文曉鵬 仇志浪 洪怡
摘 要:落花落果是果樹普遍存在的一種生理現(xiàn)象,是由于細胞壁降解而引起的花果脫落過程,是利于果樹進化的一種表現(xiàn),但落花落果不利于果樹生產(chǎn)。前人研究表明,果樹花果脫落部位能夠感受外界環(huán)境因子及自身生長因子等脫落信號,從而調(diào)節(jié)果樹細胞內(nèi)相關基因的表達,引起生理生化反應而導致整個器官脫落過程,但各影響因子間的互作機理研究尚待加強。本文從果樹落花落果的類型和特點,環(huán)境因子對落花落果的影響,以及果樹落花落果的生理及分子機制研究進展,旨在為全面深入理解果樹落花落果特性和形成機制,促進果樹高產(chǎn)穩(wěn)產(chǎn)提供新信息。
關鍵詞:果樹;落花落果;機制;植物激素;研究進展
中圖分類號:Q945
文獻標識碼:A
文章編號:1008-0457(2018)04-0001-017 國際DOI編碼:10.15958/j.cnki.sdnyswxb.2018.04.001
Advances in Physiological and Molecular Mechanisms Underlying the Fruit Abscission of Fruit Trees
WEN Xiao-peng,QIU Zhi-lang,HONG Yi
(Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education),Institute of Agro-bioengineering/College of Life Sciences,Guizhou University,Guiyang,Guizhou 550025,China)
Abstract:Fruit and flower abscission is a phenomenon commonly occurred in fruit trees due to the degradation of cell walls.It is a kind of adaptation behavior that is conducive to the evolution of fruit trees,but give a negative effect for fruit production.To date,intensive researches have demonstrated that after the abscission signal of external environmental factors and interior self-growth factors were received,the expression levels of related genes as well as physiological and biochemical responses,leading to the formation of the abscission layer of fruit pedicels and the occurrence of fruit abscission,however,the interaction mechanism between the factors have been not yet perfect so far.Currently,the types and characters of flower and fruit abscission,the environmental factors leading to the flower and fruit abscission,and the advances in the physiological and molecular mechanisms underlying the flower and fruit abscission are reviewed,which are beneficial for the further understanding of the characters and formation mechanisms of flower and fruit abscission so as to improve the fruit yield.
Key words:fruit tree; flower and fruit abscission; mechanism; phytohormone; advance
落花落果是普遍存在于果樹中的一種現(xiàn)象,是一個對果樹進化非常有利的過程[1]。但對于果農(nóng)來說,花果脫落可能成為限制果樹產(chǎn)量的重要因素[2]。果樹的落花落果是由環(huán)境因子、生理生化代謝,以及基因表達等共同調(diào)節(jié)的結(jié)果[3]。為了更好地服務于農(nóng)業(yè),提高果實產(chǎn)量,全面認識果樹落花落果的機制尤為重要[4]。從理論上講,所有果樹都會經(jīng)歷落花落果,最常見的因果實脫落而嚴重影響產(chǎn)量的果樹有桃[5]、李[6]、梨[7]、棗[8]、櫻桃[9]、蘋果[10]、柑橘[11]、芒果[12]、夏威夷果[13]、橄欖[14]、葡萄[15]、柿樹[16]、荔枝[2,17]、文冠果[18]等。因此,了解果樹落花落果的類型和特點,環(huán)境對落花落果的影響,以及從生理和分子生物學層面揭示果樹落花落果的機制,對生產(chǎn)上如何減輕花果脫落,保證產(chǎn)量和品質(zhì)有重要意義。本文將從果樹落花落果的類型和特點,導致落花落果的環(huán)境因子,花果脫落的生理及分子機制,旨在為提高果樹產(chǎn)量和品質(zhì)提供理論和技術支持。
1 果樹落果的類型和特點
1.1 生理落果
從進化角度上看,植物都應具備過度生殖的特性。為了繁衍生息,很多果樹也進化出大量座果的特性,但植株制造的養(yǎng)分是有限的,因此不可避免地會出現(xiàn)花果脫落現(xiàn)象。在果實生長發(fā)育過程中,為了使部分種子(果實)能夠完成整個生命活動,會主動淘汰發(fā)育不良的和過多的花果,避免和減輕養(yǎng)分的浪費,以保證發(fā)育正常的種子(果實)能夠完成自己的生物學使命;或是在果實成熟時主動脫落,便于自身種子能夠掉落到土里,從而達到延續(xù)后代的目的。果樹的生理落果通常分為四次,第一次是落花,指未正常受精的花脫落[19];第二次是落花之后15~20天的幼果脫落,這些果實雌性器官正常,但受精不正常,最終導致胚和胚乳發(fā)育受限,進而引起脫落[20];第三次生理落果又稱“六月落”,是指在六月前后的果實大量脫落,這時期的脫落大多也是由于胚和胚乳發(fā)育不正常而導致的脫落[21];第四次則是采前落果,是因為果實成熟、衰老而引起的果柄細胞壁降解的過程[22]。落果率的高低與果實中激素含量變化及樹體營養(yǎng)水平密切相關。
1.2 異常落果
異常落果通常是指花果在發(fā)育過程中,因異常氣候、營養(yǎng)不足、病蟲害等因子的影響而導致嚴重影響產(chǎn)量的脫落。如柑桔在花期和幼果期遇高溫干燥或長時間低溫陰雨等不利天氣,勢必造成柑桔授粉受精不良,繼而發(fā)生嚴重的落花落果[23]。在杏中已有研究表明,花期遇大雨會導致受精不良,進而導致落花落果[24];在椰子中也發(fā)現(xiàn)氣候的變化與授粉有著極大的關系[25]。在柑桔、橄欖、鱷梨、龍眼的研究中發(fā)現(xiàn),碳水化合物和礦質(zhì)營養(yǎng)對果實生長和脫落起著重要作用[26-29]。在歐洲堅果和芒果中發(fā)現(xiàn),病蟲害對其落果有著重要影響[30]。
2 影響果樹落花落果的環(huán)境因子
在果樹的生長發(fā)育過程中,氣候的變化會使其遭受各種生物和非生物脅迫[31-32],而這些生物和非生物脅迫則會導致花果的脫落,使果實產(chǎn)量減少。
2.1 生物脅迫對花果脫落的影響
在生物脅迫之后,植物免疫系統(tǒng)的激活(其允許從生長和發(fā)育轉(zhuǎn)變?yōu)榉烙J剑┩ㄟ^激素和(或)碳水化合物含量的變化導致缺乏營養(yǎng),從而誘導脫落。雖然已知生物應激通過發(fā)育和生理學改變誘導脫落[33-35],但是僅有少數(shù)研究致力于生物應激對花果脫落的特定作用。例如有研究表明,炭疽菌(Colletotrichum acutatum)誘導柑橘類水果脫落可能是由于生長素和相關吲哚化合物之間平衡的改變所致[36]。
2.2 非生物脅迫對花果脫落的影響
非生物脅迫因素通過降低大多數(shù)主要作物的平均產(chǎn)量對世界農(nóng)業(yè)產(chǎn)生巨大影響[37]。在開花時,溫度(冷/熱)、水可用性和光輻射(質(zhì)量和數(shù)量)被認為是脫落的主要原因。
2.2.1 溫度脅迫 植物應對惡劣溫度的能力非常復雜,不僅取決于溫度狀況,還取決于遺傳特性,并且已在多種物種中報道[38-43]。許多研究報告了有害溫度(冷/熱)對生殖器官和后續(xù)果實的影響(表1)。簡而言之,溫度脅迫可以在雄性和雌性的繁殖發(fā)育之間產(chǎn)生不同步,是這兩者成功繁殖所必須的[44-45]。例如,在杏花中,溫暖的環(huán)境會加速開花,但不會促進幼芽的發(fā)育,導致雌蕊重量減少,花柱長度縮短[46]。
2.2.2 水分脅迫
干旱或洪澇均可稱水分脅迫,由于植物生長和活力下降,水分脅迫可能促進植物器官的脫落[56]。例如,柑橘在嚴重缺水條件下開花減少,在橄欖中水可用性增加開花和結(jié)果,并減少果實掉落[57-58]。在蘋果和柑橘中,開花期間的水分脅迫影響單株果實數(shù)量,顯著降低了產(chǎn)量[59-60]。對這些結(jié)果的解釋導致了一種假設的產(chǎn)生,即水分脅迫促使根中ACC (1-aminocyclopropane-1-carboxylate)積累,其在去除應力后轉(zhuǎn)移到枝條并氧化形成乙烯,這反過來促進花果的脫落[56]。但是,近年來發(fā)現(xiàn)適度的水分脅迫可減少柿樹果實的脫落,而且提出可將這種適度水分脅迫用于生產(chǎn)上,減少果實的脫落進而提高產(chǎn)量[61]。
2.2.3 光脅迫
黑暗和弱光會引起多種植物花果的脫落[56],例如大豆、葡萄、棉花、胡椒等在生殖發(fā)育過程中遮陰30%-90%均顯著增加花序和果實脫落[62-65]。并且近年也發(fā)現(xiàn),遮陰處理對荔枝落果也有影響,在遮陰處理5天時,相對落果率差異最大,5~7 天后對照的相對落果率迅速增加,而處理中的相對落果率緩慢增加,但處理中的相對落果率始終高于對照[66]。
3 果樹落花落果的生理機制
生理生化代謝是果樹生長發(fā)育極為重要的因素,但在果樹落花落果中,碳水化合物[67]、激素[68]、礦質(zhì)元素[69]、pH[70]等都扮演著重要角色。
3.1 碳水化合物與落花落果
碳水化合物(Carbohydrate)是植物生長發(fā)育所必須的一類化合物,在果樹落花落果中也扮演著重要角色。在果樹形成花芽期間,需要大量營養(yǎng)物質(zhì),用于胚珠發(fā)育[71]。如在此期間營養(yǎng)供應不足,便會導致花芽形成受影響,花的育性降低,影響授粉受精,進而引起花果脫落[17]。此外,糖分太低會誘導活性氧(Reactive Oxygen Species,ROS)產(chǎn)生,進而導致花果脫落,這在龍眼中已證實[72]。在荔枝上也發(fā)現(xiàn),糖脅迫誘導荔枝果實脫落,其主要機制可能是糖饑餓誘導細胞新陳代謝,如激素信號轉(zhuǎn)導、蛋白激酶激活、轉(zhuǎn)錄因子激活等改變,引起蛋白水解、細胞分離、細胞死亡的發(fā)生,最終導致果實脫落[17],且有證據(jù)顯示,糖饑餓可誘導荔枝生長素信號轉(zhuǎn)導相關基因的表達變化[67]。碳水化合物為細胞提供能量,一旦能量缺乏則會導致新陳代謝紊亂,細胞程序化死亡,進而引起落花落果。
3.2 植物激素與落花落果
植物激素(Phytohormone)是植物生長發(fā)育過程中不可或缺的一類物質(zhì)[73],在果樹落花落果和?;ū9幸矘O為重要,有的促進花果脫落,而有的則起抑制作用[56]。常見的與落花落果相關的植物激素有生長素、赤霉素、細胞分裂素、乙烯、脫落酸[74]等,其作用機制也不盡相同。
3.2.1 生長素
生長素(Auxin)是一類含有一個不飽和芳香族環(huán)和一個乙酸側(cè)鏈的內(nèi)源激素,在植物生長發(fā)育過程中發(fā)揮重要作用[75]。生長素在果樹生長發(fā)育中具有促進根、莖、葉生長,維管束組織的形成和分化發(fā)育,以及植物的向地和向光反應等功能[76],在果樹花果脫落中也具有重要作用。早在1955年,科學家就提出的“生長素梯度論”[77],并通過實驗證明,用NAA、IAA、2,4-D等對番茄花絮脫落有抑制作用。由于生長素的運輸方式為極性運輸,因此如極性運輸途中受到阻礙,也會加速器官的脫落。如Drazeta等[78]用生長素極性運輸抑制劑 NPA(N-(1-Napthyl)phthalamic acid)處理蘋果梗部,增加了果實的脫落率。在葡萄中也發(fā)現(xiàn),生長素極性運輸如果被抑制,會導致葡萄果實脫落[79]。通過沉默番茄中SlPIN1基因發(fā)現(xiàn),番茄花器官生長素在源庫端分布異常,促進了花柄脫落,這表明SlPIN1可能對番茄花器官維持正常的生長素極性運輸、阻止脫落具有重要的作用[80]。因此,生長素在轉(zhuǎn)運過程中如遭阻止,將會影響植物體內(nèi)激素平衡,從而引起脫落。
在生長素進入植物細胞中行使功能時,必須由一部分生長素受體及生長素響應因子參與方可完成。其中較為重要的受體之一為AUX1,該受體存在于細胞膜上,對生長素進入細胞起關鍵作用。番茄果實脫落機理研究中發(fā)現(xiàn),在脫落初期,AUX1基因下調(diào)表達[81],說明在脫落初期,生長素進入細胞的途徑受到阻礙,進而導致番茄果實脫落。生長素的作用依賴于生長素響應因子Aauxin Response Factor,ARF),大多數(shù)的 ARF 蛋白有三個結(jié)構域:一個N末端DNA 結(jié)合域,一個C末端可以與AUX/IAA 結(jié)合形成 AUX/IAA-ARF,中間區(qū)域負責活化或抑制基因轉(zhuǎn)錄,它們可與生長素響應元件(Auxin Response Element,AuxRE)的 TGTCTC 結(jié)構結(jié)合,從而活化或抑制受生長素調(diào)控的基因表達,調(diào)控生長素許多生理效應[82]。當細胞處于低濃度生長素條件時,AUX/IAA 與 ARF 結(jié)合形成 AUX/IAA-ARF復合物,從而抑制 ARFs 的活性;當生長素濃度升高時,生長素與TIR1結(jié)合,可促進 AUX/IAA 的泛素化途徑水解,AUX/IAA-ARF 解離,進而激活 ARFs,引起生長素應答基因的表達[83]。并且,已有較多的研究證明生長素在抑制花果脫落有著重要作用。如人工合成的生長素對荔枝果實的脫落有明顯的減少[84]。
3.2.2 赤霉素
赤霉素(Gibberellin,GA)是常見五大類植物激素之一,在植物生長發(fā)育階段具有重要調(diào)控作用[85]。GA不僅自己能起作用,且能與其他激素間存在相互作用,其作用方向和類型取決于組織器官、發(fā)育階段及環(huán)境條件,使GA對植物生長發(fā)育的調(diào)控及其在不同器官中的生理功能不同[86]。通過外源噴施GA,促進了內(nèi)源 GA、IAA、ZR 含量的積累,延緩了GA、IAA、ZR的下降速度,進而抑制了果實脫落[87]。GA 抑制果實成熟衰老的另一機制是通過抑制ACC的積累,進而抑制乙烯的生物合成來實現(xiàn)[88];同時有研究證實,GA有促進IAA生物合成的作用[89]。此外,用 GA3 噴灑到甜橙上也能明顯防止果實脫落[90]。但是,也有證據(jù)顯示,是外源GA對脫落無影響[91]。在對葡萄脫落機制研究中發(fā)現(xiàn),GA和遮陰均可誘導花器官脫落[15]。因此,GA對植物器官的脫落所起的作用目前存在爭議,需進一步深入的研究,方可清楚其機制,進而為落花落果的防止提供理論依據(jù)。
3.2.3 細胞分裂素
細胞分裂素(Cytokinins,CTK)是一類重要植物生長調(diào)節(jié)激素,廣泛調(diào)控植物生長發(fā)育過程[1,92]。在芒果中發(fā)現(xiàn),細胞分裂素促進了維管組織的分化,增加了對營養(yǎng)物質(zhì)的轉(zhuǎn)運,進而減少了果實脫落[4]。將細胞分裂素應用于夏威夷果的花和未成熟果實上,發(fā)現(xiàn)細胞分裂素促進了坐果和延遲了果實脫落[93]。此外,在非果樹植物中也存在細胞分裂素調(diào)控花果器官脫落,如石斛[94],豇豆[95]等,其主要機制可能是噴施CTK可通過降低花莢中的多聚半乳糖醛酸酶活性和纖維素酶活性,從而降低花莢脫落率實現(xiàn)對豇豆產(chǎn)量的調(diào)控[96]。
3.2.4 脫落酸
脫落酸 (Abscisic acid,ABA) 是20世紀60年代在植物體內(nèi)發(fā)現(xiàn)的半萜類化合物,在植物生長和響應逆境過程中發(fā)揮著重要作用[97]。首次發(fā)現(xiàn)脫落酸時,因它促進脫落,脫落酸被稱為脫落素II[98]。隨后,科學家也發(fā)現(xiàn)棉花果實發(fā)育和脫落酸存在著較大的相關性[99]。后來,科學家又發(fā)現(xiàn)水脅迫引起柑桔葉子脫落,在根部有大量的脫落酸積累,因此認為柑橘在水脅迫中,乙烯所引起的落葉,需要之前根部脫落酸的積累[100]。其原因是脫落酸增加了纖維素酶的活性,并且纖維素酶合成也增加[101-102]。另外,研究人員還認為脫落酸通過刺激合成乙烯從而加速脫落[103]。在班菲爾臍橙第一和第二次生理落果期,脫落果實中脫落酸含量顯著高于正常果實[104]。有人通過對無核荔枝脫落酸合成關鍵酶LcNCED基因的克隆及其在生理落果階段中的表達分析,結(jié)果發(fā)現(xiàn)LcNCED2 在離區(qū)中表達量變化比較符合無核荔枝生理落果趨勢,因此推測LcNCED2與荔枝生理落果密切相關,也可推斷脫落酸在果實生理落果中起著重要作用[105]。此外,脫落酸還可能與其他激素和第二信使共同作用產(chǎn)生一個導致下游脫落區(qū)被激活的信號[106]。因此,脫落酸促進花果脫落的機制較多,還有待進一步深入研究。
3.2.5 乙烯
乙烯(Ethylene,ETH)是具有促進成熟、衰老和脫落作用的一類激素,在果樹落花落果過程中,乙烯也起著重要作用。早在1968年,科學家們就發(fā)現(xiàn)乙烯與器官脫落有關[107]。至此以后,陸續(xù)報道了擬南芥[108]、桃[109]、番茄[110]、蘋果[111-113]、柑橘[114-115]等多種植物的多種器官脫落都與乙烯密切相關。直到最近,還有科學家通過microRNA研究,發(fā)現(xiàn)Sly-miR1917的過表達增強了乙烯反應,在缺乏乙烯的情況下,也能加速葉柄生長,加速花梗脫落和果實成熟[116]。因此,乙烯被認為是植物脫落的天然調(diào)節(jié)劑。
乙烯之所以能調(diào)控落花落果,是由于其受體作為負調(diào)控元件對乙烯信號進行感知,抑制下游的CTR1,激活細胞質(zhì)中正調(diào)控因子EIN2,進而將信號傳遞給細胞核內(nèi)的 EIN3/EIN3-LIKEs(EIN3/EILs),促進轉(zhuǎn)錄因子ERF的表達[117],最終誘導一系列與乙烯反應相關基因的轉(zhuǎn)錄翻譯,從而引起離區(qū)細胞壁水解酶活性增強和基因表達量上升,進而導致離區(qū)細胞壁發(fā)生破碎,最終導致落花落果[118]。在乙烯生物合成過程中,ACC氧化酶ACO是植物體內(nèi)乙烯合成的關鍵酶,而通過1-MCP (1-methylcyclopropene)處理可降低開花中的ACC合成酶和花蕾中的ACC氧化酶活性,抑制了花序中乙烯的產(chǎn)生,從而防止了花的脫落[119]。值得一提的是,與乙烯的合成共用同一前體的多胺,多胺在果實生長發(fā)育過程中的作用是促進坐果,其原因是多胺的合成與乙烯的合成形成了競爭關系,從而降低乙烯合成量,進而促進坐果。
3.3 pH對落花落果的影響
細胞內(nèi)pH值(Intracellular pH,pHi)是細胞生理活動的重要調(diào)節(jié)因素,胞內(nèi)pH值不僅能調(diào)節(jié)酶活性和一些重要的代謝過程,細胞內(nèi)許多生理活動如ATP合成、DNA復制、蛋白質(zhì)合成以及細胞生長等都受胞內(nèi)pH值的調(diào)節(jié)[120]。因此,離區(qū)也不例外,離區(qū)pH值控制著各種各樣的過程,其中可能是基因表達的信號[121],也可能是纖維素、果膠等酶活性,進而影響器官的脫落。早在多年前,就有人預測了pH可能與器官的脫落過程相關[122],但這個猜測卻一直未被證實。直到近年,才有少量文章報道關于pH對器官脫落的影響。研究發(fā)現(xiàn),pH值變化是離區(qū)特異性的,并與在三個不同的脫落系統(tǒng)中脫落的執(zhí)行一致。目前的數(shù)據(jù)表明,在擬南芥花器官的自然脫落期間離區(qū)細胞的胞質(zhì)pH逐漸增加;在番茄花梗脫落期間觀察到類似的pH增加,但是pH變化較小;有人用乙烯處理芝麻菜,結(jié)果發(fā)現(xiàn)顯著增強了花梗的脫落,并且pH在離區(qū)特異性的上升,相反用1-MCP抑制花梗脫落時,在24 h之后完全抑制了離區(qū)pH值的增加[123]。與芝麻菜類似,用1-MCP預處理番茄外植體時,在其花去除后抑制花梗脫落。
離區(qū)細胞的pH除了影響離區(qū)的酶活性以外,離區(qū)pH的升高還可能作為信號轉(zhuǎn)導途徑的一個組成部分,從而獲得脫落的能力,并可能依次作為脫落相關基因的表達信號。此外,細胞質(zhì)的堿化可能反映在質(zhì)外體的酸化中,因為質(zhì)外體酸化是由H+ -ATPase和特定的轉(zhuǎn)運蛋白從細胞質(zhì)中泵出H+而導致[124]。質(zhì)外體的酸化可能激活細胞壁修飾酶[122]。事實上,最近有報道指出,當乙烯利處理的菜豆葉柄經(jīng)歷pH值為3.5或5.5時,會改變質(zhì)外體pH值,發(fā)生脫落,而在pH為7時,脫落受到抑制[125]。然而,作者卻在滿江紅根部獲得了相反的結(jié)果,pH的降低抑制脫落。微陣列結(jié)果表明,液泡型H+轉(zhuǎn)運ATP酶、質(zhì)膜H+-ATP酶、硝酸鹽和(或)銨轉(zhuǎn)運蛋白以及GTP結(jié)合蛋白在離區(qū)特異改變。并且以上這些基因的改變在擬南芥雄蕊[126]、柑橘葉[127]、蘋果花[128]、成熟的橄欖果實[129]、甜瓜[130]、番茄花梗[132]得到證實。Sundaresan等[71]認為,滿江紅與菜豆之間pH敏感性的顯著差異可能歸因于這些物種中果膠酶的最佳pH值不同。在以上植物系統(tǒng)中,除柑橘和番茄是外源乙烯誘導脫落外,其余均為內(nèi)源乙烯誘導的脫落。
此外,在模擬酸雨對龍眼幼果纖維素酶活性和內(nèi)源激素含量的影響中發(fā)現(xiàn),易脫落幼果的纖維素酶活性和脫落酸 含量高于正常幼果,而 IAA、GA1+3、iPAs、ZRs、DHZRs含量低于正常幼果,說明酸雨引起龍眼幼果脫落可能通過改變內(nèi)源激素含量及組成,進而調(diào)控纖維素酶活性而促進果實脫落[132]。這些研究結(jié)果,為器官脫落過程中pH參與果實脫落提供了證據(jù),其可能通過離區(qū)細胞中轉(zhuǎn)運蛋白的特異性修飾來調(diào)節(jié)。
4 果樹落花落果的分子機制
果樹落花落果的直接原因是由于細胞壁的降解,而細胞壁的降解又是由于一些與之相關的纖維素酶、果膠酶、過氧化物酶、多聚半乳糖醛酸酶、木葡聚糖內(nèi)轉(zhuǎn)葡糖基酶/水解酶,以及擴展蛋白等導致細胞之間的粘附力破壞[133-138]。而引起這些酶的基因上調(diào)表達則又是體內(nèi)糖、激素、多胺等多種因素所致,這些生理指標的變化又是由多基因的差異表達所調(diào)控,還包括轉(zhuǎn)錄因子調(diào)控相關功能基因的表達。因此,落花落果的生理機制和分子機制互相影響,共同調(diào)節(jié)果樹花果的脫落。
4.1 落花落果相關酶及蛋白
4.1.1 纖維素酶
纖維素和果膠是植物細胞壁主要組成部分,而纖維素酶具有水解纖維素的作用,可使細胞壁降解,因此該酶在植物器官脫落上發(fā)揮重要作用[139]。研究發(fā)現(xiàn),在脫落之前,離區(qū)細胞中纖維素酶活性較高,表明該酶在細胞分離中發(fā)揮作用[140]。隨后發(fā)現(xiàn)在柑橘葉、果脫落之前,纖維素酶活性顯著上調(diào)[141-142]。迄今為止,纖維素酶活性已經(jīng)成為判斷植物器官脫落的常用指標。如Qi等[143]通過在番茄中超表達梨PsJOINTLESS基因,增加了番茄果實的脫落率,并且纖維素酶在轉(zhuǎn)基因植株中的活性高于野生型,進而確定PsJOINTLESS基因與器官脫落相關。
4.1.2 果膠酶
果膠酶(Pectinase)普遍存在于高等植物不同組織器官,如根、莖、葉、果實等,在細胞壁降解中發(fā)揮重要作用[144]。果膠酶在促進果實成熟上起著重要作用,在器官脫落的研究上,編碼果膠酶基因的表達主要受乙烯調(diào)控,可以為多聚半乳糖醛酸酶做準備底物,從而輔助植物器官的脫落[145],但仍存在較多爭議。在煙草葉柄離區(qū)中發(fā)現(xiàn)有較高活性的果膠酶[146];而Ratner等[147]發(fā)現(xiàn),柑桔葉柄脫落過程與果膠酶存在必然聯(lián)系。在番茄果實綠熟期,果實與花托的連接處無果膠酶活性,而在即將脫落果實與花托連接處一側(cè)的次生木質(zhì)部中,果膠酶活性顯著增強[148];在橄欖中也發(fā)現(xiàn),經(jīng)乙烯利處理后增加了離區(qū)的果膠酶的活性[149]。因此,果膠酶在果樹的落花落果中也有較高的相關性。
4.1.3 多聚半乳糖醛酸酶
多聚半乳糖醛酸酶 (Polygalacturonase ,PG) 是一種細胞壁結(jié)合蛋白,可以催化果膠分子中α- (1 ,4)-聚半乳糖醛酸的裂解,參與果膠的降解,使細胞壁結(jié)構解體,導致果實軟化[150]。外切多聚半乳糖醛酸酶可水解果膠分子的非還原端產(chǎn)生半乳糖醛酸,內(nèi)切多聚半乳糖醛酸酶可隨機地在不同部位水解切開α-1,4-半乳糖苷鍵,斷裂多聚半乳糖醛酸鏈,進而起到水解果膠的作用[151]。研究發(fā)現(xiàn),多聚半乳糖醛酸酶在桃、番茄、荔枝、梨等果樹的落花落果中發(fā)揮作用,該酶促進落花落果的原因是促進初生細胞壁松弛[152-155]。
4.1.4 過氧化物酶
過氧化物酶(Peroxidase,POD)是植物體內(nèi)廣泛而大量存在的、活性較高的一種氧化還原酶。它能催化植物體內(nèi)多種反應,參與光合作用、呼吸作用、抗病作用、植物生長等諸多生理活動[156],因此,過氧化物酶在不同逆境脅迫下會呈現(xiàn)出不同結(jié)果。據(jù)報道,過氧化物酶活性在植物器官脫落過程中也有增強[151]。此外,還發(fā)現(xiàn)過氧化物酶具有分解吲哚乙酸的功能[157]。過氧化物酶對植物器官脫落的調(diào)節(jié)機制,主要是通過參與生長素的氧化進程實現(xiàn),該酶能夠降低離區(qū)生長素水平,促進植物器官脫落。在研究碳水化合物對龍眼脫落的影響中,發(fā)現(xiàn)過氧化物酶活性上升[73];尹寶重等[158]在探索短日照對紅小豆花器官脫落的研究中,發(fā)現(xiàn)12 h短日照處理落花數(shù)和比例均最低,且過氧化物酶活性在脫落部位最低。
4.1.5 擴展蛋白
擴展蛋白(Expansin,EXP)是一種細胞壁蛋白,可調(diào)節(jié)細胞壁的松弛和伸展[159]。植物在正常生長條件下,細胞壁中擴展蛋白的含量較低,但在特定發(fā)育階段,或遭受外界環(huán)境因子刺激時,擴展蛋白含量可迅速提高幾倍甚至上百倍[160]。如在接骨木中,乙烯促進的小葉脫落期間,特異性檢測到在遭受細胞分離的組織中擴展蛋白活性7倍增加,而在鄰近的非脫落組織中活性較低[161]。此外,在大豆脫落葉柄離區(qū)也發(fā)現(xiàn)擴展蛋白有顯著上調(diào)[162]。有數(shù)據(jù)顯示,離區(qū)定位擴展蛋白抗原決定簇顯著增加,并且在脫落之前的黃化階段檢測到最高水平的擴展蛋白,推測擴展蛋白可能增加纖維素晶體的紊亂,使得葡聚糖鏈更易于水解,這表明擴展蛋白通過促進纖維素與細胞壁中其他組分之間的連接降解而在脫落中起作用[163]。
4.2 離區(qū)細胞的分化
了解離區(qū)(Abscission Zone,AZ)細胞結(jié)構是了解果樹落花落果所必須,前人對離區(qū)進行解剖結(jié)構觀察,發(fā)現(xiàn)離區(qū)是由幾層小細胞帶組成,呈方形,含有致密的細胞質(zhì)[164]。它們的分化可能在果實發(fā)育早期或相對較晚期開始[165],并且被大量的轉(zhuǎn)錄因子調(diào)控。這些轉(zhuǎn)錄因子主要包括JOINTLESS[143,166],MACROCALYX[167],LS[168],以及 BLADE-ON-PETIOLE (BOP)[169]。有人用圖位克隆法,首次從番茄中克隆出了JOINTLESS基因,并鑒定該基因是具有MADS-box結(jié)構的轉(zhuǎn)錄因子,在控制離區(qū)發(fā)育上有重要作用,而且只存在于花梗中,在葉中不存在[166],表明該基因存在組織特異性。最近,又從“庫爾勒香梨”中克隆出JOINTLESS基因,并將其在番茄中超表達,發(fā)現(xiàn)該基因?qū)е鹿毎Y(jié)構變化,形成離區(qū),并且增強了脫落相關基因的表達[143]。MACROCALYX和JOINTLESS 可相互作用,形成了具有特異DNA結(jié)合活性的二聚體。調(diào)節(jié)植物激素相關功能,細胞壁修飾,脂肪酸代謝,以及轉(zhuǎn)錄因子活性[167]。關于LS基因(番茄突變體側(cè)抑制子),它是編碼VHIID蛋白家族的新成員,也被認為是控制花梗離區(qū)形成的轉(zhuǎn)錄激活因子,控制著花梗離區(qū)的形成[168]。擬南芥BLADE-ON-PETIOLE 1(BOP1)和BOP2基因編碼冗余轉(zhuǎn)錄因子,促進葉和花發(fā)育過程中的形態(tài)不對稱。功能喪失的bop1、bop2突變體顯示出一系列發(fā)育缺陷,包括喪失花器官脫落[170]。在煙草中也發(fā)現(xiàn)類似現(xiàn)象,NtBOP2基因的過表達導致離區(qū)細胞的異常伸長而引起花冠脫落失敗[169],其機制是NtBOP2通過與TGA轉(zhuǎn)錄因子的相互作用來控制離區(qū)的發(fā)育。
除了以上幾種轉(zhuǎn)錄因子以外,在擬南芥、番茄、水稻等模式植物中也有發(fā)現(xiàn)LeWUS,GOBLET (GOB)與Blind (Bl)在花梗離區(qū)有表達,但是在花梗周圍的其他區(qū)域沒有發(fā)現(xiàn),這表明這些基因參與離區(qū)的功能[167]。番茄LeWUS與擬南芥WUS編碼同源的轉(zhuǎn)錄因子,在莖尖分生組織中扮演著至關重要的角色[171-172]。同時,GOB、Bl以及Ls與擬南芥中的CUC、LAX以及RAX同源,這些基因調(diào)節(jié)腋生分生組織的發(fā)育[173-177 ]?;ükx區(qū)細胞一直到脫落都很小[178],而在番茄中,這個細胞的大小可能是由于Bl調(diào)節(jié)的[179]。另外,GOB可能會像擬南芥同源基因CUC2一樣,起到維持桿狀細胞的作用[180]。與SAM細胞相似,番茄花梗離區(qū)細胞也有能力發(fā)育不定芽[167],表明LeWUS活性可能影響離區(qū)細胞的命運,在莖尖分生組織中調(diào)節(jié)細胞活性,其作用方式與擬南芥同源物相似。這些發(fā)現(xiàn)表明,離區(qū)的形成與莖尖分生組織有著特定的調(diào)控機制。
4.3 脫落信號的產(chǎn)生與傳遞
果樹中脫落信號的產(chǎn)生往往受環(huán)境因子的影響,如溫度、光、水的過多或過少都會引起樹體內(nèi)一些化合物的變化,這些化合物主要包括激素、糖類、多胺等。而這些化合物的變化會引起一些基因或轉(zhuǎn)錄因子的變化,進而促進落花落果。
4.3.1 激素、糖類和多胺與落花落果
支持激素之間,激素和糖類之間以及激素和多胺之間聯(lián)合作用的證據(jù)主要來自對蘋果、芒果和柑橘的研究[66,92,181]。這些化合物的協(xié)同作用或拮抗作用及其相應的生物合成途徑在調(diào)節(jié)果實脫落中起重要作用,從而能夠?qū)?nèi)部和外部因素作出充分反應[182]。目前,人們普遍認為,離區(qū)的乙烯和生長素含量之間的平衡是影響果實脫落的重要因素。乙烯促進果實脫落,而生長素阻礙這一過程,并降低了離區(qū)對乙烯的敏感性[57]。然而,生長素本身通過增加ACS基因的表達來刺激乙烯的產(chǎn)生[183-184]。反過來,乙烯作為反饋抑制因子阻止生長素從水果中運輸[66]。關于生長素和乙烯相互作用的分子機制仍然缺乏詳細了解。脫落酸似乎通過增加ACC水平而具有脫落加速效應[92,185]。因此,少數(shù)情況下果實脫落是由生長素和脫落酸的相對濃度決定[186]。脫落酸可能參與了糖缺乏的感知,進而將糖缺乏與果實脫落聯(lián)系起來[92]。
基于轉(zhuǎn)錄組測序數(shù)據(jù),ROS信號可能與糖缺乏有關,脫落酸信號可能同時協(xié)調(diào)糖-ROS。隨后,被相關調(diào)節(jié)蛋白引起的脫落酸-乙烯聯(lián)合作用可以促進果實脫落,并且在脫落果實中發(fā)現(xiàn)一個編碼AMP激活蛋白激酶的基因上調(diào),該基因可能參與脫落酸-蔗糖聯(lián)合起作用[187]。另外,S6PDH基因也可能作為脫落酸介導的應激反應基因參與脫落酸-蔗糖聯(lián)合作用[66]。與果實脫落控制相關的糖類和激素之間的關聯(lián)中的關鍵基因需要進一步鑒定。特別是糖類作為信號分子在激素生物合成或果實脫落信號傳導途徑的直接調(diào)節(jié)中的作用仍有待研究。
在橄欖果實脫落期間,乙烯產(chǎn)量的增加伴隨著Put積累,其中ADC和SAMDC活性分別上調(diào)和下調(diào),目的是調(diào)節(jié)乙烯和多胺生物合成途徑之間的關系,協(xié)調(diào)控制果實脫落[188-189]。外源乙烯均上調(diào)ADC和ODC活性,而與果實脫落相關的ACO抑制劑CoCl 2僅抑制ADC活性,提示通過ADC合成的Put主要通過刺激果實離區(qū)中的ACO活性來調(diào)控[190]。此外,CoCl 2通過增強SAMDC活性提高果實離區(qū)中的Spd和Spm量,從而增強SAM的通量,然而,外源乙烯下調(diào)SAMDC活性以及OeSAMDC1基因表達[190]。鑒于乙烯和多胺生物合成途徑通過SAM連接,似乎乙烯和多胺之間的拮抗關系主要通過SAMDC活動進行調(diào)整[190]。多胺生物合成具有改變SAMDC活性的巨大潛力,表明這兩種途徑間競爭支持來自觀察到OeACS2和OeEIL2表達在Spd的陰性對照下,而外源乙烯在橄欖成熟果實脫落期誘導其表達[189]??紤]到乙烯和多胺生物合成途徑通過SAM連接,推測乙烯和多胺之間的拮抗關系主要通過SAMDC活性調(diào)節(jié),并且所有可影響乙烯和多胺生物合成的內(nèi)部和外部因素具有改變SAMDC活性的巨大潛力[190]。有報道,用Spd處理觀察到OeACS和OeEIL2未表達,而用外源乙烯處理卻誘導他們在成熟果實脫落期間表達[189]
4.3.2 轉(zhuǎn)錄因子與器官脫落
MYB基因家族是植物中最大的一類轉(zhuǎn)錄調(diào)控因子,在代謝、發(fā)育和抗逆性等方面起著重要作用[191]。在落花落果方面報道較少,但近年來有涉及在器官脫落上的研究報道,如已確定MYB家族基因AS1在建立萼片和花瓣離區(qū)位置方面具有作用,在as1突變花中,萼片和花瓣離區(qū)向遠側(cè)移位,內(nèi)側(cè)萼片的脫落顯著延遲[192];木薯R2R3 MYB亞家族轉(zhuǎn)錄因子與環(huán)境應力誘導的脫落有關,有9個R2R3 MYB亞家族基因在葉子脫落期間高度表達,對啟動子順式元件的進一步分析證實R2R3 MYB亞家族響應乙烯,并調(diào)節(jié)木薯離區(qū)發(fā)育[193]。通過轉(zhuǎn)錄組分析番茄花梗組織,發(fā)現(xiàn)MYB78在離區(qū)特異性高表達,說明MYB78與器官的脫落存在著較大的相關性[194];通過克隆MYB基因并進行分析,發(fā)現(xiàn)MYB與花萼的脫落存在一定關系[195]。
WRKY轉(zhuǎn)錄因子是一類 DNA 結(jié)合蛋白,主要存在于植物中,參與植物的各個生理過程,涉及生長、發(fā)育和自我應激信號傳導或與不同的基因和轉(zhuǎn)錄因子交叉調(diào)節(jié)[196]。WRKY轉(zhuǎn)錄因子在器官脫落過程中,主要表現(xiàn)在對脫落酸和乙烯的響應。如WRKY8可調(diào)控脫落酸和乙烯信號通路,在TMVcg-擬南芥相互作用期間,介導脫落酸和乙烯信號之間的串擾,從而賦予TMV-cg抗性[197]。由此可見,可推測WPKY8可以調(diào)控乙烯和脫落酸,進而調(diào)節(jié)器官的脫落。此外WRKY 轉(zhuǎn)錄因子會通過激活水楊酸(Salicylic acid,SA)、茉莉酸(Jasmonicacid,JA)和乙烯信號通路,來改變相關基因的轉(zhuǎn)錄水平[198]。因此,推測在器官脫落中所發(fā)現(xiàn)的WRKY轉(zhuǎn)錄因子,部分可通過信號通路的調(diào)節(jié)來調(diào)控相關基因的表達而引起的器官脫落。
除以上所提及的轉(zhuǎn)錄因子以外,還有bHLH、YABBY、Zinc finger等轉(zhuǎn)錄因子在離區(qū)特異的被檢測到[16],而bZIP轉(zhuǎn)錄因子在甜瓜脫落中也有涉及,在早期脫落的時候bZIP有所上調(diào)[131]。乙烯響應因子ERF/AP2受乙烯的調(diào)控,也參與了器官脫落[199-200],而ARF則通過調(diào)節(jié)生長素的響應來調(diào)節(jié)器官脫落。[15,201]
4.4 細胞壁降解
構成離區(qū)細胞壁的化合物如纖維素和果膠,必須在果實脫落前分解,這是果實脫落發(fā)育計劃的最后一部分,其特征是細胞壁水解的基因表達和酶活性增加,包括多聚半乳糖醛酸酶(PG)、β-1,4-葡聚糖酶(EG)、β-半乳糖苷酶、擴展蛋白和果膠裂解酶[66,202]。其中PG和EG是蘋果、橘子果實脫落的主要酶,它們是由乙烯直接調(diào)控的[202-204]。然而,據(jù)我們所知,目前還沒有關于其他激素、糖類、多胺和其他代謝物是否直接調(diào)控這兩個基因的信息。PGs和EGs已被分離、鑒定并顯示屬于一個多基因家族。例如,蘋果中的MdPG2和小果脫落有關,而MdPG1卻與脫落無關[66,184,205]。有趣的是,MdPG2表達可以通過果實離區(qū)中的NAA增強,但在成熟果實離區(qū)中受到抑制,這需要進一步研究[205]。也許,基因家族成員的功能多樣化很好地滿足了空間或時間調(diào)節(jié)的需求,使植物更適合生存。
5 展望
果樹花果脫落是植物生長發(fā)育所必須,其對植物進化起著重要的作用,在生產(chǎn)上需合理調(diào)控,保持植物營養(yǎng)生長和生殖生長的平衡,以至于其既可獲得較高產(chǎn)量,又可保證較好的樹勢,為果樹在下一年獲得好收成做充分準備。在生產(chǎn)上通常用調(diào)節(jié)水肥[206]、增加授粉、修剪、疏花蔬果、環(huán)割或環(huán)剝等方法來調(diào)節(jié)果樹的營養(yǎng)生長和生殖生長,從而獲得較高的產(chǎn)量和較好的果實品質(zhì)[207-208]。如通過研究龍眼的修剪方法對龍眼結(jié)果的影響發(fā)現(xiàn),結(jié)果枝率50%~60%、單穗果數(shù)60粒左右,適度的回縮修剪,是龍眼植株獲取生長與結(jié)果、產(chǎn)量與品質(zhì)平衡關系的最優(yōu)組合[209]。
果樹落花落果的直接原因是由于細胞壁的降解所致,而植物細胞壁的降解主要是由于纖維素酶、多聚半乳糖醛酸酶、果膠酶等多種酶共同作用的結(jié)果[151]。與之相關的生理、分子機制復雜多樣,如需詳細、清楚的揭示其機制,需結(jié)合轉(zhuǎn)錄組學,蛋白組學,代謝組學等多組學分析果樹體內(nèi)脫落相關酶、激素、多胺、轉(zhuǎn)錄因子、microRNA以及長鏈非編碼RNA。在揭示清楚其機制之后,可通過雜交選育、遺傳轉(zhuǎn)化、基因編輯,基因敲除等生物技術對果樹的基因進行定向改造,進而培育出低落花落果率的優(yōu)良品種[210-212],增加座果率,提高果實品質(zhì)。
參 考 文 獻:
[1] Estornell L H, Agustí J, Merelo P, et al. Elucidating mechanisms underlying organ abscission [J].Plant Science, 2013, 199-200C(3):48-60.
[2] Ying P, Li C, Liu X, et al. Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis[J].Scientific Reports, 2016(6):37135-37147.
[3] 齊明芳, 許 濤, 郭 泳,等. 園藝植物器官脫落研究進展[J].沈陽農(nóng)業(yè)大學學報,2010,41(6):643-648.
[4] Costa G, Dal Cin V, Ramina A. Physiological, molecular and practical aspects of fruit abscission[J].Acta Horticulturae,2006,727(727):301-310.
[5] Wu X, Yu M, Chen H, et al. Regulation of the protein and gene expressions of ethylene biosynthesis enzymes under different temperature during peach fruit ripening[J].Acta Physiologiae Plantarum,2018, 40(3):52-68.
[6] Gupta M. Effect of black polythene mulch along with irrigation on pre-harvest fruit drop in plum (Prunus salicina L) cv. Satluj Purple.[J]. Hortflora Research Spectrum,2014,3(2):142-145.
[7] VillalobosAcua, M. G, Biasi, W. V, Flores, S, et al. Preharvest application of 1-methylcyclopropene influences fruit drop and storage potential of 'Bartlett' pears.[J].Hortscience A Publication of the American Society for Horticultural Science, 2010, 45(4):610-616.
[8] 侍 瑞,陳輝惶,努爾尼薩,等. 阿克蘇地區(qū)駿棗落果規(guī)律及其保果措施[J].西北農(nóng)業(yè)學報,2013, 22(6):108-112.
[9] Jones J E, Mertes E, Close D C. Does carbohydrate availability play a role in sweet cherry fruitlet abscission[J]. Acta Horticulturae, 2016, 1119:53-58.
[10] Nakano T, Kato H, Shima Y, et al. Apple SVP family MADS-box proteins and the tomato pedicel abscission zone regulator JOINTLESS have similar molecular activities.[J]. Plant & Cell Physiology, 2015, 56(6):1097-1144.
[11] Xie R, Dong C, Ma Y, et al. Comprehensive analysis of SAUR, gene family in citrus and its transcriptional correlation with fruitlet drop from abscission zone A[J]. Functional & Integrative Genomics, 2015, 15(6):729-740.
[12] Hagemann M H, Patrick W, Martin H, et al. Ethephon induced abscission in mango: physiological fruitlet responses[J]. Frontiers in Plant Science, 2015, 6:706-717.
[13] Mcfadyen L, Robertson D, Sedgley M, et al. Effects of the ethylene inhibitor aminoethoxyvinylglycine (AVG) on fruit abscission and yield on pruned and unpruned macadamia trees[J]. Scientia Horticulturae, 2012, 137:125-130.
[14] Parra R, Paredes M A, Sanchezcalle I M, et al. Comparative transcriptional profiling analysis of olive ripe-fruit pericarp and abscission zone tissues shows expression differences and distinct patterns of transcriptional regulation[J]. BMC Genomics, 2013, 14(1):866-886.
[15] Domingos S, Scafidi P, Cardoso V, et al. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways[J].Frontiers in Plant Science, 2015, 6(457):1-18.
[16] Kitajima A, Sasagawa K, Hasegawa K. Development of the abscission zone and morphological changes of abscission cells in the abscission process of persimmon fruit[J]. Acta Horticulturae, 2003(601) :85-87.
[17] Li C, Wang Y, Huang X, et al. An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi[J]. Frontiers in Plant Science, 2015, 6(439):1-15.
[18] 張 燕, 郭晉平, 張蕓香. 文冠果落花落果成因及保花保果技術研究進展[J].經(jīng)濟林研究, 2012, 30(4):180-184.
[19] Garner L C, Lovatt C J. Physiological factors affecting flower and fruit abscission of ‘Hass avocado[J]. Scientia Horticulturae, 2016, 199:32-40.
[20] Mesejo C, Muozfambuena N, Reig C, et al. Cell division interference in newly fertilized ovules induces stenospermocarpy in cross-pollinated citrus fruit[J]. Plant Science, 2014, 225(8):86-94.
[21] Cin V D, Danesin M, Boschetti A, et al. Ethylene biosynthesis and perception in apple fruitlet abscission (Malus domestica L. Borck)[J]. Journal of Experimental Botany, 2005, 56(421):2995-3005.
[22] Ferrara G, Mazzeo A, Matarrese A M S, et al. Ethephon as a potential abscission agent for table grapes: effects on pre-harvest abscission, fruit quality, and residue[J]. Frontiers in Plant Science, 2016, 7(620):1-7.
[23] 鄭文芳, 游純誠, 范接榮,等. 南方柑桔異常落花落果的成因及對策[J]. 現(xiàn)代農(nóng)業(yè)科技, 2014(16):96-96.
[24] Ortega E, Dicenta F, Egea J. Rain effect on pollen-stigma adhesion and fertilization in almond[J]. Scientia Horticulturae, 2007, 112(3):345-348.
[25] 馮美利, 李 杰, 唐龍祥,等. 香水椰子開花授粉習性與氣候因子的相關分析[J].西南農(nóng)業(yè)學報, 2015, 28(4):1780-1783.
[26] Ruíz R, Guardiola J L. Carbohydrate and mineral nutrition of orange fruitlets in relation to growth and abscission[J]. Physiologia Plantarum, 2010, 90(1):27-36.
[27] Erel R, Yermiyahu U, Yasuor H, et al. Phosphorous Nutritional Level, Carbohydrate reserves and flower auality in olives[J]. Plos One, 2016, 11(12):1-19.
[28] 楊子琴,李 茂,章笑赟,等.饑餓脅迫對龍眼果實脫落及糖代謝的影響[J].果樹學報,2011,28(3):428-432.
[29] Garner L C, Lovatt C J. The relationship between flower and fruit abscission and alternate bearing of 'Hass' avocado[J]. Journal of the American Society for Horticultural Science, 2008, 133(1):3-10.
[30] Trueman S J, Richards S, Mcconchie C A, et al. Relationships between kernel oil content, fruit removal force and abscission in macadamia.[J]. Australian Journal of Experimental Agriculture, 2000, 40(6):859-866.
[31] Petoukhov V, Semenov V A. A link between reduced Barents‐Kara sea ice and cold winter extremes over northern continents[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D21111):1-11.
[32] Assmann S M. Natural Variation in Abiotic Stress and Climate Change Responses inArabidopsis: Implications for Twenty-First-Century Agriculture[J]. International Journal of Plant Sciences, 2013, 174(1):3-26.
[33] Bergey D R, Orozcocardenas M, De D M, et al. A wound- and systemin-inducible polygalacturonase in tomato leaves.[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4):1756-1760.
[34] Peres N A, Mackenzie S J, Peever T L, et al. Postbloom fruit drop of citrus and key lime anthracnose are caused by distinct phylogenetic lineages of Colletotrichum acutatum[J]. Phytopathology, 2008, 98(3):345-352.
[35] Kumar P R, Gohar T, Dinesh P, et al. Modeling of the MAPK machinery activation in response to various abiotic and biotic stresses in plants by a system biology approach[J]. Bioinformation, 2013, 9(9):443-449.
[36] Chung K R, Shilts T, Ertürk U, et al. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus[J]. Fems Microbiology Letters, 2010, 226(1):23-30.
[37] Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1):1-14.
[38] Bertamini M, Zulini L, Muthuchelian K, et al. Low night temperature effects on photosynthetic performance on two grapevine genotypes[J]. Biologia Plantarum, 2007, 51(2):381-385.
[39] Ledesma N A, Nakata M, Sugiyama N. Effect of high temperature stress on the reproductive growth of strawberry cvs. ‘Nyoho and ‘Toyonoka[J]. Scientia Horticulturae, 2008, 116(2):186-193.
[40] Acar I, Kakani V G. The effects of temperature on in vitro, pollen germination and pollen tube growth of Pistacia, spp[J]. Scientia Horticulturae, 2010, 125(4):569-572.
[41] Cottee N S, Tan D K Y, Bange M P, et al. Multi-level determination of heat tolerance in cotton (Gossypium hirsutum L.) under field conditions.[J]. Crop Science, 2010, 50(6):2553-2564.
[42] Greer D H, Weston C. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment[J]. Functional Plant Biology, 2010, 37(3):206-214.
[43] Li X, Kitajima A, Habu T, et al. Induction and characterization of fruit abscission during early physiological fruit drop in citrus[J]. Horticulture Journal, 2016, 86(1):1-8.
[44] Herrero M. Male and female synchrony and the regulation of mating in flowering plants.[J]. Philosophical Transactions Biological Sciences, 2003, 358(1434):1019-1024.
[45] Hedhly A, Hormaza Ji, Herrero M. Global warming and sexual plant reproduction.[J]. Trends in Plant Science, 2008, 14(1):30-36.
[46] Rodrigo J, Herrero M. Effects of pre-blossom temperatures on flower development and fruit set in apricot[J]. Scientia Horticulturae, 2002, 92(2):125-135.
[47] Higuchi H, Utsunomiya N, Sakuratani T. High temperature effects on cherimoya fruit set, growth and development under greenhouse conditions[J]. Scientia Horticulturae, 1998, 77(1-2):23-31.
[48] Couto M, Raseira M C B, Herter F G, et al. Influence of high temperatures at blooming time on pollen production and fruit set of peach 'Maciel' and 'Granada'.[J]. Acta Horticulturae, 2010(872):225-230.
[49] Tromp J, Borsboom O. The effect of autumn and spring temperature on fruit set and on the effective pollination period in apple and pear[J]. Scientia Horticulturae, 1994, 60(1-2):23-30.
[50] Beppu K, Suehara T, Kataoka I. Embryo sac development and fruit set of 'Satohnishiki' sweet cherry as affected by temperature, GA3 and paclobutrazol[J]. Journal of the Japanese Society for Horticultural Science, 2001, 70(70):157-162.
[51] Hedhly A, Hormaza J I, Romero M H. Warm temperatures at bloom reduce fruit set in sweet cherry[J]. Journal of Applied Botany & Food Quality, 2007, 81(81):158-164.
[52] Simons R K. Tissue response of young developing apple fruits to freeze injury[J]. J. Amer. Soc. Hort. Sci, 1969, 94: 376-381.
[53] Stsser R, Anvari S F. On the senescence of ovules in cherries[J]. Scientia Horticulturae, 1982, 16(1):29-38.
[54] Cerovic R, Ruzic, D, Micic N. Viability of plum ovules at different temperatures[J]. Annals of Applied Biology, 2000, 137(1): 53-59.
[55] Sedgley M, Annells C M. Flowering and fruit-set response to temperature in the avocado cultivar ‘Hass[J]. Scientia Horticulturae, 1981, 14(1):27-33.
[56] Taylor J E, Whitelaw C A. Signal in abscission[J]. New Phytologist, 2001, 151(2):323-340.
[57] Michelakis N. Yield response of table and oil olive varieties to different water use levels under drip irrigation.[J]. Acta Horticulturae, 1990, 286(286):271-274.
[58] Lavee S, Nashef M, Wodner M, et al. The effect of complementary irrigation added to old olive trees (Olea europaea L.) cv. Souri on fruit characteristics, yield and oil production[J]. Advances in Horticultural Science, 1990, 4(3):135-138.
[59] George A P, Nissen R J. The effects of temperature, vapour pressure deficit and soil moisture stress on growth, flowering and fruit set of custard apple ( Annona cherimola × Annona squamosa ) ‘African Pride[J]. Scientia Horticulturae, 1988, 34(3):183-191.
[60] Garcíatejero I, Romerovicente R, Jiménezbocanegra J A, et al. Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity.[J]. Agricultural Water Management, 2010, 97(5):689-699.
[61] Badal E, El-Mageed TAA, Buesa I, et al. Moderate plant water stress reduces fruit drop of ‘Rojo Brillante persimmon (Diospyros kaki) in a Mediterranean climate[J]. Agricultural Water Management, 2013, 119:154-160.
[62] Aloni B, Karni L, Zaidman Z, et al. Changes of carbohydrates in pepper (Capsicum annuum L.) flowers in relation to their abscission under different shading regimes[J]. Annals of Botany, 1996, 78(2):163-168.
[63] Ferree D C, Mcartney S J, Scurlock D M. Influence of irradiance and period of exposure on fruit set of French-American hybrid grapes[J]. Journal of the American Society for Horticulturalence, 2001, 126(3):283-290.
[64] Marcelis L F M, Heuvelink E, Hofman-Eijer L R B, et al. Flower and fruit abortion in sweet pepper in relation to source and sink strength[J]. Journal of Experimental Botany, 2004, 55(406):2261-2268.
[65] Burkey K O. Response of soybean photosynthesis and chloroplast membrane function to canopy development and mutual shading[J]. Plant Physiology, 1991, 97(1):245-252.
[66] 吳建陽,李彩琴,李建國.荔枝ACS1基因的分離及其與幼果脫落的關系[J].果樹學報,2017,34(07):817-827.
[67] Kuang J F, Wu J Y, Zhong H Y, et al. Carbohydrate stress affecting fruitlet abscission and expression of genes related to auxin signal transduction pathway in Litchi[J]. International Journal of Molecular Sciences, 2012, 13(12):16084.
[68] Santiago J, Brandt B, Wildhagen M, et al. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission[J]. eLife, 2016, 5(1): 15075-15094.
[69] Valdez M T, Ito T, Maruo T, et al. Effects of root zone temperature and N-K nutrition on the growth, flower and pod abscissions, pod production and mineral contents of bush snap bean[J]. Seibutsu kankyo chosetsu. Environment control in biology, 2010, 40(2):177-186.
[70] 楊 波, 車玉紅, 郭春苗,等. 扁桃幼果生理脫落與礦質(zhì)元素濃度的關系[J].新疆農(nóng)業(yè)科學, 2015, 52(5):852-857.
[71] Sundaresan S, Philosoph-Hadas S, Kochanek B, et al. Ethylene-enhanced flower abscission is associated with specific increased pH of the cytosol in abscission zone cells of Arabidopsis, wild rocket and tomato plants[C]// 21st conference of the international plant growth substances association. 2013.
[72] Yang Z, Zhong X, Fan Y, et al. Burst of reactive oxygen species in pedicel-mediated fruit abscission after carbohydrate supply was cut off in longan (Dimocarpus longan)[J]. Frontiers in Plant Science, 2015, 6:360-370.
[73] Santner A, Estelle M. Recent advances and emerging trends in plant hormone signalling[J]. Nature, 2009, 459(7250):1071-1078.
[74] Glazińska, Paulina, Wojciechowski W, Kulasek M, et al. De novo transcriptome profiling of flowers, flower pedicels and pods ofLupinus luteus(Yellow Lupine) reveals complex expression changes during organ abscission[J]. Frontiers in Plant Science, 2017, 8(641):1-29.
[75] 王家利, 劉冬成, 郭小麗,等. 生長素合成途徑的研究進展[J].植物學報, 2012, 47(3):292-301.
[76] 劉瑞娥, 胡長貴, 孫玉強. 植物生長素反應因子研究進展[J].植物生理學報, 2011, 47(7):669-679.
[77] Addicott F T, Lynch R S, Carns H R. Auxin gradient theory of abscission regulation[J]. Science, 1955, 121(3148):644-645.
[78] Drazeta L, Lang A, Cappellini C, et al. Vessel differentiation in the pedicel of apple and the effects of auxin transport inhibition.[J]. Physiologia Plantarum, 2004, 120(1):162-170.
[79] Kühn N, Serrano A, Abello C, et al. Regulation of polar auxin transport in grapevine fruitlets ( Vitis vinifera L.) and the proposed role of auxin homeostasis during fruit abscission[J]. BMC Plant Biology, 2016, 16(1):234-251.
[80] 史自航,韓新奇,姜 赟,等.SlPIN1對番茄花器官脫落及生長素分布的影響[J].沈陽農(nóng)業(yè)大學學報,2018,49(1):1-7.
[81] Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors.[J]. Plant Molecular Biology, 2002, 49(3-4):373-385.
[82] 齊明芳. 番茄花柄脫落相關基因表達譜分析及多聚半乳糖醛酸酶性質(zhì)研究[D].沈陽:沈陽農(nóng)業(yè)大學, 2011.
[83] Gray W M, Estelle M. Function of the ubiquitin-proteasome pathway in auxin response.[J]. Trends in Biochemical Sciences, 2000, 25(3):133-138.
[84] Stern R A, Gazit S. The synthetic auxin 3,5,6-TPA reduces fruit drop and increases yield in `Kaimana' litchi[J]. Journal of Pomology & Horticultural Science, 2015, 74(2):203-205.
[85] Davière J M, Achard P. Gibberellin signaling in plants[J]. Development, 2013, 140(6):1147-1151.
[86] 張國華, 張艷潔, 叢日晨,等. 赤霉素作用機制研究進展[J].西北植物學報, 2009, 29(2): 412-419.
[87] 王 雄, 陳金印, 劉善軍. 噴施GA_3和2,4-D對留樹保鮮臍橙落果和內(nèi)源激素含量的影響[J].園藝學報, 2012, 39(3):539-544.
[88] 黃 森, 張繼澍, 張院民. 赤霉素處理對采后柿果實乙烯生物合成的影響[J].中國農(nóng)學通報, 2006, 22(3):98-100.
[89] 樊衛(wèi)國, 安華明, 劉國琴,等. 刺梨果實與種子內(nèi)源激素含量變化及其與果實發(fā)育的關系[J].中國農(nóng)業(yè)科學, 2004, 37(5):728-733.
[90] Chen H Q, Dekkers K L, Cao L, et al. Evaluation of growth regulator inhibitors for controlling postbloom fruit drop (PFD) of citrus induced by the fungus Colletotrichum acutatum[J]. Hortscience, 2006, 41(5):1317-1321.
[91] Gómez-Cadenas A, Mehouachi J, Tadeo F R, et al. Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus[J]. Planta, 2000, 210(4):636-643.
[92] 韓惠賓, 張國華, 王國棟. 細胞分裂素參與植物維管系統(tǒng)發(fā)育的信號轉(zhuǎn)導研究進展[J]. 植物生理學報, 2015(7):996-1002.
[93] Trueman S J. Endogenous cytokinin levels during early fruit development of macadamia[J]. African Journal of Agricultural Research, 2010, 5(24):3402-3407.
[94] Rungruchkanont K. Auxins and cytokinins regulate abscission and physiological changes of flowers in cut Dendrobium cv. Eiskul inflorescences[J]. Science Journal Ubon Ratchathani University, 2011, 2(1):1-11.
[95] Hu Zhi-Hui , Wang Y J, Chen C Y. Effects of spraying cytokinin on abscission rate and enzymic activity of flowers and pods of cowpea[J]. Plant Science Journal, 2016, 34(3):439-445.
[96] 胡志輝, 汪艷杰, 陳禪友. 噴施細胞分裂素對豇豆花莢脫落率及花莢酶活性的影響[J]. 植物科學學報, 2016, 34(3):439-445.
[97] 潘瑞熾.植物生理學(7版)[M]. 北京: 高等教育出版社, 2012: 219-220.
[98] Ohkuma K, Lyon J L, Addicott F T, et al. Abscisin II, an abscission-accelerating substance from young cotton fruit[J]. Science, 1963, 142(3599):1592-1593.
[99] Davis L A, Addicott F T. Abscisic Acid: correlations with abscission and with development in the cotton fruit.[J]. Plant Physiology, 1972, 49(4):644-649.
[100] Gomezcadenas A, Tadeo F R, Talon M, et al. Leaf abscission induced by ethylene in water-stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in roots[J]. Plant Physiology, 1996, 112(1):401-408.
[101] Cracker L E, Abeles F B. Abscission: role of abscisic Acid[J]. Plant Physiology, 1969, 44(8):1144-1149.
[102] Chen B, Ma J, Xu Z, et al. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination[J]. Journal of Integrative Plant Biology,2016, 58(10):859-869.
[103] Riov J. Characterization of Abscisic acid-induced ethylene production in citrus leaf and tomato fruit tissues[J]. Plant Physiology, 1990, 92(1):48-53.
[104] 姚珍珍. 晚熟臍橙落花落果生態(tài)影響因子及生理機制研究[D].重慶:西南大學,2012.
[105] 陳 哲,胡福初,年宇薇,等.無核荔枝ABA生物合成關鍵酶LcNCED基因克隆及其在生理落果階段中的表達分析[J].熱帶作物學報,2018,39(2):300-307.
[106] Giulia E, Alessandro B, Mariano D, et al. Early induction of apple fruitlet abscission is characterized by an increase of both isoprene emission and abscisic acid content[J]. Plant Physiology, 2013, 161(4):1952-1969.
[107] Burg S P. Ethylene, plant senescence and abscission[J]. Plant Physiology, 1968, 43(9):1503-1511.
[108] Patterson S E, Bleecker A B. Ethylene-dependent and independent processes associated with floral organ abscission in Arabidopsis[J]. Plant Physiology, 2004, 134(1):194-203.
[109] Ruperti B, Cattivelli L, Pagni S A. Ethylene-responsive genes are differentially regulated during abscission, organ senescence and wounding in peach (Prunus persica)[J]. Journal of Experimental Botany, 2002, 53(368):429-437.
[110] Del C E, Bennett A B. Pedicel breakstrength and cellulase gene expression during tomato flower abscission[J]. Plant Physiology, 1996, 111(3):813-820.
[111] Yuan R. Effects of temperature on fruit thinning with ethephon in ‘Golden Delicious apples[J]. Scientia Horticulturae, 2007, 113(1):8-12.
[112] Kolaric J, Stopar M. Role of ethylene related genes in apple (Malus domestica Borkh.) fruitlet abscission after plant growth regulator application or shading[J]. Acta Horticulturae, 2013, 998(998):67-75.
[113] Eccher G, Begheldo M, Boschetti A, et al. Roles of ethylene production and ethylene receptor expression in regulating apple fruitlet abscission[J]. Plant Physiology, 2015, 169(1):125-128.
[114] Agustí J, Conesa A, Cercós M, et al. Calcium signaling in water stress-induced leaf abscission in citrus plants[M]// Advances in Plant Ethylene Research. Springer Netherlands, 2007:303-304.
[115] Merelo P, Agustí J, Arbona V, et al. Corrigendum: cell wall remodeling in abscission zone cells during ethylene-promoted fruit abscission in citrus[J]. Frontiers in Plant Science, 2017, 8:126-146.
[116] Wang Y, Zou W, Xiao Y, et al. MicroRNA1917 targets CTR4 splice variants to regulate ethylene responses in tomato.[J]. Journal of Experimental Botany, 2018, 69(5):1-26.
[117] 牟望舒, 應鐵進. 植物乙烯信號轉(zhuǎn)導研究進展[J].園藝學報, 2014, 41(9):601-608.
[118] Roberts J A, And K A E, Gonzalezcarranza Z H. Abscission, dehiscence, and other cell separation processes[J]. Annual Review of Plant Biology, 2002, 53(1):131-158.
[119] Uthaichay N, Ketsa S, Doorn W G V. 1-MCP pretreatment prevents bud and flower abscission in Dendrobium, orchids[J]. Postharvest Biology & Technology, 2007, 43(3):374-380.
[120] 周文彬, 邱保勝. 植物細胞內(nèi)pH值的測定[J].植物生理學報, 2004, 40(6):724-728.
[121] Savchenko G, Wiese C, Neimanis S, et al. pH regulation in apoplastic and cytoplasmic cell compartments of leaves.[J]. Planta, 2000, 211(2):246-255.
[122] Osborne DJ.Abscission[J]. Critical Reviews in Plant Sciences, 1989, 8(2):103-129.
[123] Sundaresan S, Philosoph-Hadas S, Riov J, et al. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells[J]. Journal of Experimental Botany, 2015, 66(5):1355-68.
[124] Grignon C, Sentenac A, H. pH and Ionic Conditions in the Apoplast[J]. Annu.rev.plant Physiol.mol.biol, 2003, 42(1):103-128.
[125] Fukuda K, Yamada Y, Miyamoto K, et al. Separation of abscission zone cells in detached Azolla roots depends on apoplastic pH[J]. Journal of Plant Physiology, 2013, 170(1):18-24.
[126] Cai S, Lashbrook C C. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2[J]. Plant Physiology, 2008, 146(3):1305-1321.
[127] Javier A, Paz M, Manuel C, et al. Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves[J]. Bmc Plant Biology, 2009, 9(1):1-20.
[128] Hong Z, Dardick C D, Beers E P, et al. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk[J]. Bmc Plant Biology, 2011, 11(1):138.
[131] Gilamado J A, Gomezjimenez M C. Transcriptome analysis of mature fruit abscission control in olive[J]. Plant & Cell Physiology, 2013, 54(2):244-269.
[130] Corbacho J, Romojaro F, Pech J C, et al. Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis[J]. Plos One, 2013, 8(3):58363-85832.
[131] Meir S, Lers A. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion.[J]. Plant Physiology, 2010, 154(4):1929-1956.
[132] 邱棟梁, 劉星輝, 郭素枝. 模擬酸雨對龍眼幼果纖維素酶活性和內(nèi)源激素含量的影響[J].應用與環(huán)境生物學報, 2004, 10(1):35-38.
[133] Bar-Dror T, Dermastia M, Kladnik A, et al. Programmed cell death occurs asymmetrically during abscission in tomato[J]. Plant Cell, 2011, 23(11):4146-4163.
[134] Tariq M, Yasmeen A, Ahmad S, et al. Shedding of fruiting structures in cotton: factors, compensation and prevention[J]. Tropical & Subtropical Agroecosystems, 2017, 20(2):251-252.
[135] Roberts J A, Gonzalezcarranza Z H. Pectinase functions in abscission[J]. Stewart Postharvest Review, 2009, 5(1):1-4.
[136] Levine E, Hall F R. Pectinaes and cellulases from plum Curculio larvae: possible causes of apple and plum fruit abscission[J]. Entomologia Experimentalis Et Applicata, 2011, 23(3):259-268.
[137] Djanaguiraman M, Sheeba J A, Devi D D, et al. Nitrophenolates spray can alter boll abscission rate in cotton through enhanced peroxidase activity and increased ascorbate and phenolics levels[J]. Journal of Plant Physiology, 2010, 167(1):1-9.
[138] Niederhuth C E, Patharkar O R, Walker J C. Transcriptional profiling of the Arabidopsis abscission mutant hae hsl2, by RNA-Seq[J]. BMC Genomics, 2013, 14(1):1-12.
[139] Adouli B, Zamani Z, Fattahi-Mohgadam M R, et al. Effects of alternate bearing and 2,4-D application on fruit growth pattern, abscission enzymes activity, ACC content of calyx and carbohydrates partitioning of fruits in Satsuma mandarin (Citrus unshiu, Marc.) cv. Miyagawa[J]. Scientia Horticulturae, 2018, 238:58-65.
[140] Horton R F, Osborne D J. Senescence, abscission and cellulase activity in Phaseolus vulgaris[J]. Nature, 1967, 214(5093):1086-1088.
[141] 胡安生,林蓓芬,任道順,等.柑桔果實的脫落.三十烷醇對本地早幼果外植體脫落中纖維素酶和果膠酶的作用[J].園藝學報,1985(2):77-82.
[142] Greenberg J, Goren R, Riov J. The Role of cellulase and polygalacturonase in abscission of young and mature shamouti orange fruits[J]. Physiologia Plantarum, 1975, 34(1):1-7.
[143] Qi X, Hu S, Zhou H, et al. A MADS-box transcription factor of 'Kuerlexiangli'(Pyrus sinkiangensis Yu) PsJOINTLESS gene functions in floral organ abscission[J].Gene, 2018, 642:163-171.
[144] 查笑君, 馬伯軍, 潘建偉,等. 果膠酯酶的研究進展[J].安徽農(nóng)業(yè)科學, 2010, 38(16):8293-8295.
[145] 高欣欣,劉少春,張躍彬,等.植物器官脫落相關激素和酶的研究進展[J].中國農(nóng)學通報,2013,29(33):17-21.
[146] Yager R E. Possible role of pectic enzymes in abscission.[J]. Plant Physiology, 1960, 35(2):157-162.
[147] Ratner A, Goren R, Monselise S P. Activity of pectin esterase and cellulase in the abscission zone of citrus leaf explants[J]. Plant Physiology, 1969, 44(12):1717-1723.
[148] Tabuchi T, Ito S, Arai N. Development of the abscission zones in j-2in pedicels of Galapagos wild tomatoes.[J]. Engei Gakkai Zasshi, 2000, 69(4):443-445.
[149] Goldentalcohen S, Burstein C, Biton I, et al. Ethephon induced oxidative stress in the olive leaf abscission zone enables development of a selective abscission compound[J]. BMC Plant Biology, 2017, 17(1):87-104.
[150] 寇曉虹, 羅云波. 植物多聚半乳糖醛酸酶功能研究進展[J].生物技術通報, 2003, 24(5):15-18.
[151] 齊明芳,李天來,許濤,曹霞.園藝作物器官脫落相關酶的研究進展[J].北方園藝,2007(06):62-65
[152] Bonghi C, Rascio N, Ramina A, et al. Cellulase and polygalacturonase involvement in the abscission of leaf and fruit explants of peach[J]. Plant Molecular Biology, 1992, 20(5):839-848.
[153] Murayama H, Sekine D, Yamauchi Y, et al. Effect of girdling above the abscission zone of fruit on 'Bartlett' pear ripening on the tree.[J]. Journal of Experimental Botany, 2006, 57(14):3679-3686.
[154] Peng G, Wu J, Lu W, et al. A polygalacturonase gene clustered into clade E involved in lychee fruitlet abscission[J]. Scientia Horticulturae, 2013, 150(2):244-250.
[155] Qi M F, Xu T, Chen W Z, et al. Ultrastructural localization of polygalacturonase in ethylene-stimulated abscission of tomato pedicel explants.[J]. The Scientific World Journal, 2014(1):389896-389905.
[156] 顧雯雯, 胡亞婷, 韓 英,等. 植物過氧化物酶同工酶的研究進展[J].安徽農(nóng)業(yè)科學, 2014(34):12011-12013.
[157] Intapruk C, Yamamoto K, Sekine M, et al. Regulatory sequences involved in the peroxidase gene expression in Arabidopsis thaliana.[J]. Plant Cell Reports, 1994, 13(3-4):123-129.
[158] 尹寶重, 劉 盼, 張月辰. 紅小豆花器官脫落對短日照誘導的生理響應[J].作物雜志, 2015(1):78-85.
[159] 趙美榮,李永春, 王 瑋. 擴展蛋白與植物抗逆性關系研究進展[J].植物生理學報, 2012, 48(7):637-642.
[160] 徐 筱, 徐 倩, 張 鎧,等. 植物擴展蛋白基因的研究進展[J].北京林業(yè)大學學報, 2010, 32(5):154-162.
[161] Belfield E J, Ruperti B, Roberts J A, et al. Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra.[J]. Journal of Experimental Botany, 2005, 56(413):817-823.
[162] Tucker M L, Burke A, Murphy C A, et al. Gene expression profiles for cell wall-modifying proteins associated with soybean cyst nematode infection, petiole abscission, root tips, flowers, apical buds, and leaves[J]. Journal of Experimental Botany, 2007, 58(12):3395-3406.
[163] Tsuchiya M, Satoh S, Iwai H. Distribution of XTH, expansin, and secondary-wall-related CesA in floral and fruit abscission zones during fruit development in tomato (Solanum lycopersicum)[J]. Frontiers in Plant Science, 2015, 6(323):323-332.
[164] Sexton R., Roberts J. Cell biology of abscission[J]. Annual Review of Plant Physiology, 1982, 33: 133-162.
[165] Sun L, Bukovac M J, Forsline P L, et al. Natural variation in fruit abscission-related traits in apple (Malus)[J]. Euphytica, 2009, 165(1):55-67.
[166] Mao L, Begum D, Chuang H W, et al. JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development.[J]. Nature, 2000, 406(6798):910-913.
[167] Nakano T, Kimbara J, Fujisawa M, et al. MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development.[J]. Plant Physiology, 2012, 158(1):439-450.
[168] Nakano T, Fujisawa M, Shima Y, et al. Expression profiling of tomato pre-abscission pedicels provides insights into abscission zone properties including competence to respond to abscission signals[J]. Bmc Plant Biology, 2013, 13(1):40-59.
[169] Wu X M, Yu Y, Han L B, et al. The tobacco BLADE-ON-PETIOLE2 gene mediates differentiation of the corolla abscission zone by controlling longitudinal cell expansion[J]. Plant Physiology, 2012, 159(2):835-850.
[170] Mckim S M, Stenvik G E, Butenko M A, et al. The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis.[J]. Development, 2008, 135(8):1537-1546.
[171] Mayer K F, Schoof H, Haecker A, et al. Role of WUSCHEL, in regulating stem cell fate in the Arabidopsis, shoot meristem[J]. Cell, 1998, 95(6):805-815.
[172] Reinhardt D, Frenz M, Mandel T, et al. Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem.[J]. Development, 2003, 130(17):4073-4083.
[173] Greb T, Clarenz O, Schafer E, et al. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation[J]. Genes & Development, 2003, 17(9):1175-1187.
[174] Keller T, Abbott J, Moritz T, et al. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development.[J]. Plant Cell, 2006, 18(3):598-611.
[175] Müller D, Schmitz G, Theres K. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis[J]. Plant Cell, 2006, 18(3):586-597.
[176] Raman S, Greb T, Peaucelle A, et al. Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana[J]. Plant Journal, 2010, 55(1):65-76.
[177] Fal K, Landrein B, Hamant O. Interplay between miRNA regulation and mechanical stress for CUC gene expression at the shoot apical meristem[J]. Plant Signaling & Behavior, 2015, 11(3):1559-2324.
[178] Tabuchi T, Ito S, Arai N. Anatomical studies of the abscission process in the tomato pedicels at flowering stage[J]. Engei Gakkai Zasshi, 2008, 70(1):63-65.
[179] Busch B L, Schmitz G, Rossmann S, et al. Shoot branching and leaf dissection in tomato are regulated by homologous gene modules.[J]. Plant Cell, 2011, 23(10):3595-3609.
[180] Peaucelle A, Morin H, Traas J, et al. Plants expressing a miR164-resistant CUC2 gene revealthe importance of post-meristematic maintenance of phyllotaxy inArabidopsis[J]. Development, 2007, 134(6):1045-1050.
[181] Malik A U, Singh Z. Abscission of mango fruitlets as influenced by biosynthesis of polyamines[J]. Journal of Pomology & Horticultural Science, 2003, 78(5):721-727.
[182] Xie R J, Deng L, Jing L, et al. Recent advances in molecular events of fruit abscission[J]. Biologia Plantarum, 2012, 57(2):201-209.
[183] Vandenbussche F, Straeten D V D. One for all and all for one: cross-talk of multiple signals controlling the plant phenotype[J]. Journal of Plant Growth Regulation, 2007, 26(2):178-187.
[184] Li J, Yuan R. NAA and ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in ‘Deliciousapples[J]. Journal of Plant Growth Regulation, 2008, 27(3):283-295.
[185] Bangerth F. Abscission and thinning of young fruit and their regulation by plant hormones and bioregulators[J]. Plant Growth Regulation, 2000, 31(1-2):43-59.
[186] Racsko J, Soltesz M, Szabo Z, et al. Fruit drop: II. Biological background of flower and fruit drop[J]. Int.j.hort.sci, 2006, 12:103-108.
[187] Botton A, Eccher G, Forcato C, et al. Signaling pathways mediating the induction of apple fruitlet abscission[J]. Plant Physiology, 2011, 155(1):185-208.
[188] Gomezjimenez M C, Paredes M A, Gallardo M, et al. Mature fruit abscission is associated with up-regulation of polyamine metabolism in the olive abscission zone.[J]. Journal of Plant Physiology, 2010, 167(17):1432-1441.
[189] Parra-Lobato M C, Gomez-Jimenez M C. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission[J]. Journal of Experimental Botany, 2011, 62(13): 4447-4465.
[190] Gil-Amado J A, Gomez-Jimenez M C. Regulation of polyamine metabolism and biosynthetic gene expression during olive mature-fruit abscission[J]. Planta, 2012, 235(6):1221-1237.
[191] 魏海超. 大豆MYB基因的進化機制及功能研究[D].長春:中國科學院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所),2015.
[192] Gubert C M, Christy M E, Ward D L, et al. ASYMMETRIC LEAVES1 regulates abscission zone placement in Arabidopsis flowers[J]. BMC Plant Biology, 2014, 14(1):195-206.
[193] Liao W, Yang Y, Li Y, et al.Genome-wide identification of cassavaR2R3 MYBfamily genes related to abscission zone separation after environmental-stress-induced abscission:[J].Scientific Reports,2016, 6: 32006-32018.
[194] Wang X, Liu D, Li A, et al. Transcriptome analysis of tomato flower pedicel tissues reveals abscission zone-specific modulation of key meristem activity genes.[J]. Plos One, 2013, 8(2):55238-55250.
[195] Wang B H, Sun X X, Dong F Y, et al. Cloning and expression analysis of an MYB gene associated with calyx persistence in Korla fragrant pear[J]. Plant Cell Reports, 2014, 33(8):1333-1342.
[196] 張 凡, 尹俊龍, 郭瑛琪,等. WRKY轉(zhuǎn)錄因子的研究進展[J].生物技術通報, 2018, 34(1):40-48.
[197] Chen L, Zhang L, Li D, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21):1963-1971.
[198] Chen L, Song Y, Li S, et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta, 2012, 1819(2):120-128.
[199] Nakano T, Fujisawa M, Shima Y, et al. The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato[J]. Journal of Experimental Botany, 2014, 65(12):3111-3119.
[200] Liao W, Li Y, Yang Y, et al. Exposure to various abscission-promoting treatments suggests substantial ERF subfamily transcription factors involvement in the regulation of cassava leaf abscission[J]. BMC Genomics, 2016, 17(1):538-553.
[201] Ellis C M, Nagpal P, Young J C, et al. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana[J]. Development, 2005, 132(20):4563-4574.
[202] Wu Z, Burns J K. A β-galactosidase gene is expressed during mature fruit abscission of ‘Valenciaorange (Citrus sinensis)[J]. Journal of Experimental Botany, 2004, 55(402):1483-1490.
[203] Kazokas W C, Burns J K. Cellulase activity and gene expression in citrus fruit abscission zones during and after ethylene treatment[J]. Journal of the American Society for Horticultural Science American Society for Horticultural Science, 1998, 123(5):781-786.
[204] Li J G, Zhu H, Yuan R C. Profiling the expression of genes related to ethylene biosynthesis, ethylene perception, and cell wall degradation during fruit abscission and fruit ripening in apple.[J]. Journal of the American Society for Horticultural Science American Society for Horticultural Science, 2010, 135(5):391-401.
[205] Zhu H, Beers E P, Yuan R. Aminoethoxyvinylglycine inhibits fruit abscission induced by naphthaleneacetic acid and associated relationships with expression of genes for ethylene biosynthesis, perception, and cell wall degradation in 'Delicious' apples[J]. Journal of the American Society for Horticultural Science American Society for Horticultural Science, 2008, 133(6):727-734.
[206] Li Y, Sun Y, Liao S, et al. Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato[J]. Agricultural Water Management, 2017, 186:139-146.
[207] 梁 剛,彭 剛,玉山·庫爾班.環(huán)割、環(huán)剝對灰棗幼樹產(chǎn)量和品質(zhì)的影響[J].落葉果樹,2017,49(6):9-11.
[208] 武運霞.葡萄落花落果的原因及預防措施[J].落葉果樹,2015,47(4):54-55.
[209] 韓冬梅,郭棟梁,李建光,等.平衡式疏果修剪法對龍眼生長與結(jié)果的影響[J].中國農(nóng)學通報,2018,34(19):62-70.
[210] 楊紅花,陳學森,李玉暉,等.利用遠緣雜交創(chuàng)造核果類果樹新種質(zhì)的研究I.不同處理對核果類果樹遠緣雜交親和性的效應研究[J].中國農(nóng)業(yè)科學,2004,37(7):1034-1034.
[211] Gambino G, Gribaudo I. Genetic transformation of fruit trees: current status and remaining challenges.[J]. Transgenic Research, 2012, 21(6):1163-1181.
[212] 胡春華, 鄧貴明, 孫曉玄,等. 香蕉CRISPR/Cas9基因編輯技術體系的建立[J].中國農(nóng)業(yè)科學, 2017, 50(7):1294-1301.