廖望 閆曉雪 吳軍 陳放
摘 要: 麻瘋樹(Jatropha curcas)種子含油率高,種子中的油類物質(zhì)可作為生物柴油被開發(fā)和利用,是極具潛力的生物質(zhì)能源樹種之一。麻瘋樹雌雄異花,在自然條件下雄花數(shù)量通常遠(yuǎn)遠(yuǎn)大于雌花,這大大限制了種子和油的產(chǎn)量,因此開展麻瘋樹性別分化與花發(fā)育分子機理的研究具有重要意義。該研究選取10個麻瘋樹的MADS-BOX基因(JcAGL1,JcAGL6,JcAGL9,JcAGL11,JcAGL15,JcAGL61-3,JcAGL62-1,JcAGL62-6,JcAGL62-7,JcAGL80-2),提取麻瘋樹早期發(fā)育各個階段的雌雄花總RNA,并反轉(zhuǎn)錄成cDNA,采用實時熒光定量方法,探索早期發(fā)育不同階段的麻瘋樹雌雄花目的基因的表達(dá)情況。結(jié)果表明:目的基因在發(fā)育起始的雌雄花中的表達(dá)具有差異,比如JcAGL6和JcAGL15在雄花中表達(dá)量要高于雌花,而JcAGL1,JcAGL9和JcAGL11在雌花中的表達(dá)量要高于雄花,這說明花原基中目的基因表達(dá)會直接或間接決定性別分化的方向;在之后的發(fā)育過程中,目的基因的表達(dá)情況在雌雄花中有所不同:隨著花的發(fā)育,目的基因在雌雄花中的表達(dá)量變化存在差別,這反應(yīng)出麻瘋樹雌雄花發(fā)育中目的基因表達(dá)模式上的差異;另外,也能看出在此過程中各個目的基因又發(fā)揮著不同的功能。該研究結(jié)果為進(jìn)一步探究麻瘋樹雌雄花發(fā)育相關(guān)基因的表達(dá)提供了理論依據(jù),為了解麻瘋樹性別分化和花發(fā)育的分子機理奠定了基礎(chǔ)。
關(guān)鍵詞: 麻瘋樹, MADS-BOX基因, 性別分化, 花發(fā)育, 實時熒光定量PCR
中圖分類號: Q945.4, Q75
文獻(xiàn)標(biāo)識碼: A
文章編號: 1000-3142(2018)02-0180-08
Expression analysis on MADS-BOX genes in male and female flowers of Jatropha curcas
LIAO Wang, YAN Xiaoxue, WU Jun, CHEN Fang*
( College of Life Sciences, Sichuan University, Chengdu 610041, China )
Abstract: The members of the MADS-BOX transcription factor family play essential roles in sex differentiation and flower development in many plants. Jatropha curcas is a monoecious plant, which has been seen as one of the potential biomass energy tree species because oil content in the seeds is high and it can be used as biodiesel. However, seed oil production is mainly depended on seed yield, which is restricted by the low ratio of female flowers to male flowers. So the number of female flowers is one of the key factors to increase seed yield, and it is of great significance to analyze the causes of the differences in the number of female and male flowers and to study the molecular mechanisms of sex differentiation and flower development in J. curcas. In order to investigate the molecular mechanisms of sex differentiation and flower development, we chose ten members of MADS-BOX family gene in J. curcas (JcAGL1, JcAGL6, JcAGL9, JcAGL11, JcAGL15, JcAGL61-3, JcAGL62-1, JcAGL62-6, JcAGL62-7, JcAGL80-2), total RNA were extracted from female and male flowers at different stages of early developments, cDNA were synthesized by using these RNA, and qRT-PCR method was used to detect and analyze the expression of these genes in female and male flowers. The results were described as below: The expression of target genes was different between pistillate and staminate at the beginning of development, for example, the expression of JcAGL6 and JcAGL15 in staminate flowers was higher than that in pistillate flowers, while the expression of JcAGL1,JcAGL9 and JcAGL11 in pistillate flowers was higher than that in staminate flowers, showing that the expression of target genes in floral primordia directly or indirectly determines the direction of sex differentiation. Expression level of target genes was different between pistillate and staminate flowers in later development: With flowers development, the variation of target genes expression in pistillate and staminate flowers was different, indicating different expression patterns of target genes between pistillate and staminate flowers. In addition, it can be seen that each target gene has different functions in the process. Our results provide theory evidence to further study the expression of genes related to the development of pistillate and staminate flowers, and lay the foundation for understanding the molecular mechanism of sex differentiation and flower development in J. curcas.
Key words: Jatropha curcas, MADS-BOX genes, sex differentiation, flower development, qRT-PCR
麻瘋樹(Jatropha curcas)為大戟科麻瘋樹屬植物,多年生木本,原產(chǎn)于美洲熱帶地區(qū),在我國也有分布(中國科學(xué)院植物研究所,1979)。麻瘋樹種子含油率高,可用于生產(chǎn)生物燃油而得到廣泛關(guān)注 (Bahadur et al, 2013);麻瘋樹種子中還含有蛋白質(zhì)、多肽、萜類和一些小分子物質(zhì),如種仁中含有一類核糖體失活蛋白(curcin),可能具有抗腫瘤作用(Lin et al,2003);另外,植株中的一些活性成分還可以用于殺蟲和抑菌(Wei et al,2004)。因此,麻瘋樹在生產(chǎn)生物燃油的同時,還可開發(fā)出不同種類的醫(yī)藥產(chǎn)品,具有較好的發(fā)展前景。
麻瘋樹屬雌雄同株異花植物(Negussie et al,2014)為二歧聚傘花序,一個花序上雌雄花的比值為1∶10~1∶20(郭承剛等,2007;何亞平等,2008)。種子的產(chǎn)量是麻瘋樹產(chǎn)業(yè)發(fā)展的關(guān)鍵(Chikara & Jaworsky,2007),而麻瘋樹雄花的數(shù)量遠(yuǎn)遠(yuǎn)多于雌花則極大地限制了種子的產(chǎn)量。因此,分析造成麻瘋樹雌雄花數(shù)量差異的原因以及開展麻瘋樹性別分化與花發(fā)育分子機理的研究對該產(chǎn)業(yè)的發(fā)展具有重要意義。
MADS-BOX蛋白家族在植物性別分化和花發(fā)育上起著十分重要的作用(Smaczniak et al,2012)。MADS-BOX家族蛋白是一類重要的轉(zhuǎn)錄因子(Pellegrini et al,1995;Huang et al,2000),該類蛋白的特點是在N端含有一段比較保守的MADS結(jié)構(gòu)域。MADS-BOX蛋白因在結(jié)構(gòu)上的差異分為兩類:Ⅰ型(TypeⅠ)和Ⅱ型(TypeⅡ)。Ⅰ型只含有一段MADS-BOX區(qū)域(De Bodt et al,2003;Kofuji et al,2003;Parenicová et al,2003),而Ⅱ型除了N端含有MADS-BOX區(qū)域外,通常在其下游還具有I (intervening)和K (keratin-like)區(qū)域,此外在其C端還含有一段高度可變的區(qū)域,這四個區(qū)域統(tǒng)稱為MIKC結(jié)構(gòu)(Kaufmann et al,2005),所以Ⅱ型又被稱為MIKC型(MIKC-type)。Ⅰ型往下又可分為Mα、Mβ、和Mγ三個亞族;Ⅱ型又可分為MIKCC型和MIKC*型兩種(Henschel et al,2002)。目前,對于Ⅰ型的研究比較少,只在擬南芥中有部分報道(Khler et al,2003,2005;Portereiko et al,2006;Yoo et al,2006;Bemer et al,2008;Colombo et al,2008;Kang et al,2008;Steffen et al,2008),其具體功能并不是十分清楚。Ⅱ型MADS-BOX蛋白研究得比較多,具體功能在許多植物中也得到證實,Ⅱ型MADS-BOX蛋白與植物性別分化以及花發(fā)育有關(guān)并且也參與植物其他的生理生化反應(yīng)(黃方等,2012)。在花發(fā)育ABCDE模型中,參與花發(fā)育的基因分為ABCDE五類,除A類中AP2之外,其余證實均為MADS-BOX家族蛋白(Wollmann et al,2010),可見其在花發(fā)育中所起的重要作用。
本研究通過RT-PCR技術(shù)對麻瘋樹的10個MADS-BOX基因在雌雄花早期發(fā)育的不同階段的表達(dá)情況進(jìn)行分析,初步探究這些基因與麻瘋樹雌雄花發(fā)育的關(guān)系,為深入了解麻瘋樹的性別分化與花發(fā)育的分子機理提供理論依據(jù)。
1 材料與方法
1.1 材料
所用材料來源于四川省西昌市金河鄉(xiāng)(26°56′ N,101°68′ E)自然生長的麻瘋樹,于5—7月期間采集麻瘋樹的花序。為保證結(jié)果的可靠性,每株麻瘋樹只采集1個花序,共采集20個;根據(jù)Wu et al(2011)對麻瘋樹雌雄花發(fā)育階段的描述,將花發(fā)育過程分成三個階段(第一階段、第二階段、第三階段),通過體式顯微鏡(Olympus,SZ2)觀察,在花序上篩選到第一、第二、第三階段的雌雄花(圖1),所取材料立即放入液氮,帶回實驗室于-80 ℃保存待用。
1.2 方法
選取10個基因進(jìn)行表達(dá)分析,分別為AGAMOUS-like 1(JcAGL1,Gene ID:105629543),AGAMOUS-like 6(JcAGL6,Gene ID:105643077),AGAMOUS-like 9(JcAGL9,Gene ID:105644835),AGAMOUS-like 11(JcAGL11,Gene ID:105635126),AGAMOUS-like 15(JcAGL15,Gene ID:105628766),AGAMOUS-like 61-3(JcAGL61-3,Gene ID:105634538),AGAMOUS-like 62-1(JcAGL62-1,Gene ID:105631663),AGAMOUS-like 62-6(JcAGL62-6,Gene ID:105639905),AGAMOUS-like 62-7(JcAGL62-7,Gene ID:105644754),AGAMOUS-like 80-2(JcAGL80-2,Gene ID:105636743)。通過NCBI數(shù)據(jù)庫獲得這10個基因所編碼蛋白的氨基酸序列,利用DNAman6.0軟件對這10個蛋白質(zhì)進(jìn)行氨基酸序列對比,NCBI數(shù)據(jù)庫(http://www.ncbi.hlm.nih.gov/Structure/cdd/wrpsb.cgi)進(jìn)一步分析蛋白質(zhì)所具有的蛋白質(zhì)保守結(jié)構(gòu)域,確認(rèn)這10個基因均為MADS-BOX家族基因。
1.2.1 總RNA提取和cDNA的獲得 使用TaKaRa MiniBEST植物RNA提取試劑盒(TaKaRa,大連)分別提取三個發(fā)育階段麻瘋樹雌雄花的總RNA。用1%瓊脂糖凝膠做電泳檢測RNA完整性,接著用Nanovue分光光度計(Healthcare Bio-Sciences AB,瑞典)檢測260/280nm和260/230nm下的吸光值以預(yù)估RNA的純度,只有OD260/280為1.9~2.1,OD260/230大于2.0的樣品才能用于后續(xù)試驗。
使用PrimeScriptTM RT reagents Kit with gDNA Eraser(Perfect Real Time)試劑盒(TaKaRa,大連)對所提取的RNA進(jìn)行反轉(zhuǎn)錄:按照試劑盒說明書,先對樣品進(jìn)行去基因組DNA反應(yīng),之后再進(jìn)行反轉(zhuǎn)錄反應(yīng)獲得cDNA并于-20 ℃保存待用。
1.2.2 目的片段的普通PCR擴增 根據(jù)Karuppaiya et al(2017)對麻瘋樹內(nèi)參基因的篩選,選取EF(Elongation factor 1-alpha)作為本實驗的內(nèi)參基因,按照定量PCR引物設(shè)計原則,利用Primer Premier 6軟件設(shè)計這11個基因的定量PCR引物(表1),所有引物均由華大基因合成。
隨機選擇某一時期的雌雄花的cDNA作為模板用以上引物進(jìn)行普通PCR反應(yīng),反應(yīng)體系20 μL,其中2×TSINGKE Master Mix(blue) (TSINGKE,北京)10 μL,模板、正向引物、反向引物各1 μL,ddH2O 7 μL;普通PCR反應(yīng)程序如下:94 ℃ 5 min;94 ℃ 30 s,58 ℃ 30 s,72 ℃ 15 s,共35個循環(huán);72 ℃ 10 min;12 ℃保存。PCR反應(yīng)結(jié)束后,用1%瓊脂糖凝膠電泳進(jìn)行檢測。
1.2.3 目的基因的定量檢測 采用CFX Connect system(Bio-Rad)對三個時期雌雄花的目的基因進(jìn)行RT-PCR檢測,反應(yīng)體系25 μL,其中的組分為2×SYBR Premix Ex TaqTM(Tli RNaseH Plus) 12.5 μL,正向引物(10 μmol·L-1) 1 μL,反向引物(10 μmol·L-1) 1 μL,cDNA 1 μL,RNase Free ddH2O 9.5 μL。以無模板體系作為對照組,每個樣品3個重復(fù),按如下反應(yīng)程序進(jìn)行RT-PCR反應(yīng):95 ℃預(yù)變性30 s;95 ℃變性5 s,60 ℃ 30 s,每個循環(huán)結(jié)束后均會對熒光信號進(jìn)行采集,共40個循環(huán);65 ℃開始,以每步0.5 ℃的速度升高至95 ℃,每個溫度維持5 s時間采集信號,取溶解曲線為單峰的數(shù)據(jù),通過2-ΔΔCT(Livak)法對數(shù)據(jù)進(jìn)行處理,得到相對表達(dá)結(jié)果,用GraphPad Prism 5軟件繪制柱形圖。
2 結(jié)果與分析
2.1目的片段的擴增
對提取的總RNA進(jìn)行1%瓊脂糖凝膠電泳和質(zhì)量檢測,圖2結(jié)果顯示OD260/280均在1.9~2.1之間且OD260/230>2.0,說明RNA質(zhì)量符合后續(xù)實驗要求。以設(shè)計的目的基因以及內(nèi)參基因EF引物對cDNA進(jìn)行普通PCR擴增,經(jīng)測序和1%瓊脂糖凝膠電泳結(jié)果顯示均得到預(yù)期的目的片段。
2.2 麻瘋樹雌雄花早期不同階段目的基因的定量分析
qPCR結(jié)果如圖3所示,JcAGL1和JcAGL9基因在雌雄花中表達(dá)狀況相似,在雌花早期發(fā)育的第一階段有相對比較高的表達(dá),隨后花發(fā)育時期進(jìn)入第二階段直至第三階段表達(dá)量逐漸下降;但兩個基因在雄花發(fā)育初期表達(dá)量相對較低,且隨著花的發(fā)育,表達(dá)量逐漸上升。JcAGL6無論是在雌花還是雄花中,隨著花發(fā)育均呈現(xiàn)逐漸下降的趨勢,但整體上雄花中的表達(dá)量要高于雌花。JcAGL11在雌雄花中的表達(dá)情況明顯不同,雖然雌花發(fā)育的第二、第三階段相對于第一階段有所下降,但三個階段均處于比較高的表達(dá)水平;雄花中雖然第二階段相對于其他兩個階段的表達(dá)量有所上升,但整體上都處于較低表達(dá)的狀態(tài)。JcAGL15基因在雄花發(fā)育的三個階段一直有比較高的表達(dá),且表達(dá)量基本穩(wěn)定;在雌花發(fā)育中,一階段未表達(dá)或表達(dá)量過低,到二階段才有明顯的表達(dá),直至第三階段達(dá)到較高的水平。JcAGL61-3在雌花中的表達(dá)如同JcAGL1和JcAGL9,初期表達(dá)量很高,遠(yuǎn)高于JcAGL1和JcAGL9在雌花發(fā)育第一階段的表達(dá)量,之后隨時間表達(dá)量逐漸降低,但依舊有較高的表達(dá)水平;在雄花中,第一階段的表達(dá)量相較于雌花低,到第二階段有所上升但仍低于雌花,到第三階段又下降。JcAGL62-1在雌花中的表達(dá)隨發(fā)育先下降后上升,第一階段表達(dá)量很高,第三階段相較第二階段雖有所上升但不及第一階段水平;在雄花中表達(dá)量則是先上升后下降。JcAGL62-6在雌花中的表達(dá)量基本保持穩(wěn)定的,而在雄花中表達(dá)量則是逐漸上升。JcAGL62-7在雄花中表達(dá)量逐漸上升;在雌花中,表達(dá)量隨時間先上升后降低,在第二階段的表達(dá)量最高。JcAGL80-2在雌花中表達(dá)量先下降后上升,第三階段和第一階段表達(dá)水平相似;在雄花中表達(dá)量逐漸上升,但第二階段到第三階段上升幅度不大(如圖3)。
3 討論與結(jié)論
根據(jù)Wu et al(2011)對麻瘋樹早期花發(fā)育的描述,通過體式顯微鏡對麻瘋樹雌雄花進(jìn)行形態(tài)結(jié)構(gòu)觀察,將采集到的處于發(fā)育早期的麻瘋樹雌雄花按發(fā)育時期分成第一、第二、第三階段。第一階段為花發(fā)育的起始,開始由營養(yǎng)生長向生殖生長轉(zhuǎn)變,花原基出現(xiàn)并開始發(fā)育。大量研究表明,雌雄分化是花原基選擇性發(fā)育的結(jié)果(Delong et al,1993; Grant et al,1994),在分子水平上就是表現(xiàn)為相關(guān)基因的選擇性表達(dá),因此麻瘋樹花早期發(fā)育的第一階段特定基因的差異表達(dá)是決定麻瘋樹花性別的重要因素。從表達(dá)結(jié)果可以看出,在第一階段各個目的基因在雌雄花中的表達(dá)情況均有一定的差異,其中JcAGL1, JcAGL9, JcAGL11, JcAGL15, JcAGL61-3,
JcAGL62-1差異最為明顯,表明目的基因的差異表達(dá)可能會影響雌、雄花原基的分化。
在發(fā)育初期決定花原基性別后,各個目的基因表達(dá)水平的變化又直接或間接影響雌雄花的進(jìn)一步生長發(fā)育。JcAGL1和JcAGL9在雌雄花中的表達(dá)模式相反,在雌花中隨著發(fā)育表達(dá)量逐漸降低,說明對雌花發(fā)育有負(fù)調(diào)控作用;在雄花中則是逐漸升高,說明還能正向調(diào)控雄花發(fā)育。JcAGL11在花發(fā)育三個階段雌花中的表達(dá)量均明顯高于雄花,這表明該基因在雌花的早期發(fā)育過程中發(fā)揮重要作用。JcAGL15在第一、第二階段雄花中表達(dá)量要明顯高于雌花,該基因在發(fā)育初期的高表達(dá)有效促進(jìn)花原基向雄花分化;第三階段該基因在雌花中表達(dá)量明顯上升,雌雄花中表達(dá)水平接近,說明JcAGL15也可以促進(jìn)雌雄蕊的進(jìn)一步成熟,在擬南芥中AtAGL15主要參與胚胎發(fā)生和果實成熟(Heck et al,1995;Fernandez et al,2000;Harding et al,2003),JcAGL15在第三階段的表達(dá)情況可能是在為胚胎的發(fā)生做準(zhǔn)備,這與擬南芥中功能相似。JcAGL61-3和JcAGL62-1在第一階段發(fā)育中雌花的表達(dá)量要明顯高于雄花,高表達(dá)可以誘導(dǎo)花原基向雌花發(fā)育;之后JcAGL61-3在雌花中的表達(dá)量逐漸降低,呈現(xiàn)出負(fù)調(diào)控作用;而JcAGL62-1在雌花中表達(dá)量迅速下降至與雄花相當(dāng)?shù)谋磉_(dá)水平,可能是因為該基因主要是在發(fā)育起始這一特定時期發(fā)揮功能,行使功能后便迅速恢復(fù)至正常水平。JcAGL62-6在雄花中表達(dá)量逐漸升高,說明有促進(jìn)雄蕊發(fā)育的作用;在雌花中沒有明顯變化,說明不參與雌蕊的發(fā)育;而且無論是在雌花還是雄花中表達(dá)量都比較高,說明可能還有參與到花非性別器官的生長和發(fā)育。JcAGL62-7和JcAGL80-2在雄花中表達(dá)量逐漸升高,表現(xiàn)出正調(diào)控作用;在雌花的第二個發(fā)育階段JcAGL62-7表達(dá)相對于其他兩個階段上調(diào),而JcAGL80-2則是下調(diào),說明這兩個基因在雌花第二階段的發(fā)育中發(fā)揮較大的作用,前者為正調(diào)控,后者為負(fù)調(diào)控。JcAGL6在雌雄花中表達(dá)差異不大,表達(dá)量隨著發(fā)育逐漸降低,說明可能主要參與到花的發(fā)育,對性別分化的影響較小。
本研究利用qRT-PCR對麻瘋樹中的10個MADS-BOX基因的表達(dá)進(jìn)行了檢測和分析,結(jié)果表明目的基因參與麻瘋樹的雌雄分化以及花發(fā)育,而且各個基因表達(dá)情況不同,說明它們各自發(fā)揮不同的功能,但所發(fā)揮的具體功能以及相關(guān)機理尚不是很清楚,因此還需要進(jìn)一步對目的基因的功能進(jìn)行探究。
參考文獻(xiàn):
BAHADUR B, SUJATHA M, CARELS N, 2013. Jatropha, challenges for a new energy crop, vol. 2: genetic improvement and biotechnology [M]. Springer New York: 263-299.
BEMER M, WOLTERS-ARTS M, GROSSNIKLAUS U, et al, 2008. The MADS domain protein DIANA acts together with AGAMOUS-LIKE80 to specify the central cell in Arabidopsis ovules [J]. Plant Cell, 20(8):2088-2101.
CHIKARA J, JAWORSKY G, 2007. The little shrub that could—maybe [J]. Nature, 449: 652-655.
COLOMBO M, MASIERO S, VANZULLI S, et al, 2008. AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis [J]. Plant J, 54(6): 1037-1048.
DE BODT S, RAES J, FLORQUIN K, et al, 2003. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants [J]. J Mol Evol, 56(5): 573-586.
DELONG A, CALDERON-URREA A, DELLAPORTA SL, 1993. Sex determination gene TASSELSEED 2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion [J]. Cell, 74(4): 757-768.
FERNANDEZ DE, HECK GR, PERRY SE, et al, 2000. The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression [J]. Plant Cell, 12(2):183-198.
GRANT S, HUNKIRCHEN B, SAEDLER H, 1994. Developmental differences between male and female flowers in the dioecious plant Silene latifolia [J]. Plant J, 6(4): 471-480.
GUO CG, WANG CW, LI JF, 2007. Observation on phenology and flower development of Jatropha curcas [J]. Mod Agric Sci Technol, (1):12-13. [郭承剛,王朝文,李建富,2007. 麻瘋樹物候期和花的發(fā)育動態(tài)觀察 [J]. 現(xiàn)代農(nóng)業(yè)科技,(1):12-13.]
HARDING EW, TANG W, NICHOLS KW, et al, 2003. Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15 [J]. Plant Physiol, 133(2): 653-663.
HE YP, FEI SM, XU J, 2008. The inflorescence structure and dynamics of male and female flowers of Jatropha curcas in Sichuan Province [J]. J Sichuan For Sci Technol, 29(2): 1-8. [何亞平,費世民,徐嘉, 2008. 四川麻瘋樹花序結(jié)構(gòu)和雌雄花動態(tài)研究 [J]. 四川林業(yè)科技,29(2):1-8.]
HECK GR, PERRY SE, NICHOLS KW, et al, 1995. AGL15, a MADS domain protein expressed in developing embryos [J]. Plant Cell, 7(8):1271-1282.
HENSCHEL K,KOFUJI R,HASEBE M, et al, 2002. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens [J]. Mol Biol Evol, 19(6):801-814.
HUANG F, CHI YJ, YU DY, 2012. Research advances of MADS-box genes in plants [J]. J Nanjing Agric Univ, 5(5):9-18. [黃方,遲英俊,喻德躍, 2012. 植物MADS-box基因研究進(jìn)展 [J]. 南京農(nóng)業(yè)大學(xué)學(xué)報,5(5):9-18.]
HUANG K, LOUIS JM, DONALDSON L, et al, 2000. Solution structure of the MEF2A-DNA complex: structural basis for the modulation of DNA bending and specificity by MADS-box transcription factors [J]. Embo J, 19(11):2615-2628.
Institute of Botany, Chinese Academy of Sciences, 1979. Key to family and genera of Chinese higher plant [M]. Beijing: Science Press: 253. [中國科學(xué)院植物研究所,1979. 中國高等植物科屬檢索表 [M]. 北京:科學(xué)出版社:253.]
KANG IH, STEFFEN JG, PORTEREIKO MF, et al, 2008. The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis [J]. Plant Cell, 20(3):635-647.
KARUPPAIYA P, YAN XX, LIAO W, et al, 2017. Identification and validation of superior reference gene for gene expression normalization via RT-qPCR in staminate and pistillate flowers of Jatropha curcas-A biodiesel plant [J]. Pone, 12(2):e0172460.
KAUFMANN K, MELZER R, THEISSEN G, 2005. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants [J]. Gene, 347(2):183-198.
KOFUJI R, SUMIKAWA N, YAMASAKI M, et al, 2003. Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses [J]. Mol Biol Evol, 20(12): 1963-1977.
KHLER C, HENNIG L, SPILLANE C,et al, 2003. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1 [J]. Genes Dev, 17(12):1540-1553.
KHLER C,PAGE DR,GAGLIARDINI V,et al, 2005. The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting [J]. Nat Genet, 37(1):28-30.
LIN J, YAN F, TANG L, et al, 2003. Anti-tumor effects of curcin from seeds of Jatropha curcas [J]. Acta Pharmacol Sin, 24(3):241-246.
NEGUSSIE A,ACHTEN WM,VERBOVEN HA,et al, 2014. Floral display and effects of natural and artificial pollination on fruiting and seed yield of the tropical biofuel crop Jatropha curcas [J]. Glob Chang Biol Bioen, 6(3):210-218.
PARENICOV L, DE FOLTER S, KIEFFER M, et al, 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world [J]. Plant Cell, 15(7): 1538-1551.
PELLEGRINI L, TAN S, RICHMOND TJ, 1995. Structure of serum response factor core bound to DNA [J]. Nature, 376(6540):490-498.
PORTEREIKO MF, LLOYD A, STEFFEN JG, et al, 2006. AGL80 is required for central cell and endosperm development in Arabidopsis [J]. Plant Cell, 18(8):1862-1872.
SMACZNIAK C, IMMINK RG, ANGENENT GC, et al, 2012. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies [J]. Development, 139(17):3081-3098.
STEFFEN JG, KANG IH, PORTEREIKO MF, et al, 2008. AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis [J]. Plant Physiol, 148(1):259-268.
WEI JF, WEI DP, WU XK, 2013. Research progress on seed characteristics and its affecting factors of Jatropha curcas [J]. Seed, 32(2):51-55. [韋劍鋒,韋冬萍,吳炫柯,2013. 麻瘋樹種子特性及其影響因素研究進(jìn)展 [J].種子,32(2):51-55.]
WEI Q, LIAO Y, ZHOU LJ, et al, 2004. Antifungal activity of curcin from seeds of Jatropha curcas [J]. Chin J Oil Crop Sci, 26(3):71-75.
WOLLMANN H, MICA E, TODESCO M, et al, 2010. On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development [J]. Development, 137(21): 3633-3642.
WU J, LIU Y, TANG L, et al, 2011. A study on structural features in early flower development of Jatropha curcas L. and the classification of its inflorescences [J]. Afr J Agric Res, 6(2): 275-284.
YOO SK, LEE JS, AHN JH, 2006. Overexpression of AGAMOUS-LIKE 28 (AGL28) promotes flowering by upregulating expression of floral promoters within the autonomous pathway [J]. Biochem Biophys Res Comm, 348(3):929-936.