黃明霞,王 靖,唐建昭,房全孝,張建平,白慧卿,王 娜,李 揚(yáng),吳冰潔,鄭雋卿,潘學(xué)標(biāo)
?
基于APSIM模型分析播期和水氮耦合對(duì)油葵產(chǎn)量的影響
黃明霞1,王 靖1※,唐建昭1,房全孝2,張建平3,白慧卿1,王 娜1,李 揚(yáng)1,吳冰潔1,鄭雋卿1,潘學(xué)標(biāo)1
(1. 中國(guó)農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京 100193;2. 中國(guó)科學(xué)院水利部水土保持研究所,楊凌 712100;3.重慶市氣象科學(xué)研究所,重慶 401147)
播期調(diào)控和補(bǔ)充灌溉是保障北方農(nóng)牧交錯(cuò)帶油葵穩(wěn)產(chǎn)和增產(chǎn)的有效措施,然而播期和水氮管理對(duì)油葵產(chǎn)量的耦合效應(yīng)尚不明確。該文基于農(nóng)牧交錯(cuò)帶武川試驗(yàn)站2 a分期播種試驗(yàn)數(shù)據(jù)評(píng)估了APSIM-Sunflower模型的適應(yīng)性,應(yīng)用驗(yàn)證后的APSIM模型分析了播期和水氮耦合對(duì)油葵產(chǎn)量的影響。研究結(jié)果表明:油葵生育期模擬值與實(shí)測(cè)值均方根誤差(RMSE)小于2.4 d,地上部干物質(zhì)量和產(chǎn)量模擬的歸一化均方根誤差(NRMSE)分別為21.9%和5.5%,表明APSIM 模型能夠有效模擬油葵的生育期、地上部干物質(zhì)量和產(chǎn)量。在有補(bǔ)充灌溉條件時(shí),僅灌一水時(shí)在現(xiàn)蕾期補(bǔ)灌油葵產(chǎn)量最高,灌兩水時(shí)在現(xiàn)蕾和灌漿期補(bǔ)灌產(chǎn)量最高。油葵最佳施氮量隨著灌溉量的增加而上升;干旱年無(wú)灌溉、灌一水、灌兩水和灌三水時(shí)最佳施氮量分別為40、60、60和70 kg/hm2,正常年分別為50、70、80和90 kg/hm2,濕潤(rùn)年分別為50、80、80和90 kg/hm2。在濕潤(rùn)年和正常年時(shí)雨養(yǎng)、灌一水和灌兩水條件下播期在5月中旬較其他播期產(chǎn)量分別高6.9%和11.6%,9.3%和12.0%,9.3%和16.4%,灌一水的產(chǎn)量變異系數(shù)分別低41.9%和8.9%;灌兩水的產(chǎn)量變異系數(shù)分別低38.5%和12.5%;灌三水條件下播期在5月上旬時(shí)產(chǎn)量最高。干旱年時(shí)早播可降低產(chǎn)量年際間變異,但調(diào)控播期對(duì)提高產(chǎn)量作用較小。研究結(jié)果可為北方農(nóng)牧交錯(cuò)帶油葵生產(chǎn)播期和水氮管理提供參考。
灌溉;氮肥;模型;分期播種;降水年型;水氮耦合;APSIM-Sunflower
北方農(nóng)牧交錯(cuò)帶是中國(guó)北方農(nóng)耕區(qū)和草原牧區(qū)的過(guò)渡帶[1]。該地區(qū)降水年際變異大、無(wú)霜期短、生態(tài)脆弱、自然災(zāi)害頻發(fā)[2],是對(duì)氣候變化最為敏感的區(qū)域之一[3]。油葵(L.)因其產(chǎn)油率高、耐鹽堿、早熟高產(chǎn)、病蟲(chóng)害少等特點(diǎn),成為北方農(nóng)牧交錯(cuò)帶主要油料作物,同時(shí)由于經(jīng)濟(jì)效益高,其種植面積逐年增加[4]。因此,在該地區(qū)堅(jiān)持可持續(xù)發(fā)展戰(zhàn)略下保證油葵穩(wěn)產(chǎn)和增產(chǎn)具有重要意義。
在雨養(yǎng)農(nóng)業(yè)區(qū),合理的播期是作物增產(chǎn)和穩(wěn)產(chǎn)的有效措施之一[5-6]。播期調(diào)控的關(guān)鍵是使作物需水和降水達(dá)到最大程度的匹配,特別是作物需水關(guān)鍵期與季節(jié)性降水同步[7]。另一方面,播期也會(huì)影響作物生長(zhǎng)季的熱量資源,如早播會(huì)使作物出苗遭受凍害或者由于水分不足導(dǎo)致不能正常出苗[8],而晚播會(huì)導(dǎo)致作物不能充分灌漿或遭受初霜凍害[9]。實(shí)際生產(chǎn)中,農(nóng)戶(hù)缺乏適宜播種期的科學(xué)指導(dǎo),在各種氣象條件下均選擇習(xí)慣播種期,未能對(duì)氣候資源進(jìn)行充分利用。
近幾年,為了提高油葵產(chǎn)量以增加經(jīng)濟(jì)收入,當(dāng)?shù)剞r(nóng)民在油葵生長(zhǎng)期進(jìn)行了補(bǔ)充灌溉[10-11]。大量研究表明,最佳的灌溉量和灌溉時(shí)間與局地的降水年型密切相關(guān)[12-13]。同時(shí)播種期和補(bǔ)充灌溉時(shí)間對(duì)作物產(chǎn)量具有顯著的交互作用[14],而灌溉和施肥也存在明顯協(xié)同效應(yīng)[15-17]。在水分充足條件下,施肥會(huì)提高作物蒸騰效率和水分利用率,促進(jìn)作物生長(zhǎng),形成高產(chǎn)。然而,在降水偏少的年份,施肥對(duì)產(chǎn)量和水分利用效率的作用不明顯,甚至?xí)霈F(xiàn)負(fù)效應(yīng)。
已有試驗(yàn)研究分析播期和水肥管理對(duì)油葵產(chǎn)量的影響,建立氣象因子和水肥梯度與油葵產(chǎn)量的統(tǒng)計(jì)回歸模型[18-19],但多為2~4 a,有限年份的試驗(yàn)不能充分考慮降水年型對(duì)播期和灌溉的影響,缺乏對(duì)播期和水氮耦合影響的定量研究。由于作物生長(zhǎng)模型詳盡考慮了氣候、土壤和管理等方面對(duì)作物生長(zhǎng)發(fā)育和產(chǎn)量形成的影響,已經(jīng)廣泛用于分析播期和水肥管理對(duì)小麥[20]、玉米[21]和油菜[22]等作物產(chǎn)量的影響,但目前對(duì)油葵研究較少。因此,本文基于北方農(nóng)牧交錯(cuò)帶典型站點(diǎn)分期播種試驗(yàn)數(shù)據(jù),對(duì)APSIM-Sunflower模型進(jìn)行適應(yīng)性評(píng)價(jià),利用驗(yàn)證后的模型分析播期和水氮管理耦合對(duì)油葵產(chǎn)量和產(chǎn)量年際變異的影響,探究不同降水年型下的最適宜播種期與最優(yōu)施氮和灌溉量,為該地區(qū)油葵生產(chǎn)提供理論指導(dǎo)。
油葵分期播種試驗(yàn)在農(nóng)業(yè)部武川農(nóng)業(yè)環(huán)境科學(xué)觀測(cè)試驗(yàn)站(41°06′N(xiāo),111°28′E,海拔1 756 m)進(jìn)行。試驗(yàn)站地處北方農(nóng)牧交錯(cuò)帶中部,屬于干旱半干旱大陸性氣候,年平均溫度2.7 ℃,0 ℃以上多年平均活動(dòng)積溫2 771 ℃·d,10 ℃以上多年平均活動(dòng)積溫2 361 ℃·d,無(wú)霜期90~120 d;降水季節(jié)性強(qiáng),主要集中在7~8月,作物生長(zhǎng)季(4~9月)降水量占全年降水量的90%,降水的年際變異高,變異系數(shù)達(dá)23%,年潛在蒸發(fā)量約為降水量的5倍;光照資源豐富,年平均日照時(shí)數(shù)2 955 h。土壤主要為栗鈣土。
1980-2015年逐日氣象資料來(lái)自中國(guó)氣象局國(guó)家氣象信息中心地面氣象觀測(cè)資料,主要包括:日最高溫度(℃)、日最低溫度(℃)、日照時(shí)數(shù)(h)和日降水量(mm)。油葵分期播種試驗(yàn)分別于2014和2015年的4-10月進(jìn)行,供試品種均為內(nèi)葵雜3號(hào),2 a均為3個(gè)播期,分別為4月26號(hào)、5月6號(hào)、5月16號(hào),播種密度均為5株/m2。2 a試驗(yàn)均在播前一次性施入尿素37.5 kg/hm2(純N含量 46.3%),磷酸二銨75.0 kg/hm2(純N含量18%,P2O5含量為46%),氯化鉀37.5 kg/hm2(K2O含量為60%),之后不再追肥;為保證安全出苗,均在播后一次性補(bǔ)水30 mm,之后不再補(bǔ)灌。記錄油葵出苗、現(xiàn)蕾、開(kāi)花和成熟等關(guān)鍵生育期。出苗后每隔15 d 取一次樣,每小區(qū)隨機(jī)取3株,測(cè)定株高、葉片數(shù)和花盤(pán)直徑,再按根、莖和葉分別測(cè)得各器官鮮、干質(zhì)量。同時(shí)利用便攜式葉面積儀(LI-3000C)測(cè)定綠葉葉片面積。每小區(qū)取10 m2油葵進(jìn)行測(cè)產(chǎn),曬干后經(jīng)人工脫粒并烘干,文中的產(chǎn)量均為干質(zhì)量。采用土鉆法取土并用烘干法測(cè)定0~5、5~10、10~20、20~30……90~100 cm的分層土壤質(zhì)量含水率。分期播種試驗(yàn)數(shù)據(jù)主要用于評(píng)價(jià)APSIM-Sunflower模型在農(nóng)牧交錯(cuò)帶的適應(yīng)性,再基于調(diào)參和驗(yàn)證后的APSIM-Sunflower模型分析不同年型下播期和水氮耦合對(duì)油葵產(chǎn)量的影響。
土壤基礎(chǔ)物理數(shù)據(jù)包括各層的土壤容重、飽和含水量、田間持水量、凋萎系數(shù)等(表1)。土壤參數(shù)根據(jù)黏粒和砂粒的比例及有機(jī)質(zhì)的含量通過(guò)SPAW模型計(jì)算得到。
表1 武川試驗(yàn)站土壤物理參數(shù)
APSIM模型(agricultural production systems simulator)是由澳大利亞農(nóng)業(yè)生產(chǎn)系統(tǒng)研究組(APSRU)為模擬農(nóng)業(yè)生產(chǎn)系統(tǒng)生物物理和生物化學(xué)過(guò)程機(jī)理而研發(fā)的作物生長(zhǎng)模型。APSIM模型的核心模塊包括:作物模塊、土壤模塊和管理模塊。作物模塊主要模擬作物的生長(zhǎng)、發(fā)育和產(chǎn)量形成。作物模塊盡管對(duì)所有作物的生長(zhǎng)發(fā)育均采用通用的生理過(guò)程,但不同作物采用與各自生理特性相關(guān)的函數(shù)和參數(shù)。土壤模塊可動(dòng)態(tài)模擬土壤水分和養(yǎng)分運(yùn)移等過(guò)程。管理模塊包括播種、收獲、施肥和灌溉等管理措施的設(shè)定以及各個(gè)模塊的調(diào)用。因此,APSIM-Sunflower模型可用于模擬向日葵的生長(zhǎng)發(fā)育、水氮需求和產(chǎn)量形成等過(guò)程。
APSIM-Sunflower模型采用日時(shí)間步長(zhǎng),需要的輸入數(shù)據(jù)包括氣象數(shù)據(jù)、土壤數(shù)據(jù)、作物數(shù)據(jù)和管理數(shù)據(jù)。氣象數(shù)據(jù)包括日最高溫度(℃)、日最低溫度(℃)、日降水量(mm)和日太陽(yáng)總輻射(MJ/(m2·d)),其中日太陽(yáng)總輻射由日照時(shí)數(shù)(h)計(jì)算而得[23];土壤數(shù)據(jù)包括土層深度(cm)、各土層容重(g/cm3)、飽和含水量(mm/mm)、田間持水量(mm/mm)和凋萎含水量(mm/mm)等土壤基礎(chǔ)物理參數(shù)及土壤pH值、土壤有機(jī)質(zhì)含量(%)、土壤全氮含量(mg/kg)、土壤硝態(tài)氮濃度(mg/kg)和氨態(tài)氮濃度(mg/kg)等土壤基礎(chǔ)化學(xué)參數(shù);作物數(shù)據(jù)指使用的油葵品種及其遺傳參數(shù),包括各發(fā)育階段需要的有效積溫(℃·d)、總?cè)~面積系數(shù)、出葉速率(葉/d)、葉片衰老系數(shù)、葉片衰老截距、光能利用率(g/MJ)和收獲指數(shù)日增加量(1/d),均基于試驗(yàn)數(shù)據(jù)通過(guò)模型調(diào)參來(lái)確定;管理數(shù)據(jù)包括油葵播種日期、種植密度(株/m2)、收獲日期、施肥種類(lèi)、施肥時(shí)間和施肥量(kg/hm2)、灌溉時(shí)間和灌溉量(mm)。模型的關(guān)鍵輸出數(shù)據(jù)包括油葵生育期、葉面積指數(shù)(mm2/mm2)、地上部干物質(zhì)量(kg/hm2)、產(chǎn)量(kg/hm2)、蒸散量(mm)、各土層深度土壤體積含水量(mm/mm)等。
APSIM-Sunflower模型能夠反映溫度、光周期、輻射、土壤水分和氮素變化對(duì)油葵生長(zhǎng)發(fā)育和產(chǎn)量形成的影響。模型將油葵的發(fā)育期劃分為9個(gè),分別為播種、發(fā)芽、出苗、幼苗期結(jié)束、花芽分化、旗葉、開(kāi)花、灌漿開(kāi)始、灌漿結(jié)束和成熟。播種-發(fā)芽和旗葉-開(kāi)花階段模型中均默認(rèn)為1 d,其他各生育階段均由積溫控制,其中幼苗期結(jié)束-花芽分化的積溫受光周期影響,隨光周期縮短該階段所需有效積溫增加,增加的速率由光周期敏感性參數(shù)控制[24]。向日葵的潛在地上部干物質(zhì)量由葉片截獲的太陽(yáng)輻射和光能利用率共同決定,而實(shí)際地上部干物質(zhì)量受到水分和氮肥限制。水分自播種后開(kāi)始影響向日葵生長(zhǎng),水分脅迫會(huì)降低光合作用速率和葉片生長(zhǎng)量,同時(shí)會(huì)加速葉片衰老。氮素從出苗開(kāi)始到成熟均影響向日葵生長(zhǎng),氮素日吸收量按器官需求分配,籽粒氮供應(yīng)不足時(shí)可由葉和莖再分配,氮素脅迫會(huì)降低葉面積指數(shù)、地上部干物質(zhì)量和灌漿速率。向日葵的產(chǎn)量由地上部干物質(zhì)量和收獲指數(shù)決定。
本文基于2014年3個(gè)播期的油葵試驗(yàn)數(shù)據(jù)應(yīng)用試錯(cuò)法對(duì)APSIM-Sunflower進(jìn)行調(diào)參,應(yīng)用2015年3個(gè)播期的試驗(yàn)數(shù)據(jù)進(jìn)行模型驗(yàn)證。首先根據(jù)試驗(yàn)觀測(cè)的出苗、現(xiàn)蕾(花芽分化)、成熟期調(diào)整模型中控制幼苗期結(jié)束-花芽分化、花芽分化-旗葉、開(kāi)花-灌漿開(kāi)始、開(kāi)花-成熟所需的有效積溫來(lái)確定油葵品種的發(fā)育期參數(shù);其次調(diào)整模型中控制葉面積指數(shù)(LAI)的品種參數(shù)和光能利用率(RUE)來(lái)使試驗(yàn)觀測(cè)的油葵地上部干物質(zhì)量的模擬誤差最小;最后通過(guò)調(diào)整收獲指數(shù)日增加量來(lái)使試驗(yàn)觀測(cè)的產(chǎn)量模擬誤差最小。
為充分考慮不同的降水年型和氣候條件,本文選擇1960-2013年作為長(zhǎng)期模擬情景,基于驗(yàn)證后的APSIM-Sunflower模型分別模擬灌溉、水氮耦合及播期和灌溉耦合情境下油葵產(chǎn)量的變化。
1.4.1 灌溉情景設(shè)定
油葵生長(zhǎng)發(fā)育過(guò)程關(guān)鍵需水期為播種、現(xiàn)蕾和灌漿[25],參考農(nóng)民常用灌溉水平[10],設(shè)置以下灌溉情景:
無(wú)灌溉(雨養(yǎng)):整個(gè)油葵生長(zhǎng)季均不灌溉。
灌一水:在播種、現(xiàn)蕾、灌漿中的任一生育期進(jìn)行一次灌溉,灌溉量為60 mm。
灌兩水:在播種和現(xiàn)蕾、現(xiàn)蕾和灌漿、播種和灌漿的3種組合中選擇任一種進(jìn)行灌溉,單次灌溉量均為60 mm。
灌三水:在播種、現(xiàn)蕾和灌漿均灌溉60 mm,灌溉總量為180 mm。
灌溉情景下油葵均在當(dāng)?shù)爻R?guī)播期(5月14日)播種,種植品種為‘內(nèi)葵雜3號(hào)’,播種密度為5株/m2,肥料設(shè)置充足。
1.4.2 水氮耦合情景
考慮水氮的耦合效應(yīng),本研究結(jié)合降水年型和灌溉量確定最佳施氮量。根據(jù)降水保證率[26-27]劃分降水年型如表2所示,分別在濕潤(rùn)年、正常年和干旱年下進(jìn)行無(wú)灌溉、灌一水、灌兩水和灌三水處理,施肥情景設(shè)定純氮0~120 kg/hm2,以10 kg/hm2為間隔,分析不同降水年型和灌溉處理下的最佳施氮量。油葵的播期、品種和密度與灌溉情景相同。
表2 武川試驗(yàn)站降水年型的劃分
1.4.3 播期和灌溉耦合情景
油葵理論最早播期和最晚播期的間隔即為潛在播種窗口。最早播期為日平均氣溫穩(wěn)定通過(guò)油葵生長(zhǎng)的下限溫度(5 ℃)的日期[4];最晚播期以秋季初霜日為起點(diǎn),向前倒推到油葵完成生育期所需≥5 ℃有效積溫(1 450 ℃·d)對(duì)應(yīng)的播種期。在播種窗口內(nèi)每隔5 d設(shè)置一個(gè)播期,分別為4月29日、5月4日、5月9日、5月14日、5月19日、5月24日、5月29日、6月3日、6月8日。在不同降水年型和不同灌溉情景下,比較不同播期下油葵的產(chǎn)量和年際變異,其中施氮量為該降水年型和灌溉情景下的最佳施氮量。油葵的品種和密度與灌溉情景相同。
采用以下統(tǒng)計(jì)指標(biāo)評(píng)價(jià)APSIM模型在北方農(nóng)牧交錯(cuò)帶的適用性,即模擬值與實(shí)測(cè)值之間的均方根誤差(RMSE)、歸一化均方根誤差(NRMSE)和決定系數(shù)(2):
變異系數(shù)(CV)表征樣本的離散程度,用來(lái)分析產(chǎn)量年際間差異:
APSIM-Sunflower模型調(diào)參獲得的油葵品種參數(shù)如表3所示。
表3 油葵品種內(nèi)葵雜3號(hào)的遺傳參數(shù)
其中,幼苗期結(jié)束-花芽分化、花芽分化-旗葉、開(kāi)花-灌漿開(kāi)始以及開(kāi)花-成熟所需有效積溫為控制油葵發(fā)育期的參數(shù);總?cè)~面積系數(shù)和出葉速率是控制葉面積生長(zhǎng)的參數(shù);衰老系數(shù)和衰老截距是控制葉片衰落的參數(shù)[28]。油葵光能利用率和收獲指數(shù)日增加量為控制地上部干物質(zhì)量和產(chǎn)量的參數(shù)。
APSIM-Sunflower對(duì)油葵生育期、地上部干物質(zhì)量和產(chǎn)量的調(diào)參結(jié)果顯示(圖1),模擬和實(shí)測(cè)出苗、開(kāi)花和成熟日期的RMSE為1.7~2.9 d,模擬和實(shí)測(cè)地上部干物質(zhì)量的2和NRMSE分別為0.94和22.1%,模型能夠反映不同播期處理下的產(chǎn)量趨勢(shì),產(chǎn)量模擬值和實(shí)測(cè)值的NRMSE為12.5%。然而,盡管模型能夠很好地模擬葉面積指數(shù)的動(dòng)態(tài),但模擬的相對(duì)誤差高于30%。
注:虛線(xiàn)為1:1線(xiàn),實(shí)線(xiàn)為回歸線(xiàn),實(shí)測(cè)產(chǎn)量上的不同字母代表差異達(dá)到顯著水平。S/26-Apr代表播種期為4月26日的觀測(cè)和模擬的葉面積指數(shù)/地上部干物質(zhì)量,S/6-May代表播種期為5月6日的觀測(cè)和模擬的葉面積指數(shù)/地上部干物質(zhì)量,S/16-May代表播種期為5月16日的觀測(cè)和模擬的葉面積指數(shù)/地上部干物質(zhì)量。
模型的驗(yàn)證結(jié)果表明,模型模擬的生育期RMSE低于2.4 d,地上部干物質(zhì)量和產(chǎn)量的實(shí)測(cè)值與模擬值的NRMSE分別為21.9%和5.5%。以上結(jié)果顯示APSIM-Sunflower能夠有效模擬不同播期下的油葵生育期、地上部干物質(zhì)量和產(chǎn)量。與調(diào)參結(jié)果相似,模型盡管可以準(zhǔn)確模擬出葉面積指數(shù)的動(dòng)態(tài)變化,但對(duì)其絕對(duì)值模擬的誤差較大,尤其不能很好地模擬晚播條件下的最大葉面積指數(shù)。
分析不同灌溉時(shí)間下油葵模擬產(chǎn)量的保證率可知(圖2),在現(xiàn)蕾灌一水產(chǎn)量在1 500~3 000 kg/hm2的保證率均比在播種或灌漿灌溉一水的保證率高,如在播種、現(xiàn)蕾和灌漿灌一水油葵產(chǎn)量達(dá)到1 000 kg/hm2的保證率分別為96.3%、98.1%和92.6%,達(dá)到2 000 kg/hm2的保證率分別為17.6%、25.0%和18.5%。在現(xiàn)蕾和灌漿各灌一水的產(chǎn)量在1 500~3 500 kg/hm2的保證率均要高于在播種和現(xiàn)蕾或播種和灌漿灌溉,如在播種和現(xiàn)蕾、現(xiàn)蕾和灌漿、播種和灌漿灌溉油葵產(chǎn)量達(dá)到2 000 kg/hm2的保證率分別為88.9%、90.7%和83.3%,達(dá)到3 000 kg/hm2的保證率分別為48.1%、55.6%和38.9%。因此,后述部分的灌一水均指在現(xiàn)蕾灌溉,灌兩水均指在現(xiàn)蕾和灌漿灌溉。
圖3顯示相同灌溉條件下,油葵模擬產(chǎn)量隨著施氮量的增加而上升,施氮量達(dá)到一定值后,產(chǎn)量變化較緩,將該閾值定義為最佳施氮量。干旱年無(wú)灌溉、灌一水、灌兩水和灌三水時(shí)最佳施氮量分別為40、60、60和70 kg/hm2,對(duì)應(yīng)的產(chǎn)量分別為404、737、1 106和1 420 kg/hm2;正常年無(wú)灌溉、灌一水、灌兩水和灌三水時(shí)最佳施氮量分別為50、70、80和90 kg/hm2,對(duì)應(yīng)的產(chǎn)量分別為892、1 385、1 764和2 018 kg/hm2;濕潤(rùn)年無(wú)灌溉、灌一水、灌兩水和灌三水時(shí)最佳施氮量分別為50、80、80和90 kg/hm2,對(duì)應(yīng)的產(chǎn)量分別為1 196、1 646、1 877和2 119 kg/hm2。
注:S、F、G分別表示在播種、現(xiàn)蕾、灌漿進(jìn)行灌溉;SF、FG、SG分別表示在播種和現(xiàn)蕾、現(xiàn)蕾和灌漿以及播種和灌漿分別進(jìn)行1次灌溉。
圖3 水氮耦合對(duì)油葵模擬產(chǎn)量的影響
如圖4所示,模擬得到無(wú)灌溉時(shí)濕潤(rùn)年和正常年在5月中旬播種平均產(chǎn)量最高,較其他播期分別平均高6.9%和11.6%,而干旱年播期調(diào)控對(duì)產(chǎn)量影響較?。粷駶?rùn)年和正常年灌一水播期在5月中旬產(chǎn)量最高且變異系數(shù)較低,產(chǎn)量較其他播期分別平均高9.3%和12.0%,產(chǎn)量變異系數(shù)分別平均低41.9%和8.9%,而干旱年早播可降低產(chǎn)量年際變異。濕潤(rùn)年和正常年灌兩水時(shí)播期在5月中旬產(chǎn)量最高且變異系數(shù)最低,產(chǎn)量較其他播期分別平均高9.3%和16.4%,產(chǎn)量變異系數(shù)分別平均低38.5%和12.5%;干旱年早播同樣可降低產(chǎn)量年際間變異。濕潤(rùn)年和正常年灌三水在5月上旬播種產(chǎn)量最高,此后播期每推遲5 d產(chǎn)量降低的平均速率分別為147 kg/hm2和142 kg/hm2;干旱年早播可降低產(chǎn)量變異。
圖4 播期與水氮耦合對(duì)油葵模擬產(chǎn)量的影響
APSIM模型已經(jīng)廣泛用于指導(dǎo)作物生產(chǎn)中的播期和水氮管理,但主要應(yīng)用于小麥和玉米作物,對(duì)向日葵的應(yīng)用研究較少。模型評(píng)估是其應(yīng)用的基礎(chǔ),Zeng等[29]在內(nèi)蒙古河套灌區(qū)進(jìn)行了APSIM-Sunflower模型對(duì)不同水肥管理水平的響應(yīng)評(píng)估,本研究進(jìn)一步基于詳細(xì)的分期播種試驗(yàn)數(shù)據(jù)對(duì)APSIM-Sunflower模型在北方農(nóng)牧交錯(cuò)帶的適應(yīng)性進(jìn)行了評(píng)價(jià)。最近的研究指出,作物生長(zhǎng)期間氣象要素差異顯著的數(shù)據(jù)能顯著提高模型調(diào)參結(jié)果的有效性[30],本文選取了不同播期的數(shù)據(jù)進(jìn)行調(diào)參和驗(yàn)證,以使APSIM-Sunflower模型能夠準(zhǔn)確模擬油葵生長(zhǎng)發(fā)育對(duì)不同氣候條件的響應(yīng)。調(diào)參和驗(yàn)證結(jié)果表明模型能夠有效模擬油葵的生育期、地上部干物質(zhì)量和產(chǎn)量,能夠準(zhǔn)確模擬葉面積指數(shù)的動(dòng)態(tài)變化趨勢(shì),反映APSIM-Sunflower模型可用于分析農(nóng)牧交錯(cuò)帶油葵生長(zhǎng)發(fā)育和產(chǎn)量形成對(duì)播期和水氮管理的響應(yīng)。但需要注意的是葉面積指數(shù)模擬值與觀測(cè)值的NRMSE超過(guò)30%,通過(guò)LAI的變化曲線(xiàn)可以看出,模擬誤差主要出現(xiàn)在現(xiàn)蕾期前期和灌漿后期,實(shí)測(cè)LAI增長(zhǎng)和衰老的速率較模擬值更快,通過(guò)調(diào)試模型中控制LAI變化的葉片生長(zhǎng)參數(shù)均不能改變此階段增長(zhǎng)速率,Zeng等[29]的研究也得到類(lèi)似結(jié)果。因此,APSIM-Sunflower模型對(duì)LAI的模擬需要更多精細(xì)的數(shù)據(jù)進(jìn)行評(píng)估和改進(jìn)。
農(nóng)牧交錯(cuò)帶農(nóng)業(yè)生產(chǎn)的主要限制因子是降水量低且年際變率高。近年來(lái),為了提高產(chǎn)量和經(jīng)濟(jì)效益,農(nóng)牧交錯(cuò)帶擴(kuò)大了油葵種植面積并在部分地區(qū)進(jìn)行了補(bǔ)充灌溉[4],因此如何通過(guò)調(diào)整播期以及與灌溉和施肥耦合來(lái)提高作物水分利用效率和科學(xué)地使用氮肥對(duì)經(jīng)濟(jì)用水用肥和降低對(duì)環(huán)境影響有重要的指導(dǎo)作用。表4總結(jié)了不同降水年型下的油葵最佳播期、優(yōu)化灌溉方案和施氮量以及不同方案下的產(chǎn)量、水分利用效率和氮肥農(nóng)學(xué)效率。在沒(méi)有灌溉條件的地區(qū),正常年和濕潤(rùn)年的產(chǎn)量、水分利用效率和氮肥農(nóng)學(xué)效率均顯著高于干旱年,其最適播期均在5月中旬,而干旱年應(yīng)適當(dāng)早播,以避免油葵生長(zhǎng)后期遭受?chē)?yán)重的水分脅迫。雨養(yǎng)條件下在3種年型條件下的最佳施氮量均不應(yīng)超過(guò)50 kg/hm2。通過(guò)灌溉可以顯著提高油葵的產(chǎn)量、水分利用效率和氮肥農(nóng)學(xué)效率。本研究得到在僅一次補(bǔ)充灌溉條件下油葵需水關(guān)鍵期為現(xiàn)蕾期,與單玉芬等[31]和Karam[32]等的田間試驗(yàn)結(jié)果一致。而在2~3次灌溉條件下,可在灌漿期和播種期分別增加一水。除濕潤(rùn)年外,灌溉次數(shù)越多,產(chǎn)量、水分利用效率和氮肥農(nóng)學(xué)效率越高,反映了干旱年和正常年的水分顯著制約了油葵產(chǎn)量。隨著灌溉的提高,最佳施氮量也相應(yīng)提高,如濕潤(rùn)年且灌三水時(shí),最佳施氮量需提高至90 kg/hm2,超過(guò)最佳施氮量后產(chǎn)量保持不變,大量的研究表明水分限制條件下提高施肥量并不能增加產(chǎn)量[33-35],大田生產(chǎn)中水分不足時(shí)施肥量過(guò)高甚至?xí)?dǎo)致產(chǎn)量降低,其主要原因包括肥料濃度過(guò)高導(dǎo)致的“燒苗”、作物發(fā)生倒伏以及病蟲(chóng)害加劇等。
本研究表明,選擇適宜的播期不僅可以提高產(chǎn)量,同時(shí)可以降低產(chǎn)量的年際變異。當(dāng)前農(nóng)戶(hù)的常規(guī)播期(5月中旬)基本處在油葵的適宜播期,但在干旱年份和灌溉量充足的年份均可提早播種,但其提高產(chǎn)量的機(jī)理不同,干旱年份早播可降低后期嚴(yán)重水分脅迫的風(fēng)險(xiǎn),而灌溉充足的年份通過(guò)早播可以延長(zhǎng)油葵的生長(zhǎng)期,從而提高產(chǎn)量。其次,降水年型對(duì)最佳施氮量影響較大,濕潤(rùn)年較干旱年相同灌溉條件下施氮量應(yīng)提高10~20 kg/hm2,而現(xiàn)有研究大多側(cè)重分析灌溉和施肥的耦合,忽略了降水年型對(duì)施肥量的重要影響。相較于以前的大田試驗(yàn)研究考慮的有限水肥耦合模式[36-38],本研究考慮了更精細(xì)的水肥耦合情景并定量了最佳施氮閾值。盡管北方農(nóng)牧交錯(cuò)帶不適宜采用地下水進(jìn)行大面積灌溉,但在部分有灌溉條件的地區(qū),可以參照本研究提供的播期和水肥耦合模式進(jìn)行補(bǔ)灌來(lái)提高產(chǎn)量,而在沒(méi)有地下水灌溉條件的地區(qū)可通過(guò)集雨來(lái)進(jìn)行補(bǔ)灌[39]。
表4 不同年型適宜播期、水氮施用量及作物產(chǎn)量、水分利用效率(WUE)和氮肥農(nóng)學(xué)效率(AEN)
注:WUE =產(chǎn)量/耗水量;AEN=(施氮產(chǎn)量-不施氮產(chǎn)量)/施氮量。
Note: WUE = yield/water consumption; AEN= (yield under N application – yield without N application)/N application rate.
本研究基于分期播種試驗(yàn)、土壤數(shù)據(jù)、氣象數(shù)據(jù)和田間管理數(shù)據(jù)評(píng)價(jià)了APSIM 模型在北方農(nóng)牧交錯(cuò)帶典型站點(diǎn)的適應(yīng)性,確定了常用油葵品種的遺傳參數(shù),并分析了播期、灌溉和施氮對(duì)油葵產(chǎn)量和產(chǎn)量年際變異的影響,結(jié)論如下:
1)APSIM-Sunflower模型能夠較準(zhǔn)確的模擬不同播期油葵生長(zhǎng)發(fā)育過(guò)程。油葵生育期實(shí)測(cè)值和模擬值的RMSE低于2.4 d;油葵地上部干物質(zhì)量和產(chǎn)量的實(shí)測(cè)值和模擬值的NRMSE分別為21.9%和5.5%,但模型對(duì)葉面積指數(shù)的模擬有待改進(jìn)。
2)在灌一水條件下,在現(xiàn)蕾灌溉的產(chǎn)量要高于在播種和灌漿灌溉的產(chǎn)量,在現(xiàn)蕾和灌漿各灌一水較在播種和現(xiàn)蕾或播種和灌漿灌溉產(chǎn)量更高。油葵最佳施氮量隨著灌溉量的增加而上升,雨養(yǎng)條件下,最佳施氮量在40~50 kg/hm2,而在灌三水條件下(180 mm),最佳施氮量可提高到70~90 kg/hm2。在濕潤(rùn)年和正常年無(wú)灌溉、灌一水和灌兩水條件下油葵適宜播期在5月中旬,灌三水適宜播期在5月上旬,而干旱年播期調(diào)控對(duì)產(chǎn)量的影響較小,但早播可降低產(chǎn)量年際變異。
[1] 張建春,儲(chǔ)少林,陳全功,等. 中國(guó)農(nóng)牧交錯(cuò)帶界定的現(xiàn)狀及進(jìn)展[J]. 草業(yè)科學(xué),2008,25(3):78-84.
Zhang Jianchun, Chu Shaolin, Chen Quangong, et al. Advances in defining the boundary of farming-grazing transition zone in China[J]. Pratacultural Science, 2008, 25(3): 78-84. (in Chinese with English abstract)
[2] 劉洪來(lái),王藝萌,竇瀟,等. 農(nóng)牧交錯(cuò)帶研究進(jìn)展[J]. 生態(tài)學(xué)報(bào),2009,29(8):408-413.
Liu Honglai, Wang Yimeng, Dou Xiao, et al. Progress and perspective of agro-pasturage ecotone[J]. Acta Ecologica Sinica, 2009, 29(8): 408-413. (in Chinese with English abstract)
[3] 李敏敏,延軍平,丁彩霞. 北方農(nóng)牧交錯(cuò)帶氣候變化與旱澇響應(yīng)特征[J]. 水土保持通報(bào),2014,34(5):304-308.
Li Minmin, Yan Junping, Ding Caixia. Climate change and response characteristics of drought and flood in farming-pastoral ecotone of Northern China[J]. Bulletin of Soil and Water Conservation, 2014, 34(5): 304-308. (in Chinese with English abstract)
[4] Tang Jianzhao, Wang Jing, He Di, et al. Comparison of the impacts of climate change on potential productivity of different staple crops in the agro-pastoral ecotone of North China[J]. Journal of Meteorological Research, 2016, 30(6): 983-997.
[5] 張國(guó)偉,張祥,陳德華,等. 播期對(duì)內(nèi)蒙古西部荒漠區(qū)棉花產(chǎn)量、品質(zhì)及養(yǎng)分吸收利用的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2017,28(3):863-870.
Zhang Guowei, Zhang Xiang, Chen Dehua, et al. Effect of sowing dates on cotton yield, fiber quality and uptake and utilization of nutrients in Inner Mongolia west desert area, China[J]. Chinese Journal of Applied Ecology, 2017, 28(3): 863-870. (in Chinese with English abstract)
[6] 沈姣姣,王 靖,李建科,等. 農(nóng)牧交錯(cuò)帶地區(qū)油葵適時(shí)播種氣象條件分析[J]. 干旱地區(qū)農(nóng)業(yè)研究,2013,31(3):237-243.
Shen Jiaojiao, Wang Jing, Li Jianke, et al. Analysis of suitable meteorological condition for planting oil sunflower in agro-pastoral ecotone[J]. Agricultural Research in the Arid Areas, 2013, 31(3): 237-243. (in Chinese with English abstract)
[7] Barros J F C, Carvalho M D, Basch G. Response of sunflower (L.) to sowing date and plant density under Mediterranean conditions[J]. European Journal of Agronomy, 2004, 21(3): 347-356.
[8] 路海東,薛吉全,郝引川,等. 播期對(duì)雨養(yǎng)旱地春玉米生長(zhǎng)發(fā)育及水分利用的影響[J]. 作物學(xué)報(bào),2015,41(12):1906-1914.
Lu Haidong, Xue Jiquan, Hao Yinchuan. Effects of sowing time on spring maize (L) growth and water use efficiency in rainfed dryland[J]. Acta Agronomica Sinica, 2015, 41(12): 1906-1914. (in Chinese with English abstract)
[9] 張惠玲,鄧振鏞,尹憲志,等. 甘肅省油菜生態(tài)氣候適應(yīng)性分析與適生種植區(qū)劃[J]. 中國(guó)農(nóng)業(yè)氣象,2004,25(4):51-55.
Zhang Huiling, Deng Zhenyong, Yin Xianzhi, et al. Analysis of ecological climate adaptability and planting division of oilseed rape in Gansu province[J]. Chinese Journal of Agrometeorology, 2004, 25(4): 51-55. (in Chinese with English abstract)
[10] 李為萍. 鹽漬化灌區(qū)油葵品質(zhì)對(duì)水-肥-鹽耦合的動(dòng)態(tài)響應(yīng)效應(yīng)研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2013.
Li Weiping. Dynamic Response of Sunflower Quality on the Soil Condition of Water-fertilizer-salt Coupling in the Salinization Distract[D]. Hohhot: Inner Mongolia Agricultural University, 2013. (in Chinese with English abstract)
[11] 何玲,何文壽,任然,等. 寧夏干旱帶油用向日葵水肥耦合效應(yīng)研究[J]. 節(jié)水灌溉,2015,12:16-20.
He Ling, He Wenshou, Ren Ran, et al. Effect of water-fertilizer coupling on oilseed sunflower in drought region of Ningxia[J]. Water Saving Irrigation, 2015, 12: 16-20. (in Chinese with English abstract)
[12] 仝炳偉,鮑子云,張彥群. 寧夏干旱區(qū)油葵耗水規(guī)律及灌溉制度優(yōu)化研究[J]. 節(jié)水灌溉,2014,10:11-14.
Tong Bingwei, Bao ziyun, Zhangyanqun. Sunflower water consumption and irrigation schedule optimization in arid regions of Ningxia[J], Water Saving Irrigation, 2014, 10: 11-14. (in Chinese with English abstract)
[13] 張彥群,鮑子云,仝炳偉,等. 寧夏中部干旱區(qū)油葵畦灌優(yōu)化灌溉制度研究[J]. 灌溉排水學(xué)報(bào),2013,32(3):93-96.
Zhang Yanqun, Bao Ziyun, Tong Bingwei, et al. Research on the optimal border irrigation regime of sunflower in arid regions of Ningxia[J]. Journal of Irrigation and Drainage, 2013, 32(3): 93-96. (in Chinese with English abstract)
[14] Paredes P, Rodrigues G C, Cameira M D R, et al. Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation[J]. Agricultural Water Management, 2016, 179: 132-143.
[15] Li Wenglong, Li Weide, Li Zizhen. Irrigation and fertilizer effects on water use and yield of spring wheat in semi-arid regions[J]. Agricultural Water Management, 2004, 67(1): 35-46.
[16] Guo Shengli, Zhu Hanhua, Dang Tinghui, et al. Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China[J]. Geoderma, 2012, 189-190(6): 442-450.
[17] Mina K, Mahdi G, Behrouz M, et al. Effect of the interaction of water and nitrogen on sun?ower under drip irrigation in an arid region[J]. Agricultural Water Management, 2016, 171: 162-172.
[18] 董宛麟,于洋,張立禎,等. 向日葵和馬鈴薯間作條件下氮素的吸收和利用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(7):98-108.
Dong Wanlin, Yu Yang, Zhang Lizhen, et al. Nitrogen uptake and utilization in sunflower and potato intercropping[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(7): 98-108. (in Chinese with English abstract)
[19] 楊宏羽,李欣,王波,等. 膜下滴灌油葵土壤水熱高效利用及高產(chǎn)效應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(8):82-88.
Yang Hongyu, Li Xin, Wang Bo, et al. Effect of drip irrigation under plastic film mulching on soil water-heat utilization and high yield of oil sunflower[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 82-88. (in Chinese with English abstract)
[20] 李艷,薛昌穎,楊曉光,等. 基于APSIM模型的灌溉降低冬小麥產(chǎn)量風(fēng)險(xiǎn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(10):35-44.
Li Yan, Xue Changying, Yang Xiaoguang, et al. Reduction of yield risk of winter wheat by appropriate irrigation based on APSIM model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(10): 35-44. (in Chinese with English abstract)
[21] Sun Hongyong, Zhang Xiying, Wang Enli, et al. Assessing the contribution of weather and management to the annual yield variation of summer maize using APSIM in the North China Plain[J]. Field Crops Research, 2016, 194: 94-102.
[22] He Di, Wang Enli, Wang Jing, et al. Genotype × environment × management interactions of canola across China: A simulation study[J]. Agricultural and Forest Meteorology, 2017, 247: 424-433.
[23] Wang Jing, Wang Enli, Yin Hong, et al. Differences between observed and calculated solar radiations and their impact on simulated crop yields[J]. Field Crops Research, 2015, 176: 1-10.
[24] Wang Na, Wang Jing, Wang Enli, et al. Increased uncertainty in simulated maize phenology with more frequent supra-optimal temperature under climate warming[J]. European Journal of Agronomy, 2015, 71: 19-33.
[25] Goksoy A T, Demir A O, Turan Z M, et al. Responses of sunflower (L.) to full and limited irrigation at different growth stages[J]. Field Crops Research, 2004, 87(2): 167-178.
[26] 楊建國(guó),黃冠華,葉德智,等. 寧夏引黃灌區(qū)春小麥微咸水灌溉管理的模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(4):49-56.
Yang Jianguo, Huang Guanhua, Ye Dezhi, et al. Saline water irrigation management for spring wheat in the Yellow River irrigation district of Ningxia[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(4): 49-56. (in Chinese with English abstract)
[27] 馮紹元,蔣靜,霍再林,等. 基于SWAP模型的春小麥咸水非充分灌溉制度優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(9):66-75.
Feng Shaoyuan, Jiang Jing, Huo Zailin, et al. Optimization of irrigation scheduling under deficit irrigation with saline water for spring wheat based on SWAP model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(9): 66-75. (in Chinese with English abstract)
[28] Chapman S C, Hammer G L, Palta J A. Predicting leaf area development of sunflower[J]. Field Crops Research, 1993, 34(1): 101-112.
[29] Zeng Wenzhi, Wu Jingwei, Hoffmann M P, et al. Testing the APSIM sunflower model on saline soils of Inner Mongolia, China[J]. Field Crops Research, 2016, 192: 42-54.
[30] He Di, Wang Enli, Wang Jing, et al. Data requirement for effective calibration of process-based crop models[J]. Agricultural and Forest Meteorology, 2017, S234-235: 136-148.
[31] 單玉芬,王立坤,馬永勝,等. 不同水分虧缺對(duì)向日葵產(chǎn)量、水分利用效率及經(jīng)濟(jì)效益的影響[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,41(7):70-74.
Shan Yufen, Wang Likun, Ma Yongsheng, et al. Effect of different water deficit on yield, water use efficiency and economic benefit of sunflower[J]. Journal of Northeast Agricultural University, 2010, 41(7): 70-74. (in Chinese with English abstract)
[32] Karam F, Lahoud R, Masaad R, et al. Evapotranspiration, seed yield and water use efficiency of drip irrigated sunflower under full and deficit irrigation conditions[J]. Agricultural Water Management, 2007, 90(3): 213-223.
[33] 祁有玲,張富倉(cāng),李開(kāi)峰. 水分虧缺和施氮對(duì)冬小麥生長(zhǎng)及氮素吸收的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2009,20(10):2399-2405.
Qi Youling, Zhang Fucang, Li Kaifeng. Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake[J]. Chinese Journal of Applied Ecology, 2009, 20(10): 2399-2405. (in Chinese with English abstract)
[34] 李建明,潘銅華,王玲慧,等. 水肥耦合對(duì)番茄光合、產(chǎn)量及水分利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(10):82-90.
Li Jianming, Pan Tonghua, Wang Linghui, et al. Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(10): 82-90. (in Chinese with English abstract)
[35] García-López J, Lorite I J, García-Ruiz R, et al. Yield response of sunflower to irrigation and fertilization under semi-arid conditions[J]. Agricultural Water Management, 2016, 176: 151-162.
[36] 薛鑄,史海濱,郭云,等. 鹽漬化土壤水肥耦合對(duì)向日葵苗期生長(zhǎng)影響的試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(3):91-94.
Xue Zhu, Shi Haibin, Guo Yun, et al. Effects of coupling of soil water and fertilizer on the growth of sunflower during its seeding period in saline soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(3): 91-94. (in Chinese with English abstract)
[37] 田德龍,史海濱,閆建文,等. 含鹽土壤水肥耦合對(duì)向日葵生理生態(tài)因子影響[J]. 灌溉排水學(xué)報(bào),2011,30(2):90-94.
Tian Delong, Shi Haibin, Yan Jianwen, et al. Physiological and ecological factors of sunflower under water and fertilizer coupling in saline soil[J]. Journal of Irrigation and Drainage, 2011, 30(2): 90-94. (in Chinese with English abstract)
[38] 閆湘,金繼運(yùn),何萍,等. 提高肥料利用率技術(shù)研究進(jìn)展[J]. 中國(guó)農(nóng)業(yè)科學(xué),2008,41(2):450-459.
Yan Xiang, Jin Jiyun, He Ping. Recent advances in technology of increasing fertilizer use efficiency[J]. Scientia Agricultura Sinica, 2008, 41(2): 450-459. (in Chinese with English abstract)
[39] 孫惠民,程滿(mǎn)金,鄭大瑋,等. 北方半干旱集雨補(bǔ)灌旱作區(qū)節(jié)水農(nóng)業(yè)發(fā)展模式[J]. 應(yīng)用生態(tài)學(xué)報(bào),2005,16(6):1072-1076.
Sun Huimin, Cheng Manjin, Zheng Dawei, et al. Developing models on water-saving agriculture through rainwater harvesting for supplemental irrigation in northern China semi-arid region[J]. Chinese Journal of Applied Ecology, 2015, 16(6): 1072-1076. (in Chinese with English abstract)
Analysis of interaction of sowing date, irrigation and nitrogen application on yield of oil sunflower based on APSIM model
Huang Mingxia1, Wang Jing1※, Tang Jianzhao1, Fang Quanxiao2, Zhang Jianping3, Bai Huiqing1, Wang Na1, Li Yang1, Wu Bingjie1, Zheng Junqing1, Pan Xuebiao1
(1.,,100193,; 2.,712100,; 3.,401147,)
Oil sunflower is a staple oil-bearing crop with increasing plant area in recent years in the APE (agro-pastoral ecotone of North China). However, the shortage of water resources is a serious threat to oil sunflower production. Adjusting sowing date and applying supplemental irrigation are effective measures to increase the yield and ensure the stability of the yield of oil sunflower. However, the impacts of interaction of sowing date with irrigation and nitrogen fertilization are still unclear. In this study, the suitability of APSIM-Sunflower in the agro-pastoral ecotone of North China was evaluated based on 2 years serial sowing experiments, trial-and-error method was used for model calibration. The validated APSIM-Sunflower model was used to investigate the impacts of the interaction of sowing date with irrigation and nitrogen fertilization on oil sunflower yield. 4 irrigation scenarios were designed including rainfed, 1 irrigation (60 mm), 2 irrigations (120 mm) and 3 irrigations (180 mm). Nitrogen application rate was set between 0 to 120 kg/hm2at an interval of 10 kg/hm2under 4 irrigation conditions. The suitable nitrogen application rate was defined as minimum nitrogen application rate when yield change slowly with increasing of nitrogen application rate. 9 sowing dates between 29-Apr to 8-Jun at an interval of 5 days were used to explore the interaction of sowing dates with 4 irrigation scenarios and the suitable nitrogen application rate. The study results showed that the root mean squared error (RMSE) between simulated and observed growth period was less than 2.4 d, and normalized root mean squared error (NRMSE) between simulated and observed above-ground biomass and yields was 21.9% and 5.5% respectively, which suggested that APSIM-Sunflower model performed well in simulating the growth period, above-ground biomass and yield. However, NRMSE of LAI is more than 30%, which suggested that the precision of simulated LAI needs to be improved. Under the condition of 1 irrigation, irrigating at floral initiation produced higher yield than that at floral initiation and start grain-filling. Under the condition of 2 irrigations, irrigating at floral initiation and grain-filling produced higher yield than that at sowing and floral initiation or at sowing and grain-filling. The suitable nitrogen application rate increased with the increasing irrigation. Under the condition of no-irrigation, 1 irrigation, 2 irrigations, and 3 irrigations condition, the suitable nitrogen application rate should be applied by 40, 60, 60 and 70 kg/hm2respectively at dry years, 50, 70, 80 and 90 kg/hm2respectively at normal years, and 50, 80, 80 and 90 kg/hm2respectively at wet years. Comparing yields of different sowing dates under 3 precipitation year types with suitable nitrogen application rate showed that for wet and normal years, sowing at middle May enhanced yield by 6.9% and 11.6%, 9.3% and 12.0%, 9.3% and 16.4% respectively compared to other sowing dates under the condition of no-irrigation, 1 irrigation and 2 irrigations, and decreased variation coefficient of yield by 41.9% and 8.9% under the condition of 1 irrigation, 38.5% and 12.5% under the condition of 2 irrigations. However, the yield of sowing at early May produced higher yield compared to other sowing dates under the condition of 3 irrigations for wet and normal years, and early sowing reduced variation coefficient of yield but had little effect on average yield for dry years. This study provides references for sowing date, irrigation and nitrogen management in the agro-pastoral ecotone of North China.
irrigation; nitrogen; models; serial sowing date; precipitation year types; water and nitrogen coupling; APSIM-Sunflower
黃明霞,王 靖,唐建昭,房全孝,張建平,白慧卿,王 娜,李 揚(yáng),吳冰潔,鄭雋卿,潘學(xué)標(biāo).基于APSIM模型分析播期和水氮耦合對(duì)油葵產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):134-143.doi:10.11975/j.issn.1002-6819.2018.13.016 http://www.tcsae.org
Huang Mingxia, Wang Jing, Tang Jianzhao, Fang Quanxiao, Zhang Jianping, Bai Huiqing, Wang Na, Li Yang, Wu Bingjie, Zheng Junqing, Pan Xuebiao. Analysis of interaction of sowing date, irrigation and nitrogen application on yield of oil sunflower based on APSIM model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 134-143. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.13.016 http://www.tcsae.org
2018-01-02
2018-05-03
國(guó)家自然科學(xué)基金(41475104);中國(guó)科學(xué)院“西部之光”人才培養(yǎng)引進(jìn)計(jì)劃項(xiàng)目
黃明霞,安徽安慶人,博士,主要從事氣候變化對(duì)作物的影響及適應(yīng)等方面研究。Email:1959837491@qq.com.
王 靖,內(nèi)蒙古烏蘭察布人,博士,副教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)生產(chǎn)系統(tǒng)模擬與氣候變化影響評(píng)估研究。Email:wangj@cau.edu.cn
10.11975/j.issn.1002-6819.2018.13.016
S565.5
A
1002-6819(2018)-13-0134-10