干濕循環(huán)侵蝕作用下混凝土抗壓性能試驗(yàn)研究[J]. 混凝土,2017(10):41-44. Lu Jingzhou, Zhu Kongfeng, Shao Yanming, et al. Experimental study on compressive behaviors of concrete subjected to loading history and sulfate attack in wet-dry cycle environment[J]. Concrete, 2017(10): 41-44. (in Chinese with English abstract)
[23] 關(guān)博文,陳拴發(fā),李華平,等. 疲勞荷載作用下混凝土硫酸鹽腐蝕壽命預(yù)測[J]. 建筑材料學(xué)報,2012,15(3):395-398. Guan Bowen, Chen Shuanfa, Li Huaping, et al. Sulfate corrosion life of cement concrete under fatigue load[J]. Journal of Building Materials, 2012, 15(3): 395-398. (in Chinese with English abstract)
[24] 邢明亮,關(guān)博文,陳拴發(fā),等. 硫酸鹽腐蝕與疲勞荷載聯(lián)合作用下混凝土劣化特性[J]. 建筑材料學(xué)報,2013,16(2):249-254. Xing Mingliang, Guan Bowen, Chen Shuanfa, et al. Deterioration characteristics of concrete under sulfate erosion and fatigue load[J]. Journal of Building Materials, 2013, 16(2): 249-254. (in Chinese with English abstract)
[25] 劉榮桂,李歡,陳妤,等. 海工混凝土受硫酸鹽影響的氯離子擴(kuò)散規(guī)律研究[J]. 混凝土,2012(2):18-20. Liu Ronggui, Li Huan, Chen Yu, et al. Research to the chloride diffusion impact of sulfate of marine concrete[J]. Concrete, 2012(2): 18-20. (in Chinese with English abstract)
[26] 吳慶,汪俊華,耿歐,等. 硫酸鹽和氯鹽侵蝕的混凝土梁抗彎性能[J]. 中國礦業(yè)大學(xué)學(xué)報,2012,41(6):923-929. Wu Qing, Wang Junhua, Geng Ou, et al. The bending performance of concrete beams corroded by sulfate salt and chloride[J]. Journal of China University of Mining & Technology, 2012, 41(6): 923-929. (in Chinese with English abstract)
[27] 陳曉斌,唐孟雄,馬昆林. 地下混凝土結(jié)構(gòu)硫酸鹽及氯鹽侵蝕的耐久性實(shí)驗(yàn)[J]. 中南大學(xué)學(xué)報:自然科學(xué)版,2012,43(7):2803-2812. Chen Xiaobin, Tang Mengxiong, Ma Kunlin, et al. Underground concrete structure exposure to sulfate and chloride invading environmen[J]. Journal of Central South University: Science and Technology, 2012, 43(7): 2803-2812. (in Chinese with English abstract)
[28] 苑立冬,牛荻濤,姜磊,等. 硫酸鹽侵蝕與凍融循環(huán)共同作用下混凝土損傷研究[J]. 硅酸鹽通報,2013,32(6):1171-1176. Yuan Lidong, Niu Ditao, Jiang Lei, et al. Study on damage of concrete under the combined action of sulfate attack and freeze-thaw cycle[J]. Bulletin of The Chinese Ceramic Society, 2013, 32(6): 1171-1176. (in Chinese with English abstract)
[29] 陳四利,寧寶寬,胡大偉. 硫酸鹽和凍融雙重作用對混凝土力學(xué)性質(zhì)的影響[J]. 工業(yè)建筑,2006,36(12):12-15. Chen Sili, Ning Baokuan, Hu Dawei. Study of concrete under double action of sulfate and circulation of freeze and thaw[J]. Industrial Construction, 2006, 36(12): 12-15. (in Chinese with English abstract)
[30] 董敬勛. 持續(xù)荷載對粉煤灰混凝土凍融性能的影響[D]. 北京:北京交通大學(xué),2011.
Dong Jingxun. Influence of Sustained Loadon Freeze--thaw of Ash Fly Concrete[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese with English abstract)
[31] 朱張豐. 混凝土在荷載持續(xù)作用下的抗凍性能研究[D]. 杭州:浙江工業(yè)大學(xué),2012.
Zhu Zhangfeng. Study on the Frost Resistance of Concrete Under Axial Compressive Loading[D]. Hangzhou: Zhejiang University of Technology, 2012. (in Chinese with English abstract)
[32] 普通混凝土長期性能和耐久性能試驗(yàn)方法標(biāo)準(zhǔn):GB/T 50082-2009[S]. 2009.
[33] 普通混凝土力學(xué)性能試驗(yàn)方法標(biāo)準(zhǔn):GB/T50081-2016[S].
[34] 再生混凝土應(yīng)用技術(shù)規(guī)程:DGT J08-2018-2007[S].
Experiment on durability of recycled concrete under coupling multi-factors of load and corrosion freeze-thaw
Lei Bin, Li Zhaohang, Zou Jun, Xiong Jingang※, Ding Chengping
(330031)
Recycled aggregate concrete has obtained worldwide attention as an important part of sustainability. In the aspect of durability of recycled concrete under coupling multi-factors, a number of devices were designed and installed to investigate the durability of recycled concrete. In previous studies, the concrete specimen was tightened by the screws to apply a prestress with the jack, and then specimen was put in the devices for the durability test, which was difficult to operate and prone to stress loss. In this paper, in order to better research the durability of concrete under coupling multi-factors, we designed a coupling mechanism of alternated with loading and freeze-thaw cycles in salt-solution to replace the traditional mold loading to accurately simulate the simultaneous interaction of freezing thawing, corrosion and load. The coupling protocol was designed with repetitive load and 25 time’s freeze-thaw cycles alternately 2 times in the salt-solution, in which the maximum stress level (the applied stress to 28 days compressive strength) of repetitive load is 0, 40%, 70%. The specific operation was that specimens were loaded repetitively for the first time, then they were freeze-thawed in the salt-solution for 25 time’s cycles, after that, they were repetitively loaded again, anfreeze-thawed in the salt-solution for another 25 time’s cycles. The experiment ocompressive strength and microhardness of recycled concrete and natural concrete under coupling action was carried out. In the macroscopic test, compressive strength loss of each specimen was measured under the above mentioned coupling protocols. At the same time, the microhardness across the ITZs between the coarse aggregate and the cement matrix was measured before and after 50 freeze-thawing cycles for the control specimens. The macro test results showed that the stress level of the coupling action increased from 40% to 70%, the compressive strength loss of both recycled concrete and natural concrete increased from 1.8% and 71.3% to 27.2% and 100% respectively. It is implied that the durability of recycled concrete under coupling action is better than that of natural concrete, and the loading mechanism with high stress level will accelerate the deterioration of both recycled concrete and natural concrete. The micro test results showed that the microhardness values gradually increased with the increases of distance from the interface of natural aggregate and cement paste, the microhardness losses were 8.1% and 23.8% of the interface of both recycled aggregate and natural aggregate before and after the coupling action respectively. It can be seen that the interface transition zone was the weakest part of the concrete, and the decreasing rate of microhardness of the interface transition zone in natural aggregate specimens was faster than that of recycled aggregate after 50 time’s freeze-thaw cycles in salt-solution. The environmental scanning electron microscope (ESEM) test results indicated that the bond strength and plastic deformation ability of interface of natural aggregate are better than that of recycled aggregate before freeze-thaw cycles, while the ability to resist freeze-thaw at the interface transition zone of recycled aggregate was better than natural aggregate after freeze-thaw cycles. The related results can provide an insight into the long-term performance of recycled concrete subjected to harsh environmental conditions and thus to promote practical application of recycled aggregate concrete in the future.
stresses; loads; freeze-thaw; corrosion; recycled concrete; coupling multi-factors; durability
10.11975/j.issn.1002-6819.2018.20.021
TU528
A
1002-6819(2018)-20-0169-06
2018-03-25
2018-05-05
國家自然科學(xué)基金(51668045);江西省科技廳重點(diǎn)研發(fā)計劃(20161BBG70056);江西省博士后科研擇優(yōu)資助項目(2016KY14);江西省研究生創(chuàng)新基金(YC2017-S015)。
雷 斌,副教授,博士,主要從事再生混凝土材料與結(jié)構(gòu)研究。Email:blei@ncu.edu.cn
熊進(jìn)剛,教授,博士,主要從事結(jié)構(gòu)連續(xù)倒塌、結(jié)構(gòu)優(yōu)化、混凝土結(jié)構(gòu)研究。Email:xiongjingang@ncu.edu.cn
雷 斌,李召行,鄒 俊,熊進(jìn)剛,丁成平. 荷載與腐蝕凍融耦合作用下再生混凝土耐久性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(20):169-174. doi:10.11975/j.issn.1002-6819.2018.20.021 http://www.tcsae.org
Lei Bin, Li Zhaohang, Zou Jun, Xiong Jingang, Ding Chengping. Experiment on durability of recycled concrete under coupling multi-factors of load and corrosion freeze-thaw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 169-174. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.20.021 http://www.tcsae.org