国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

生物反應(yīng)器模擬生活垃圾填埋降解產(chǎn)甲烷性能

2018-08-10 07:16曾韻敏王里奧胥騰屯胡超超
關(guān)鍵詞:產(chǎn)甲烷產(chǎn)氣濾液

曾韻敏,王里奧,胥騰屯,宋 雪,胡超超,李 彤

?

生物反應(yīng)器模擬生活垃圾填埋降解產(chǎn)甲烷性能

曾韻敏1,2,王里奧1,2※,胥騰屯2,宋 雪2,胡超超2,李 彤2

(1. 重慶大學(xué)煤礦災(zāi)害動(dòng)力學(xué)與控制國(guó)家重點(diǎn)實(shí)驗(yàn)室,重慶 400044; 2. 重慶大學(xué)資源及環(huán)境科學(xué)學(xué)院,重慶 400044)

該文采用生物反應(yīng)器模擬生活垃圾填埋降解過程,跟蹤測(cè)試了垃圾在厭氧消化過程中產(chǎn)甲烷進(jìn)程及滲濾液特性,并探索兩者之間的關(guān)系,旨在篩選出可以預(yù)測(cè)垃圾厭氧消化產(chǎn)甲烷進(jìn)程的指標(biāo)。結(jié)果表明滲濾液pH值、TOC/TN (total organic carbon/total nitrogen)、乙酸/戊酸(HAc/HVa)的變化對(duì)系統(tǒng)產(chǎn)甲烷進(jìn)程及穩(wěn)定性有一定的指示作用。消化系統(tǒng)產(chǎn)甲烷初期,滲濾液pH值穩(wěn)定在5.77~5.91。產(chǎn)甲烷高峰期,滲濾液pH值會(huì)迅速升高達(dá)到峰值。滲濾液中TOC/TN≥11時(shí),垃圾厭氧發(fā)酵系統(tǒng)穩(wěn)定,產(chǎn)甲烷正常。而當(dāng)滲濾液中TOC/TN<11時(shí),發(fā)酵系統(tǒng)因氨積累失穩(wěn),產(chǎn)氣量小。戊酸在垃圾厭氧消化過程中生成與轉(zhuǎn)化較為活躍,HAc/HVa變化較大且有明顯的拐點(diǎn),拐點(diǎn)處可預(yù)測(cè)消化系統(tǒng)進(jìn)入產(chǎn)甲烷期。此外,采用16S rRNA基因標(biāo)記技術(shù)對(duì)反應(yīng)器中3個(gè)階段的垃圾滲濾液樣品(水解酸化期A、產(chǎn)甲烷高峰期B、產(chǎn)甲烷末期C)以及試驗(yàn)結(jié)束時(shí)垃圾樣品和覆蓋土樣品進(jìn)行群落評(píng)估。聚類樹分析得出生活垃圾(municipal solid wastes,MSW)樣品與滲濾液樣品其微生物種類及豐度都較為接近,有較近的親緣關(guān)系,且反應(yīng)期越長(zhǎng)相似度越高。測(cè)定滲濾液樣品的微生物群落組成可一定程度反映出系統(tǒng)內(nèi)垃圾的群落結(jié)構(gòu)。覆蓋層是系統(tǒng)進(jìn)行硝化反應(yīng)的主要場(chǎng)所。垃圾厭氧消化末期,系統(tǒng)中氨積累抑制產(chǎn)甲烷菌活性,是導(dǎo)致系統(tǒng)產(chǎn)甲烷能力下降的主要原因。

垃圾;甲烷;降解;生物反應(yīng)器填埋場(chǎng);厭氧消化;滲濾液;微生物群落

0 引 言

城市生活垃圾中含有較多的有機(jī)組分,具有潛在的能源價(jià)值[1-3],厭氧消化是一種常用的處理生活垃圾以及實(shí)現(xiàn)能源回收的生物處理技術(shù)[4]。生物反應(yīng)器填埋場(chǎng)技術(shù)通常采用滲濾液回灌[5-8]、營(yíng)養(yǎng)添加、pH值調(diào)節(jié)、溫度調(diào)節(jié)、供氧[9]和微生物接種等手段強(qiáng)化厭氧消化中微生物過程,從而加速垃圾中易降解、中等易降解有機(jī)組分轉(zhuǎn)化和穩(wěn)定[10]。厭氧消化是一系列復(fù)雜的微生物催化降解過程,為保障生物反應(yīng)器系統(tǒng)穩(wěn)定運(yùn)行,提升廢物處理效率及資源化水平,理想條件是對(duì)系統(tǒng)進(jìn)行在線監(jiān)測(cè)、實(shí)時(shí)調(diào)節(jié)。由于垃圾自身性質(zhì)不均勻、監(jiān)測(cè)點(diǎn)布設(shè)成本較高以及取樣困難代表性不足等原因,針對(duì)填埋場(chǎng)垃圾體的在線監(jiān)測(cè)較難實(shí)施。滲濾液為垃圾厭氧消化的產(chǎn)物,滲濾液的性質(zhì)和體積是評(píng)估垃圾填埋層穩(wěn)定化的最重要的信息[11]。通過對(duì)滲濾液中垃圾代謝產(chǎn)物濃度的測(cè)定預(yù)測(cè)和評(píng)估垃圾的厭氧消化過程可能是一種更為經(jīng)濟(jì)可行的方法。Arjun[12]指出滲濾液中的COD、揮發(fā)性脂肪酸(volatile fatty acid, VFA)濃度隨著填埋垃圾穩(wěn)定過程而變化。Moletta等[13]開發(fā)厭氧流化床生物反應(yīng)器自動(dòng)控制系統(tǒng),選用了液相pH值、產(chǎn)甲烷濃度和氫氣濃度作為反應(yīng)器控制參數(shù)。Ahring[14]等研究了在以糞便為基質(zhì)的生物反應(yīng)器厭氧消化過程中,沼液中VFA作為工藝指標(biāo)使用的合理性。陳琳等[15]研究蔬菜廢棄物厭氧發(fā)酵過程,沼液中揮發(fā)性脂肪酸濃度可作為系統(tǒng)酸化失穩(wěn)預(yù)警指標(biāo),丙酸、正/異丁酸、正/異戊酸出現(xiàn)突變時(shí),發(fā)酵系統(tǒng)出現(xiàn)酸化征兆。有機(jī)垃圾在消化進(jìn)程中發(fā)生生物降解,系統(tǒng)中微生物群落結(jié)構(gòu)會(huì)發(fā)生明顯變化,微生物群落結(jié)構(gòu)與垃圾的消化過程密切相關(guān),群落多樣性可以體現(xiàn)微生物群落結(jié)構(gòu)穩(wěn)定性[16]。測(cè)定滲濾液及垃圾的群落組成,有助于進(jìn)一步了解垃圾的降解狀況,分析抑制系統(tǒng)產(chǎn)甲烷進(jìn)程的不利因素。

本試驗(yàn)跟蹤測(cè)定了垃圾生物反應(yīng)器中溫消化過程中產(chǎn)甲烷進(jìn)程、滲濾液特性(pH值、TOC、TN、VFA)和微生物群落結(jié)構(gòu),并對(duì)各指標(biāo)的變化規(guī)律及相關(guān)性進(jìn)行了分析,提出了可以預(yù)測(cè)垃圾厭氧消化產(chǎn)甲烷進(jìn)程的指標(biāo),分析影響垃圾厭氧消化產(chǎn)甲烷的原因,為垃圾厭氧消化系統(tǒng)工藝參數(shù)的實(shí)時(shí)調(diào)節(jié)提供支撐,保障生物反應(yīng)器填埋場(chǎng)高效運(yùn)行。

1 材料與方法

1.1 生活垃圾、覆蓋土的來源與性質(zhì)

垃圾取自重慶市沙坪壩區(qū)城市生活垃圾轉(zhuǎn)運(yùn)站,按照《生活垃圾采樣和分析方法》(CJJ134-2009)中規(guī)定的方法將垃圾進(jìn)行分類,垃圾組分分析數(shù)據(jù)見表1。中間覆蓋層土壤取自重慶大學(xué)校園內(nèi)為建筑棄土。土壤經(jīng)自然風(fēng)干后過20目篩,挑除石塊、植物根莖、植物殘?bào)w。試驗(yàn)裝填垃圾、覆蓋土壤詳細(xì)物化參數(shù)見表2。

表1 試驗(yàn)垃圾組成成分 Table 1 Composition of municipal solid wastes(MSW) %

表2 垃圾和土壤的理化參數(shù)Table 2 Materialized parameters of MSW and soil

1.2 試驗(yàn)裝置及步驟

試驗(yàn)裝置示意圖如圖1所示,反應(yīng)器采用內(nèi)徑為30 cm,中間筒體高度60 cm圓柱形不銹鋼罐體。反應(yīng)器膛中設(shè)1個(gè)氣體收集井,中間預(yù)埋管徑6 cm的穿孔塑料花管。柱體底部為圓錐形,設(shè)有滲濾液收集管和閥門。排氣閥出口用橡膠管接一個(gè)濕式氣體流量計(jì),流量計(jì)后接氣體收集袋。柱體側(cè)壁設(shè)置溫度傳感器和3個(gè)觀察取樣口。裝置內(nèi)部有溫度探頭,可測(cè)定裝置內(nèi)垃圾溫度。試驗(yàn)裝置表面覆有電加熱帶及保溫材料,溫度探頭連接溫控儀,溫控儀控制加熱帶加熱,調(diào)節(jié)罐體內(nèi)垃圾溫度。

1.安全閥 2.法蘭盤 3.觀察窗 4.花管 5.土壤 6.垃圾 7.壓力表 8.流量計(jì) 9.閥門 10.集氣袋

將垃圾樣品進(jìn)行人工分選,破碎成2~5 cm。破碎后垃圾樣品充分混合分層填裝。反應(yīng)器底部的錐形收集結(jié)構(gòu)中放置一層12 cm厚的粗顆粒卵石,形成自由排水條件,在卵石層上面放置穿孔金屬板,以防止因細(xì)小固體垃圾顆粒運(yùn)動(dòng)而造成滲濾液收集管的堵塞。固體廢物以19 cm分層并壓實(shí),其中垃圾層厚度17 cm,垃圾裝填密度為800 kg/m3,覆蓋層厚度為2 cm。垃圾與覆蓋層交互裝填共3層。垃圾裝填完畢后加蓋密封。試驗(yàn)于2016年10月17日進(jìn)行垃圾裝填。在試驗(yàn)期間,溫控儀設(shè)置為35 ℃,控制反應(yīng)器內(nèi)部垃圾溫度為(35±2)℃。

1.3 分析方法

垃圾揮發(fā)性固體的質(zhì)量分?jǐn)?shù)采用灼燒法。C,H,N,S的質(zhì)量分?jǐn)?shù)采用Vario Macro元素分析儀測(cè)定。產(chǎn)氣量和氣體成分(甲烷、二氧化碳)由濕式流量計(jì)和福立FL9510氣相色譜儀監(jiān)測(cè),色譜柱為填充柱,固定相porapakQ 2 m× 3 mm,TCD檢測(cè)器,載氣為 He氣。滲濾液pH 值用METTLER TOLEDO 型pH計(jì)測(cè)定。揮發(fā)性脂肪酸采用 Agilent GC-2010PLUSAF 230V氣相色譜測(cè)定,主要分析乙酸,丙酸,正丁酸和正戊酸濃度,色譜柱:DB-FFAP 30 m× 0.25 mm,膜厚0.25m,F(xiàn)ID檢測(cè)器,載氣為N2,進(jìn)樣口溫度為250 ℃,柱箱溫度230 ℃。分流比為10.8,進(jìn)樣量2L。滲濾液TOC采用島津 TOC-LCPH型總有機(jī)碳分析儀測(cè)定、TN采用島津TNM-L型總氮分析儀測(cè)定。

1.4 微生物群落分析

收集反應(yīng)器中的滲濾液,樣本被固定在0.2m的過濾器上,DNA提取按照試劑盒中說明書要求進(jìn)行操作,采用Genemark土壤基因DNA提取試劑盒。DNA濃度由超微量紫外分光光度計(jì)(德國(guó)Implen Nanophotometer N60)測(cè)定,提取液裝入1.5 mL離心管密封?20 ℃冷凍保存。利用高通量測(cè)序技術(shù)對(duì)土壤微生物進(jìn)行DNA測(cè)序,測(cè)序工作委托上海美吉生物醫(yī)藥科技有限公司完成,引物信息為ArBa515F(5'-GTGCCAGCMGCCGCGGTAA-3')和Arch806R(5'-GGACTACVSGGGTATCTAAT-3')。測(cè)試完成后,使用I-Sanger生物信息云平臺(tái)進(jìn)行測(cè)序結(jié)果分析。

1.5 計(jì)算方法

應(yīng)用Scholl Canyon一階動(dòng)力學(xué)模型對(duì)試驗(yàn)的產(chǎn)氣速率進(jìn)行擬合。得到垃圾產(chǎn)氣速率與時(shí)間關(guān)系的定量數(shù)學(xué)表達(dá)式。Scholl Canyon模型產(chǎn)氣速率表達(dá)式如下

式中為反應(yīng)器產(chǎn)氣速率,mL/d;為產(chǎn)氣速率常數(shù),d-1;0為同一時(shí)間裝填垃圾的潛在產(chǎn)氣總量,mL/kg;為垃圾裝填后的時(shí)間,d。

2 結(jié)果與分析

2.1 垃圾產(chǎn)氣速率及其模型構(gòu)建

垃圾裝填后第3天,反應(yīng)器開始產(chǎn)氣,并且在7 d后產(chǎn)氣速率達(dá)到最大。該階段主要由于垃圾孔隙中空氣因擠壓釋放以及垃圾中易腐組分耗氧分解。氣體主要成分為N2,并且伴隨有O2濃度降低,CO2濃度升高,無甲烷產(chǎn)生。隨后5個(gè)月,垃圾產(chǎn)氣速率逐漸降低。垃圾產(chǎn)氣主要集中在前100天,該階段主要為易生物降解的有機(jī)垃圾兼性厭氧發(fā)酵期和厭氧產(chǎn)甲烷期。150 d后,出現(xiàn)一個(gè)小的產(chǎn)氣高峰。該階段延續(xù)前一階段水解產(chǎn)物進(jìn)一步消化。230 d后,試驗(yàn)完成階段性產(chǎn)氣,生活垃圾中易腐易降解的組分(主要為廚余和果蔬類)已完成降解,系統(tǒng)進(jìn)入對(duì)較難降解垃圾的厭氧發(fā)酵期,產(chǎn)氣量小。該階段垃圾累積產(chǎn)氣量為1 850.38 L。

對(duì)垃圾裝填后250 d其產(chǎn)氣速率進(jìn)行監(jiān)測(cè),試驗(yàn)數(shù)據(jù)通過方程式(1)進(jìn)行指數(shù)回歸擬合,擬合結(jié)果見圖2。圖2可以看出,生活垃圾厭氧消化產(chǎn)氣速率符合指數(shù)衰減規(guī)律,實(shí)測(cè)值與擬合曲線基本相符,擬合度較好,相關(guān)系數(shù)為0.78,說明Scholl Canyon模型對(duì)填埋場(chǎng)中易降解垃圾消化產(chǎn)氣階段產(chǎn)氣速率與時(shí)間關(guān)系進(jìn)行預(yù)測(cè)是合理的。擬合參數(shù)可以看出,垃圾產(chǎn)氣速率常數(shù)為0.0149 d?1,垃圾產(chǎn)氣潛能0為66.36 L/kg。焦學(xué)軍等[17]研究得出,整個(gè)填埋產(chǎn)氣年限內(nèi)垃圾產(chǎn)氣量為96.31 L/kg。

圖2 垃圾產(chǎn)氣變化趨勢(shì)圖

2.2 生活垃圾填埋降解過程pH值變化

垃圾降解過程,滲濾液中化學(xué)成分和濃度隨時(shí)間動(dòng)態(tài)變化,CH4產(chǎn)率一定程度反映產(chǎn)甲烷菌的活性[18]。圖3為反應(yīng)器內(nèi)滲濾液pH值和甲烷產(chǎn)率隨時(shí)間的變化規(guī)律。試驗(yàn)期間滲濾液pH值變化規(guī)律先降低后升高,然后降低,在穩(wěn)定產(chǎn)甲烷期pH值達(dá)到最高為6.63。在進(jìn)行滲濾液回灌的厭氧消化生物反應(yīng)器內(nèi)觀測(cè)到了相同的趨勢(shì)[19]。由圖3可以看出,前50天,滲濾液pH值迅速下降,pH值從6.46下降到5.92。反應(yīng)初期垃圾以水解酸化反應(yīng)為主[20],滲濾液中有機(jī)酸不斷積累,pH值降低[21]。從第50天到第80天,該階段系統(tǒng)開始產(chǎn)CH4,該階段主要為產(chǎn)甲烷菌的產(chǎn)生、馴化以及富集階段。隨后至第175天滲濾液pH值變化不大,其變化范圍為5.77~5.91。垃圾水解的中間產(chǎn)物被微生物利用進(jìn)行細(xì)胞增殖以及向甲烷轉(zhuǎn)化,避免了系統(tǒng)持續(xù)酸化,使得pH值相對(duì)穩(wěn)定。反應(yīng)器在運(yùn)行150 d后系統(tǒng)產(chǎn)甲烷速率迅速升高并維持在較高水平,之后25 d,滲濾液pH值也顯著升高,原因隨著垃圾產(chǎn)甲烷過程的進(jìn)行及強(qiáng)化,水解酸化階段產(chǎn)生的有機(jī)酸被消耗轉(zhuǎn)化為CH4。在第200天以后,滲濾液pH值和甲烷產(chǎn)率在到達(dá)高峰后又開始下降,且該階段沼氣產(chǎn)量也下降,垃圾消化進(jìn)入產(chǎn)甲烷后期。該階段由于反應(yīng)器內(nèi)代謝毒素的積累,抑制甲烷菌活性,使得系統(tǒng)產(chǎn)甲烷能力下降。此外,水解產(chǎn)酸菌對(duì)毒素的耐受能力較強(qiáng),垃圾中難降解的物質(zhì)持續(xù)發(fā)酵水解,使產(chǎn)生的有機(jī)酸積累,導(dǎo)致滲濾液pH值下降。綜上所述,生活垃圾厭氧消化進(jìn)程中,系統(tǒng)滲濾液pH值的變化與甲烷產(chǎn)率有相似的趨勢(shì),可一定程度輔助預(yù)測(cè)垃圾的產(chǎn)甲烷進(jìn)程。在垃圾發(fā)酵進(jìn)行到第50 天時(shí),滲濾液pH值由快速下降期過渡到平緩期。隨后從第50 天至第150 天,pH值穩(wěn)定在5.8左右,系統(tǒng)甲烷產(chǎn)率逐漸升高至58 mL/(kg·d),該階段對(duì)應(yīng)垃圾降解產(chǎn)甲烷初期;從第175天至第200天,pH值顯著升高且系統(tǒng)甲烷產(chǎn)率維持在100 mL/(kg·d)以上,該階段為垃圾降解穩(wěn)定產(chǎn)甲烷期;第200 天以后,pH值在到達(dá)峰值后持續(xù)降低,且當(dāng)pH值小于5.8(230 d后),系統(tǒng)甲烷產(chǎn)率低于30 mL/(kg·d)進(jìn)入產(chǎn)甲烷末期。

圖3 pH值變化趨勢(shì)圖

2.3 生活垃圾填埋降解過程滲濾液TOC和TN的變化

圖4a為滲濾液TOC、TN變化規(guī)律。試驗(yàn)期間TOC濃度出現(xiàn)2次顯著升高。第1次高峰出現(xiàn)在反應(yīng)進(jìn)行90 d,TOC質(zhì)量濃度為41 150 mg/L,由易水解的糖類物質(zhì)分解所致。由于微生物菌群的生長(zhǎng)及產(chǎn)甲烷過程的進(jìn)行,垃圾水解的可生物利用的中間產(chǎn)物被消耗,滲濾液中累積的TOC濃度緩慢降低。第2次TOC濃度顯著升高發(fā)生在第120 天以后,可能是由難水解的蛋白類及纖維素等物質(zhì)降解產(chǎn)生的。全過程TOC質(zhì)量濃度范圍在26 695~41 355 mg/L。TN質(zhì)量濃度隨時(shí)間波動(dòng)增加,其范圍在1 489~3 106 mg/L。滲濾液中氮主要來源于垃圾中蛋白類物質(zhì)分解轉(zhuǎn)化[22]。TN和TOC均在第175天時(shí)出現(xiàn)峰值,印證了該階段主要為蛋白類物質(zhì)的水解。

圖4b為滲濾液TOC/TN變化趨勢(shì)圖。滲濾液TOC/TN在整個(gè)反應(yīng)期內(nèi)呈先增大后波動(dòng)下降的趨勢(shì),反應(yīng)初期(第14天到第100天)TOC/TN值從16.76升高到21.79。糖類物質(zhì)水解速率大于蛋白類物質(zhì),滲濾液中TOC釋放速率大于TN,且隨著生物反應(yīng)進(jìn)行,微生物調(diào)整期后優(yōu)勢(shì)菌群會(huì)進(jìn)行大量增殖,從而消耗掉垃圾中的部分可利用的氮素,使得滲濾液中TOC/TN升高。隨著系統(tǒng)產(chǎn)甲烷速率升高TOC/TN值下降,從第100天至第230天,TOC/TN值在11~17范圍內(nèi)波動(dòng),產(chǎn)甲烷菌消耗TOC,同時(shí)該階段伴隨有蛋白類物質(zhì)的水解,會(huì)有較多氮素進(jìn)入滲濾液中,雙重作用使得TOC/TN值降低。第230天后滲濾液中TOC/TN低于11,該階段氮素持續(xù)積累,環(huán)境惡化,微生物活性降低。曾經(jīng)對(duì)多個(gè)填埋場(chǎng)以及垃圾焚燒廠滲濾液中氨氮和總氮濃度進(jìn)行測(cè)定,實(shí)測(cè)數(shù)據(jù)得出,滲濾液中氨氮與總氮呈正相關(guān),滲濾液中總氮主要以氨氮的形式存在,氨氮濃度占總氮質(zhì)量分?jǐn)?shù)的85%~90%。此外,Kjeldsen[23]研究指出在較長(zhǎng)的產(chǎn)甲烷期內(nèi),滲濾液中氨的濃度并沒有下降,氨是滲濾液中的主要長(zhǎng)期污染物。厭氧消化系統(tǒng)對(duì)氨氮敏感,高濃度氨氮對(duì)產(chǎn)甲烷菌有毒害作用[24-25]。滲濾液中TOC/TN對(duì)生物質(zhì)降解產(chǎn)甲烷系統(tǒng)反應(yīng)期具有一定的指示作用。當(dāng)滲濾液中TOC/TN≥11時(shí),厭氧發(fā)酵系統(tǒng)穩(wěn)定,正常產(chǎn)氣。而當(dāng)滲濾液中TOC/TN<11時(shí),系統(tǒng)內(nèi)因NH3產(chǎn)生過多使得微生物出現(xiàn)“氨中毒”,抑制底物厭氧消化速率,導(dǎo)致發(fā)酵系統(tǒng)失穩(wěn)[26]。

圖4 TOC和TN變化規(guī)律

2.4 生活垃圾填埋降解過程揮發(fā)性脂肪酸的變化

VFA厭氧消化過程中重要的中間代謝產(chǎn)物,VFA的濃度可反映系統(tǒng)內(nèi)底物的水解酸化程度和產(chǎn)甲烷效率[27]。厭氧消化產(chǎn)沼氣系統(tǒng)中,能被產(chǎn)甲烷菌直接利用的中間產(chǎn)物為甲酸、甲醇和乙酸以及H2、CO,其他長(zhǎng)鏈脂肪酸積累會(huì)導(dǎo)致系統(tǒng)酸化,對(duì)產(chǎn)甲烷進(jìn)程不利。Yeole[28]研究得出丙酸濃度對(duì)產(chǎn)甲烷菌生長(zhǎng)有顯著的抑制作用。試驗(yàn)監(jiān)測(cè)了垃圾消化系統(tǒng)滲濾液中乙酸(HAc)、丙酸(HPr)、丁酸(HBu)、戊酸(HVa)的含量。為消除進(jìn)樣誤差,圖5為系統(tǒng)產(chǎn)甲烷產(chǎn)率與乙酸/丙酸、乙酸/丁酸、乙酸/戊酸的變化規(guī)律。由圖 5可知,在反應(yīng)內(nèi)期僅HAc/HBu<1,HAc/HPr與HAc/HVa均大于1,且HAc/HVa>HAc/HPr,說明系統(tǒng)中滲濾液各有機(jī)酸濃度為HBu>HAc>HPr>HVa。反應(yīng)進(jìn)行84 d時(shí),HAc/HVa迅速降低,從7.94下降至2.49。而其它兩組比值均無明顯變化,在水解酸化期戊酸生成相對(duì)增幅最大。從圖5可看出70 d后HAc/HBu、HAc/HPr、HAc/HVa均升高,而系統(tǒng)也開始產(chǎn)甲烷,說明該階段丙酸、丁酸、戊酸的轉(zhuǎn)化降解速率大于產(chǎn)甲烷菌降解乙酸的速率,它們也可能通過不同的代謝途徑轉(zhuǎn)化為乙酸,從而補(bǔ)償部分乙酸的消耗。從比值增長(zhǎng)趨勢(shì)可以推測(cè)出,3種脂肪酸降解的難易程度:戊酸>丙酸>丁酸。在整個(gè)試驗(yàn)期內(nèi)HAc/HBu、HAc/HPr總體變化趨勢(shì)較小,不能很好的反映出系統(tǒng)的消化進(jìn)程。HAc/HVa變化較大且有明顯的拐點(diǎn)(第84天),該點(diǎn)對(duì)應(yīng)的甲烷產(chǎn)率為25 mL/(kg·d),處于產(chǎn)甲烷初期。

圖5 VFAs變化趨勢(shì)圖

2.5 生活垃圾填埋降解過程微生物群落與種群的變化

采用16S rRNA基因標(biāo)記技術(shù)對(duì)反應(yīng)器中3個(gè)階段的垃圾滲濾液樣品,(水解酸化期A、產(chǎn)甲烷高峰期B、產(chǎn)甲烷末期C)以及試驗(yàn)結(jié)束時(shí)垃圾樣品(MSW)和覆蓋土樣品(cover)進(jìn)行微生物群落測(cè)定。其中,滲濾液樣品A、B、C取樣時(shí)間分別為反應(yīng)進(jìn)行后第50天、190天和250天。MSW樣品和cover樣品取樣時(shí)間為第250天。每個(gè)樣品取樣3個(gè)。圖6為微生物種群Heatmap圖,顯示了在門水平下各樣品總豐度前50的微生物種群,數(shù)值為對(duì)應(yīng)物種的OTU值,頂部為樣本聚類樹。

聚類樹分析可看出MSW樣品與滲濾液樣品有較近的親緣關(guān)系,且反應(yīng)期越長(zhǎng)、相似度越高。滲濾液樣品微生物種類及豐度都較為接近。測(cè)定滲濾液樣品的群落組成可一定程度反映出系統(tǒng)內(nèi)垃圾的群落結(jié)構(gòu),可用于垃圾消化進(jìn)程的預(yù)測(cè)。

垃圾消化過程重點(diǎn)關(guān)注產(chǎn)酸菌、產(chǎn)甲烷菌和硝化細(xì)菌。從圖6可看出,厚壁菌門()占到樣品中總OTUs (operational taxonomic units)的45.7%~96.2%。其中主要為梭狀芽孢桿菌。Kim等[29]從廢水處理廠分離出,研究得出其為產(chǎn)酸菌,可利用半乳糖為碳源,厭氧發(fā)酵代謝終產(chǎn)物有H2、CO2、乙醇、乙酸、丁酸和己酸[30]。說明發(fā)酵系統(tǒng)產(chǎn)氫、產(chǎn)酸過程穩(wěn)定,該階段不是整個(gè)消化過程的限制步驟。此外,即使在產(chǎn)甲烷末期,系統(tǒng)產(chǎn)甲烷能力下降,但是依然維持有較高的豐度且活性較強(qiáng),可進(jìn)一步對(duì)垃圾中難降解的物質(zhì)進(jìn)行發(fā)酵降解。產(chǎn)酸菌對(duì)應(yīng)酸桿菌門(),產(chǎn)甲烷菌屬于廣古菌門(),硝化細(xì)菌對(duì)應(yīng)硝化螺旋菌門()。cover樣品中3種細(xì)菌豐度均高于MSW樣品,說明在垃圾填埋處置過程中引入土壤進(jìn)行中間覆蓋能有效提升系統(tǒng)的微生物量[31],覆蓋層可作為生化反應(yīng)活性層,可促進(jìn)系統(tǒng)內(nèi)垃圾厭氧消化產(chǎn)甲烷。此外,cover樣品中硝化螺旋菌門共有5種,說明覆蓋層是系統(tǒng)進(jìn)行硝化反應(yīng)的主要場(chǎng)所。對(duì)比滲濾液樣品可以看出,隨著反應(yīng)時(shí)間的增長(zhǎng),滲濾液樣品中酸桿菌門()和廣古菌門()微生物量增加。值得注意的是,3個(gè)滲濾液樣品中均未檢測(cè)出硝化螺旋菌門(),作為硝化細(xì)菌(),可將亞硝酸鹽氧化成硝酸鹽。缺少硝化菌,氨氮/硝酸鹽/亞硝酸鹽循環(huán)體系被中斷,導(dǎo)致系統(tǒng)內(nèi)“氨積累”,微生物活性受到抑制,不利于系統(tǒng)消化產(chǎn)氣。根據(jù)研究結(jié)果,建議在垃圾耗氧分解階段接種硝化螺旋菌門()生物菌劑,強(qiáng)化垃圾發(fā)酵初期NH3-N硝化反應(yīng),緩解消化系統(tǒng)后期“氨積累”引起環(huán)境惡化,從而保障垃圾厭氧消化階段的穩(wěn)定性,提升垃圾處理效率。

注:圖中數(shù)值為豐度OTU。

3 結(jié) 論

生活垃圾厭氧消化產(chǎn)氣速率符合Scholl Canyon模型指數(shù)衰減規(guī)律。擬合結(jié)果顯示,生活垃圾產(chǎn)氣速率常數(shù)為0.0149 d-1,垃圾產(chǎn)氣潛能為66.36 L/kg。

滲濾液pH值的變化對(duì)系統(tǒng)產(chǎn)甲烷進(jìn)程有一定的指示作用,可作為一個(gè)輔助參考指標(biāo)預(yù)測(cè)垃圾消化產(chǎn)甲烷進(jìn)程。穩(wěn)定產(chǎn)甲烷期,pH值會(huì)迅速升高達(dá)到峰值,產(chǎn)甲烷末期,pH值持續(xù)降低,且小于5.8。滲濾液TOC濃度出現(xiàn)2次峰值,分別對(duì)應(yīng)垃圾中糖類和蛋白類物質(zhì)水解。滲濾液中TN濃度持續(xù)增長(zhǎng),呈現(xiàn)氮積累的趨勢(shì),該結(jié)果與發(fā)酵系統(tǒng)中缺乏硝化菌有關(guān)。滲濾液中TOC/TN≥11時(shí),垃圾厭氧發(fā)酵系統(tǒng)穩(wěn)定,正常產(chǎn)氣。而當(dāng)滲濾液中TOC/TN<11時(shí),系統(tǒng)發(fā)酵系統(tǒng)因“氨積累”失穩(wěn),產(chǎn)氣量小。試驗(yàn)期內(nèi)滲濾液各有機(jī)酸濃度為HBu>HAc>HPr> HVa。戊酸在垃圾厭氧消化過程中生成與轉(zhuǎn)化較為活躍,HAc/HVa變化較大且有明顯的拐點(diǎn),拐點(diǎn)對(duì)應(yīng)垃圾厭氧消化產(chǎn)甲烷初期。。

聚類樹分析得出生活垃圾樣品與滲濾液樣品中微生物種類及豐度都較為接近,有較近的親緣關(guān)系,且反應(yīng)期越長(zhǎng)相似度越高。垃圾厭氧消化系統(tǒng)中缺乏硝化螺旋菌門(),氨氮/硝酸鹽/亞硝酸鹽循環(huán)體系被中斷,導(dǎo)致環(huán)境惡化,不利于系統(tǒng)產(chǎn)氣。建議在垃圾耗氧分解階段接種硝化螺旋菌門()生物菌劑,強(qiáng)化垃圾發(fā)酵初期NH3-N硝化反應(yīng),降低消化系統(tǒng)后期氨的積累量,從而提升垃圾厭氧消化階段的穩(wěn)定性。

[1] Comparetti A, Febo P, Greco C, et al. Italian potential biogas and biomethane production from of MSW [C]// IV International Conference Ragusa Shwa "safety, Health and Welfare in Agriculture, Agro-Food and Forestry Systems. 2015.

[2] Di M F, Gigliotti G, Sordi A, et al. Hybrid solid anaerobic digestion batch: biomethane production and mass recovery from the organic fraction of solid waste[J]. Waste Manag Res, 2013, 31(8):869-873.

[3] Aydi A, Abichou T, Zairi M, et al. Assessment of electrical generation potential and viability of gas collection from fugitive emissions in a Tunisian landfill[J]. Energy Strategy Reviews, 2015,8:8-14.

[4] Yu L, Wensel P C, Ma J W, et al. Mathematical modeling in anaerobic digestion (AD)[J]. Journal of Bioremediation and Biodegradation, 2014, 5 (S4): S4-003.

[5] Aguilar-Virgen Q, Taboada-González P, Ojeda-Benítez S. Analysis of the feasibility of the recovery of landfill gas: A case study of Mexico[J]. Journal of Cleaner Production, 2014, 79: 53-60.

[6] 楊國(guó)棟,蔣建國(guó),黃云峰,等. 滲濾液回灌負(fù)荷對(duì)填埋場(chǎng)垃圾產(chǎn)氣效能的影響[J]. 環(huán)境科學(xué),2006,27(10):2129-2134.

Yang Guodong, Jiang Juangu, Huang Yunfeng, et al. [Impact of leachate recirculation loadings on efficiency of landfill gas (LFG) generation][J]. Environmental Science, 2006, 27(10): 2129-2134. (in Chinese with English abstract)

[7] Townsend T G, Miller W L, Lee H, et al. Acceleration of landfill stabilization using leachate recycle[J]. Journal of Environmental Engineering, 1996, 122(4): 263-268.

[8] Wang Y, Pelkonen M. Impacts of temperature and liquid/solid ratio on anaerobic degradation of municipal solid waste: an emission investigation of landfill simulation reactors[J]. Journal of Material Cycles and Waste Management, 2009, 11(4): 312-320.

[9] Nikolaou A, Giannis A, Gidarakos E. Comparative studies of aerobic and anaerobic treatment of MSW organic fraction in landfill bioreactors.[J]. Environmental Technology, 2010, 31(12): 1381-1389.

[10] Reinhart D R, Mccreanor P T, Townsend T. The bioreactor landfill: its status and future[J]. Waste Management & Research, 2002, 20(2): 172-186.

[11] Sakita S, Nishimoto J, Nishimura K. A survey on characteristics of leachate pond in an offshore municipal solid waste disposal site[J]. Journal of Material Cycles & Waste Management, 2016, 18(2): 348-355.

[12] Arjun N. Effect of Leachate Blending on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste[D]. Ottawa : University of Ottawa, 2013.

[13] Moletta R, Escoffier Y, Ehlinger F, et al. On-line automatic control system for monitoring an anaerobic fluidized-bed reactor: response to organic overload [J]. Water Science & Technology, 1994, 30(12): 11-20.

[14] Ahring B K, Sandberg M, Angelidaki I. Volatile fatty acids as indicators of process imbalance in anaerobic digestors[J]. Applied Microbiology & Biotechnology, 1995, 43(3): 559-565.

[15] 陳琳,李東,文昊深,等. 蔬菜廢棄物中溫厭氧發(fā)酵酸化失穩(wěn)預(yù)警指標(biāo)篩選[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):225-230.

Chen Lin, Li Dong, Wen Haosen, et al. Screening of early warning indicators of instability in anaerobic digestion of vegetable waste under mesophilic condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 225-230. (in Chinese with English abstract)

[16] Zhang B, Deng H, Wang H, et al. Does microbial habitat or community structure drive the functional stability of microbes to stresses following re-vegetation of a severely degraded soil[J]. Soil Biology & Biochemistry, 2010, 42(5): 850-859.

[17] 焦學(xué)軍,邵軍,楊承休. 城市生活垃圾填埋產(chǎn)氣規(guī)律研究[J]. 上海環(huán)境科學(xué),1996(9):30-33.

[18] Charles W, Carnaje N P, Cordruwisch R. Methane conversion efficiency as a simple control parameter for an anaerobic digester at high loading rates[J]. Water Science & Technology, 2011, 64(2): 534-539.

[19] He R, Wei X M, Chen M, et al. Effects of concentrated leachate injection modes on stabilization of landfilled waste[J]. Environmental Science & Pollution Research International, 2015, 23(4): 1-9.

[20] Sun Y, Sun X, Zhao Y. Comparison of semi-aerobic and anaerobic degradation of refuse with recirculation after leachate treatment by aged refuse bioreactor[J]. Waste Management, 2011, 31(6): 1202-1209.

[21] Sun Y, Sun X, Zhao Y. Comparison of semi-aerobic and anaerobic degradation of refuse with recirculation after leachate treatment by aged refuse bioreactor[J]. Waste Management, 2011, 31(6): 1202-1209.

[22] Kayhanian M. Ammonia inhibition in high-solids biogasification: An overview and practical solutions[J]. Environmental Technology, 1999, 20(4): 355-365.

[23] Kjeldsen P, Barlaz M A, Rooker A P, et al. Present and Long-Term Composition of MSW Landfill Leachate: A Review[J]. Critical Reviews in Environmental Science & Technology, 2002, 32(4): 297-336.

[24] Menkveld H W H, Broeders E. Recovery of ammonium from digestate as fertilizer[J]. Water Practice & Technology, 2017, 12(3): 514-519.

[25] Sprott G D, Patel G B. Ammonia toxicity in pure cultures of methanogenic bacteria[J]. Systematic & Applied Microbiology, 1986, 7(2): 358-363.

[26] Desloover J, Woldeyohannis A A, Verstraete W, et al. Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion[J]. Environmental Science & Technology, 2012, 46(21): 12209-12216.

[27] Wang Y, Zhang Y, Wang J, et al. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria[J]. Biomass & Bioenergy, 2009, 33(5): 848-853.

[28] Yeole T Y, Gokhale S, Hajarnis S R, et al. Effect of brackish water on biogas production from cattle dung and methanogens[J]. Bioresource Technology, 1996, 58(3): 323-325.

[29] Kim B C, Jeon B S, Kim S I, et al.., a bacterium capable of producing caproic acid from galactitol, isolated from a wastewater treatment plant[J]. International Journal of Systematic & Evolutionary Microbiology, 2015, 65(12): 4902.

[30] Liu M K, Tang Y M, Guo X J, et al. Deep sequencing reveals high bacterial diversity and phylogenetic novelty in pit mud from Luzhou Laojiao cellars for Chinese strong-flavor Baijiu[J]. Food Research International, 2017, 102: 68-72.

[31] Mali Sandip T, Khare Kanchan C, Biradar Ashok H. Enhancement of methane production and bio-stabilisation of municipal solid waste in anaerobic bioreactor landfill[J]. Bioresource Technology, 2012, 110: 10-17.

Properties of methane production process of municipal solid wastes by anaerobic bioreactor landfill

Zeng Yunmin1,2, Wang Li'ao1,2※, Xu Tengtun2, Song Xue2, Hu Chaochao2, Li Tong2

(1.,,400044,;2.,,400044,)

In this paper, bioreactor was used to simulate the municipal solid waste (MSW) biodegradation process of landfill, tracing and testing trash methanogenic process and characteristics of leachate during anaerobic digestion, exploring the relationship between the two processes, aiming to screen out the indicators that can predict the methane production process of anaerobic digestion. The results observed at the end of 250 days prevailed that the cumulative biogas production was 1 850.38 L. The MSW anaerobic digestion gas production rate exponentially declines, measured values were basically consistent with the curve fitting with 0.78 of correlation coefficient. The nonlinear regression of the biogas production rates and digestion time showed that Scholl Canyon model fitted the results well, and the biogas production rate constants and waste gas potential were 0.0149 d?1and 66.36 L/kg, respectively. Determination of leachate characteristics showed that the peaks of total organic carbon (TOC) concentration in leachate appeared two times, which corresponded to the hydrolysis of sugar and protein in MSW. The concentration of TN in leachate continued to increase, showing the trend of nitrogen accumulation. The pH value, total organic carbon/total nitrogen (TOC/TN), acetic acid/valeric acid (HAc/HVa) of leachate changed in the system of methane production process, which has some instructions for stability. At the initial stage of methane production from digestive system, the pH value of leachate stabilized at 5.77-5.91. During the peak of methanogenic period, the pH value of leachate rapidly rose to its peak. In the late stage of methane production, the pH value continued to decrease and was less than 5.8. When the TOC/TN value of leachate was larger than 11, the anaerobic fermentation system was stable and methanogenic was normal. However, when TOC/TN value of leachate was lower than 11, the fermentation system was unstable due to ammonia accumulation, biogas production was small. The concentration of volatile fatty acids in leachate was HBu>HAc>HPr>HVa during the test period. The synthesis and transformation of valerate in waste anaerobic digestion process was relatively active. The HAc/HVa ratio changed greatly and had a significant inflection point, which was corresponding to the initial stage of methane production by anaerobic digestion. In addition, this paper also studied the leachate samples from different reaction periods (hydrolytic acidification A (50thday), methane production peak B(190thday), methane production end C(250th)), and solid samples at end-state MSW and cover were analyzed by 16S rRNA gene tag pyrosequencing for microbial community assessment. Cluster tree analysis showed that MSW samples and leachate samples were relatively close in microbial species and abundance with close genetic relationship, and the longer the reaction period, the higher the similarity. The lack ofin the anaerobic digestion system led to the interruption of ammonia nitrogen/nitrate/nitrite cycle, which caused environmental degradation and was not conducive to system gas production. The cover layer was the main site of nitrification. The cover layer can be used as a biochemical reaction active layer, which can promote methane production in the anaerobic digestion system. The ammonia poisoning inhibited the activity of methanogenic bacteria, which was the main reason for the decrease of methane production capacity of the anaerobic digestion system.The inoculation ofbiological bacteria in the phase of MSW oxygen consumption can strengthen the NH3-N nitrification reaction at the initial stage of waste fermentation, reduce the accumulation of ammonia in the late digestive system and enhance the stability of the MSW anaerobic digestion.

wastes; methane; degradation;bioreactor landfill; anaerobic digestion; methane production; leachates; microbial community

曾韻敏,王里奧,胥騰屯,宋 雪,胡超超,李 彤. 生物反應(yīng)器模擬生活垃圾填埋降解產(chǎn)甲烷性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):263-269. doi:10.11975/j.issn.1002-6819.2018.13.032 http://www.tcsae.org

Zeng Yunmin, Wang Li'ao, Xu Tengtun, Song Xue, Hu Chaochao, Li Tong. Properties of methane production process of municipal solid wastes by anaerobic bioreactor landfill[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 263-269. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.13.032 http://www.tcsae.org

2018-01-31

2018-05-17

重慶市社會(huì)民主科技創(chuàng)新專項(xiàng)(cstc2016shmsax9004);國(guó)家科技支撐計(jì)劃項(xiàng)目(2014BAC29B01)

曾韻敏,博士生,從事固體廢物處理處置及資源化利用研究。Email:zengyunmin@cqu.edu.cn

王里奧,博導(dǎo),教授,從事固體廢物處理處置及資源化利用研究。Email:wangliao@cqu.edu.cn

10.11975/j.issn.1002-6819.2018.13.032

X705

A

1002-6819(2018)-13-0263-07

猜你喜歡
產(chǎn)甲烷產(chǎn)氣濾液
濕垃圾與病死豬混合厭氧消化產(chǎn)氣性能研究
納米半導(dǎo)體材料促進(jìn)厭氧產(chǎn)甲烷過程的研究進(jìn)展
泥炭發(fā)酵產(chǎn)甲烷過程中古菌群落結(jié)構(gòu)演替
長(zhǎng)填齡滲濾液MBR+NF組合工藝各處理單元的DOM化學(xué)多樣性
滲濾液短程硝化-厭氧氨氧化工藝深度脫氮及機(jī)理研究
垃圾滲濾液處理調(diào)試期間NF膜通量下降原因及優(yōu)化
羊毒素型產(chǎn)氣莢膜梭菌臨床癥狀及病理變化
垃圾滲濾液厭氧系統(tǒng)重啟前后污泥產(chǎn)甲烷活性研究
加溫加堿預(yù)處理對(duì)污泥厭氧消化產(chǎn)氣量影響研究
零價(jià)鐵對(duì)城市污泥和餐廚垃圾聯(lián)合厭氧消化產(chǎn)甲烷的影響
长沙市| 广灵县| 万荣县| 泸定县| 罗山县| 乐清市| 浑源县| 聂拉木县| 金山区| 永川市| 平陆县| 界首市| 安仁县| 永宁县| 徐州市| 天长市| 邓州市| 吉首市| 高安市| 岳阳市| 漳州市| 朝阳县| 苏尼特左旗| 卢氏县| 和林格尔县| 积石山| 贺州市| 方山县| 衡阳市| 克东县| 甘泉县| 莱州市| 保亭| 临海市| 延安市| 本溪市| 栖霞市| 西华县| 江陵县| 安陆市| 成武县|