国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

重型柴油機(jī)顆粒物分布規(guī)律的試驗(yàn)研究

2018-08-10 07:11周小波胡清華蘇萬華
關(guān)鍵詞:瞬態(tài)數(shù)目穩(wěn)態(tài)

周小波,胡清華,閆 峰,蘇萬華

?

重型柴油機(jī)顆粒物分布規(guī)律的試驗(yàn)研究

周小波1,2,胡清華1※,閆 峰3,蘇萬華2

(1. 天津大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院,天津 300350; 2. 天津大學(xué)內(nèi)燃機(jī)燃燒學(xué)國家重點(diǎn)實(shí)驗(yàn)室,天津 300072;3. 中國汽車技術(shù)研究中心有限公司,天津 300300)

為了同時(shí)控制車用重型柴油機(jī)的顆粒物排放質(zhì)量和數(shù)目,該文對穩(wěn)態(tài)工況及瞬態(tài)工況下柴油機(jī)排放顆粒物分布規(guī)律進(jìn)行了試驗(yàn)研究。試驗(yàn)結(jié)果表明:在穩(wěn)態(tài)工況下,隨著負(fù)荷的增加或者轉(zhuǎn)速的提高,積聚態(tài)及核態(tài)顆粒物數(shù)目濃度、中位直徑(count median diameter,CMD)、表面積和質(zhì)量均呈現(xiàn)增大趨勢,且峰值向大粒徑方向偏移。在本研究中,穩(wěn)態(tài)工況全工況總顆粒物數(shù)目濃度為1.5×106~4.5×106個(gè)/cm3,積聚態(tài)顆粒物數(shù)目濃度為2×106~1×107個(gè)/cm3,而核態(tài)顆粒物數(shù)目濃度為1×107~3×107個(gè)/cm3,在總顆粒物數(shù)目濃度中占比為65%~96%。全工況當(dāng)量比均小于0.7,在中低轉(zhuǎn)速,當(dāng)量比對顆粒物分布影響較為明顯,在高轉(zhuǎn)速尤其是大負(fù)荷條件下,當(dāng)量比的影響減弱。在瞬態(tài)工況下,顆粒物數(shù)目濃度出現(xiàn)了與顆粒物質(zhì)量類似的排放尖峰現(xiàn)象,濃度峰值達(dá)到2×108~7×108個(gè)/cm3,比其對應(yīng)的穩(wěn)態(tài)工況出現(xiàn)的濃度峰值高出1個(gè)數(shù)量級(jí)。而且排放尖峰現(xiàn)象中,積聚態(tài)顆粒物數(shù)目濃度占主要部分,其峰值濃度比穩(wěn)態(tài)工況要高出2個(gè)數(shù)量級(jí),此時(shí)排放尖峰現(xiàn)象中核態(tài)顆粒物數(shù)目濃度也出現(xiàn)明顯增長。排放尖峰現(xiàn)象對應(yīng)的粒徑主要集中在積聚態(tài)顆粒物的50~200 nm范圍和核態(tài)顆粒物的6~8 nm及20~50 nm范圍。這主要是因?yàn)楫?dāng)量比在瞬態(tài)過程出現(xiàn)了超過臨界當(dāng)量比0.8的情況。研究結(jié)果對重型柴油機(jī)顆粒物排放控制以及生成機(jī)理有重要指導(dǎo)意義,并可為排放后處理器的匹配計(jì)算提供數(shù)據(jù)支持。

柴油機(jī);排氣;顆粒;穩(wěn)態(tài)工況;瞬態(tài)工況;分布規(guī)律;核態(tài)和積聚態(tài)顆粒

0 引 言

近年來,中國各主要城市均出現(xiàn)了不同程度的霧霾現(xiàn)象。流行病學(xué)和毒理學(xué)研究表明[1-7],大氣中的超細(xì)顆粒物(顆粒物粒徑D<100 nm)附著大量有毒物質(zhì),通過呼吸道進(jìn)入人體后會(huì)對人體呼吸道和心血管等器官造成嚴(yán)重危害,有數(shù)據(jù)證明其與人類發(fā)病率和死亡率有明顯關(guān)聯(lián)。中國約有30%的國土面積以及超過8億人口受到霧霾的影響[8]。同時(shí),顆粒物的輻射效應(yīng)僅次于二氧化碳(CO2),是造成溫室效應(yīng)的重要原因之一[9]。柴油機(jī)排放的微粒直徑一般為3 nm~1m,其數(shù)目濃度高達(dá)10×107~10×109個(gè)/cm3,是城市大氣中超細(xì)顆粒的重要來源。通常,排放微粒按粒徑分為核態(tài)顆粒物(5 nm<D<50 nm)和積聚態(tài)顆粒物(50 nm<D<0.15m),其中積聚態(tài)顆粒物主要由不完全燃燒產(chǎn)生的一次碳粒(D為2 nm左右)發(fā)生團(tuán)聚作用并凝結(jié)有部分HC和硫酸鹽等揮發(fā)和半揮發(fā)組分形成;核態(tài)顆粒物的成因比較復(fù)雜,通常認(rèn)為核態(tài)顆粒物是由燃燒室內(nèi)形成的一次碳粒以及H2SO4或HC等氣態(tài)前體物成核形成的二次顆粒物,并且其數(shù)濃度和粒徑分布特征受稀釋系統(tǒng)參數(shù)(如顆粒在通道內(nèi)的停留時(shí)間、稀釋比例、稀釋空氣的溫度和濕度等)影響較大[10-11]。

從2000年開始,隨著DPF的推廣使用,研究者發(fā)現(xiàn)稱重式的PM檢測方法已經(jīng)不足以準(zhǔn)確反映內(nèi)燃機(jī)顆粒排放水平。因此2001年歐盟組織排放顆粒物測量計(jì)劃PMP(particle measurement program)開始研究更靈敏和準(zhǔn)確的內(nèi)燃機(jī)排放顆粒物檢測手段。Giechaskiel等[12-13]于2007年和2010年分別提交輕型車和重型車顆粒數(shù)檢測方法的最終報(bào)告并被PMP采用,這種去除顆粒物中揮發(fā)成分后進(jìn)行顆粒物數(shù)量統(tǒng)計(jì)的檢測顆粒物數(shù)量排放的新方法得到了廣泛的認(rèn)可并被列入法規(guī)考察范圍。自此,顆粒物排放數(shù)目和粒徑分布成為研究內(nèi)燃機(jī)顆粒物排放特性的新熱點(diǎn)。

目前,國內(nèi)外針對柴油機(jī)顆粒物數(shù)目和粒徑分布的研究主要集中在穩(wěn)態(tài)工況下[14-19]。1998年Kittelson等[20]提出典型柴油機(jī)穩(wěn)態(tài)工況顆粒物粒徑分布、數(shù)目、表面積和質(zhì)量。顆粒物數(shù)量和質(zhì)量濃度基本呈現(xiàn)對數(shù)正態(tài)分布規(guī)律,核態(tài)顆粒物占總數(shù)量的90%以上,積聚態(tài)顆粒物占總質(zhì)量的比例最大,粗態(tài)顆粒物數(shù)量較少,其質(zhì)量約占總質(zhì)量的5~20%。但是近十幾年來隨著燃燒理論的發(fā)展以及后處理器的使用,粗態(tài)顆粒物明顯減少,研究者把研究目標(biāo)主要集中在核態(tài)和積聚態(tài)顆粒物上。Kazakov等[21]提出碳煙顆粒碰撞理論,認(rèn)為燃燒溫度是決定顆粒物尺寸和分布的主要因素。Desantes等[22]的試驗(yàn)結(jié)果顯示,積聚態(tài)顆粒物與核態(tài)顆粒物之間是此消彼長的關(guān)系。即積聚態(tài)顆粒物如同“海綿體”一樣來吸收HC和硫酸鹽等揮發(fā)和半揮發(fā)組分。當(dāng)積聚態(tài)顆粒大幅度增加后,用以促進(jìn)核態(tài)顆粒物生長的組分減少,導(dǎo)致其濃度較低。Shi等[23-24]在穩(wěn)態(tài)工況下系統(tǒng)地研究了顆粒物的物理、化學(xué)和形態(tài)學(xué)特征。

在瞬態(tài)工況下,Tan等[25]在輕型柴油機(jī)上研究了生物柴油和普通柴油的不同摻混比例在穩(wěn)態(tài)和瞬態(tài)工況下對顆粒物數(shù)目排放的影響。試驗(yàn)結(jié)果表明在穩(wěn)態(tài)工況下,隨著生物柴油比例的提高,積聚態(tài)顆粒物數(shù)目排放減少,核態(tài)顆粒物數(shù)目增加。在瞬態(tài)工況下,扭矩瞬變率增大,總顆粒物數(shù)目明顯提高;使用生物柴油時(shí),顆粒物數(shù)目排放明顯高于普通柴油。Wang等[26]研究了在美國瞬態(tài)測試循環(huán)中轉(zhuǎn)速變化率及扭矩變化率對柴油機(jī)顆粒物數(shù)目的影響。研究表明在從怠速開始的急加速工況中顆粒物數(shù)目會(huì)大幅增加。在瞬態(tài)工況下,柴油機(jī)顆粒物數(shù)目及粒徑分布特性的研究還比較少,因此,對比分析穩(wěn)態(tài)工況和瞬態(tài)工況下柴油機(jī)排放顆粒物的生成規(guī)律和影響因素具有重大的現(xiàn)實(shí)意義和科研價(jià)值。

1 試驗(yàn)裝置與方法

本文試驗(yàn)臺(tái)架是無后處理器、滿足歐IV法規(guī)的試驗(yàn)樣機(jī),并通過了中國汽車技術(shù)研究中心的認(rèn)證,主體部分包括某12 L重型柴油機(jī)和電力測功機(jī)[27],如圖1所示。

1.數(shù)據(jù)采集系統(tǒng) 2. 柴油機(jī) 3.IVCT系統(tǒng) 4.高壓共軌燃油噴射系統(tǒng) 5.電力測功系統(tǒng) 6.中冷器 7.EGR系統(tǒng) 8.兩級(jí)渦輪增壓系統(tǒng) 9.VGT系統(tǒng) 10.智能控制器 11.瞬時(shí)流量計(jì)

發(fā)動(dòng)機(jī)進(jìn)氣系統(tǒng)部分包括高壓級(jí)為可變幾何截面渦輪(variable geometry turbocharger ,VGT)的兩級(jí)增壓系統(tǒng)、高壓廢氣再循環(huán) (exhaust gas recirculation,EGR)系統(tǒng)和課題組自主研發(fā)的進(jìn)氣門晚關(guān)系統(tǒng)(IVCT系統(tǒng))[28]。測試儀器包括高響應(yīng)的進(jìn)排放壓力傳感器、進(jìn)氣流量計(jì)、油耗儀、排放采集儀等。試驗(yàn)中使用Cambustion公司的DMS500快速顆粒光譜儀研究分析柴油機(jī)瞬態(tài)工況顆粒物粒徑分布規(guī)律,其測量范圍是5~1 000 nm,響應(yīng)時(shí)間是100 ms。試驗(yàn)方法參照GB17691中ETC試驗(yàn)規(guī)范執(zhí)行。

2 結(jié)果與分析

2.1 穩(wěn)態(tài)工況下顆粒物粒徑分布規(guī)律

為了研究顆粒物粒徑分布規(guī)律,穩(wěn)態(tài)試驗(yàn)選取歐洲穩(wěn)態(tài)測試循環(huán)(european steady-state cycle,ESC)十三工況作為主要研究工況,并在穩(wěn)態(tài)工況平面內(nèi)另選了54個(gè)工況點(diǎn)以完成全工況顆粒物排放數(shù)目脈譜。54個(gè)工況點(diǎn)按照轉(zhuǎn)速和扭矩均勻選取,兼顧了轉(zhuǎn)速分布和扭矩分布。

中位直徑(count median diameter,CMD)是累積百分比為50%時(shí)所對應(yīng)的粒子直徑,直接關(guān)系到粒譜特征的判斷和表征,是表達(dá)顆粒物粒徑的重要參數(shù)之一。研究表明柴油機(jī)排放微粒的粒徑分布近似于對數(shù)正態(tài)分布,CMD用式(1)計(jì)算[29]:

式中d是各分級(jí)的切割直徑,N是分級(jí)對應(yīng)的粒子直徑。

2.1.1 負(fù)荷對穩(wěn)態(tài)工況顆粒物粒徑分布的影響

圖2為穩(wěn)態(tài)工況下該發(fā)動(dòng)機(jī)為轉(zhuǎn)速1 600 r/min時(shí)負(fù)荷變化對顆粒物粒徑分布、數(shù)目濃度、表面積、質(zhì)量和CMD的影響。圖2a為負(fù)荷對積聚態(tài)顆粒物數(shù)目濃度和粒徑分布的影響,隨著負(fù)荷的增大,積聚態(tài)顆粒物數(shù)目濃度和粒徑分布的峰值隨之增大,范圍處于4×106~8×106個(gè)/cm3之間,此時(shí)CMD也隨之增大,范圍在40~50 nm之間。由碳煙顆粒碰撞理論[21]可知,隨著負(fù)荷的增大,缸內(nèi)燃燒溫度增加,碳煙顆粒之間碰撞的頻率提高,顆粒粒徑增大,CMD增大。圖2b為負(fù)荷對核態(tài)顆粒物數(shù)目濃度和粒徑分布的影響。隨著負(fù)荷的增大,核態(tài)顆粒物數(shù)目濃度和粒徑分布的峰值總體呈現(xiàn)增大趨勢,范圍處于1×107~2×107個(gè)/cm3之間,同時(shí)CMD也隨之增大,范圍在5~9 nm之間,如圖2c所示。核態(tài)顆粒物的數(shù)目濃度相比積聚態(tài)顆粒物要高1個(gè)量級(jí),如圖2d所示,核態(tài)顆粒數(shù)目濃度在總顆粒數(shù)濃度中占比59%~80%,排放顆粒物主要為核態(tài)顆粒物。隨著負(fù)荷的增加,積聚態(tài)顆粒物數(shù)目濃度呈現(xiàn)增大趨勢,其對應(yīng)的CMD也呈現(xiàn)增大趨勢;核態(tài)顆粒物數(shù)目濃度總體呈現(xiàn)增大趨勢,其對應(yīng)的CMD也呈現(xiàn)增大趨勢。

顆粒物毒性與顆粒物表面積密切相關(guān)[30-31]。假設(shè)顆粒物均為球形規(guī)則體,根據(jù)顆粒物數(shù)目濃度和粒徑分布,可以得到顆粒物表面積分布,如圖2e與圖2f所示。隨著負(fù)荷的增加,積聚態(tài)顆粒物表面積增加,對應(yīng)峰值在5×1010~18×1010nm2/cm3之間,核態(tài)顆粒物表面積隨負(fù)荷增加整體呈現(xiàn)增大趨勢,其對應(yīng)峰值在1×109~7×109nm2/cm3之間,比積聚態(tài)顆粒物表面積峰值低1~2個(gè)量級(jí)。而且,相比顆粒物數(shù)目濃度,顆粒物表面積和粒徑分布對應(yīng)的峰值無論是積聚態(tài)還是核態(tài)均往大粒徑方向偏離。由于顆粒物密度無法測量且形狀不規(guī)則,此處假設(shè)顆粒物密度均勻,核態(tài)與積聚態(tài)密度一致,且均為球形規(guī)則體。圖2g與圖2h為負(fù)荷對積聚態(tài)和核態(tài)顆粒物質(zhì)量和粒徑分布的影響。顆粒物質(zhì)量和粒徑的分布規(guī)律與顆粒物數(shù)目濃度和粒徑的分布規(guī)律有明顯區(qū)別,隨著負(fù)荷的增加,積聚態(tài)顆粒物質(zhì)量呈明顯增加趨勢,對應(yīng)峰值在1×104~4×104ng/m3之間,核態(tài)顆粒物質(zhì)量與粒徑分布隨負(fù)荷增加整體呈現(xiàn)增大趨勢,其對應(yīng)峰值在20~80 ng/m3之間,比積聚態(tài)顆粒物質(zhì)量低2~3個(gè)數(shù)量級(jí)。相比顆粒物數(shù)目濃度和表面積分布,顆粒物質(zhì)量和粒徑分布的對應(yīng)峰值無論是積聚態(tài)還是核態(tài)均往大粒徑方向偏離。

圖2 穩(wěn)態(tài)工況下負(fù)荷對顆粒物分布的影響

2.1.2 轉(zhuǎn)速對穩(wěn)態(tài)工況下顆粒物粒徑分布的影響

圖3為穩(wěn)態(tài)工況下50%負(fù)荷時(shí)轉(zhuǎn)速變化(1 300、1 600和1 900 r/min)對顆粒物粒徑與數(shù)目濃度分布、表面積、質(zhì)量和CMD的影響。圖3a為轉(zhuǎn)速對積聚態(tài)顆粒物數(shù)目濃度和粒徑分布的影響,隨著轉(zhuǎn)速的提高,積聚態(tài)顆粒物數(shù)目濃度和粒徑分布的峰值隨之增大,范圍處于5×106~8×106個(gè)/cm3之間,此時(shí)CMD也隨之增大,范圍在37~47 nm之間。圖3b為轉(zhuǎn)速對核態(tài)顆粒物數(shù)目濃度和粒徑分布的影響,隨著轉(zhuǎn)速的提高,核態(tài)顆粒物數(shù)目濃度和粒徑分布的峰值隨之增大,范圍處于1×107~2×107個(gè)/cm3之間,同時(shí)CMD也隨之增大,范圍在6~8.5 nm之間,如圖3c所示。核態(tài)顆粒物的數(shù)目濃度相比積聚態(tài)顆粒物要高1個(gè)量級(jí),如圖3d所示,在總顆粒物數(shù)目中,核態(tài)顆粒物占比在64%~75%之間。這主要是由于隨著轉(zhuǎn)速的上升,燃燒過程中的實(shí)際混合時(shí)間減少,在缸內(nèi)局部缺氧條件下,更易導(dǎo)致碳煙顆粒生成量的增加,這些顆粒以積聚態(tài)為主;而核態(tài)顆粒物其成核作用受排放溫度影響較大,隨著轉(zhuǎn)速的提高,排放溫度從670 K增大到780 K,核態(tài)顆粒物數(shù)目濃度隨著轉(zhuǎn)速的提高而增大,且CMD也隨之增大。因此隨著轉(zhuǎn)速的提高,積聚態(tài)顆粒物數(shù)目濃度上升,其對應(yīng)的CMD也增大;核態(tài)顆粒物數(shù)目濃度呈現(xiàn)增大趨勢,其對應(yīng)的CMD也呈現(xiàn)增大趨勢,排放顆粒物主要為核態(tài)顆粒物,且隨轉(zhuǎn)速提高而增加。

顆粒物表面積分布如圖3e與圖3f所示。顆粒物表面積和粒徑分布規(guī)律與顆粒物數(shù)目和粒徑分布規(guī)律一致,隨著轉(zhuǎn)速的提高,積聚態(tài)顆粒物表面積明顯增加,對應(yīng)峰值在6×1010~16×1010nm2/cm3之間,跨度較大;核態(tài)顆粒物表面積隨轉(zhuǎn)速增加而增大,其對應(yīng)峰值在2×109~6×109nm2/cm3之間,比積聚態(tài)顆粒物表面積峰值低1~2個(gè)量級(jí)。而且,相比顆粒物數(shù)目濃度,顆粒物表面積和粒徑分布對應(yīng)峰值無論是積聚態(tài)還是核態(tài)均往大粒徑方向偏離。

圖3g與圖3h為轉(zhuǎn)速對積聚態(tài)和核態(tài)顆粒物質(zhì)量與粒徑分布的影響。隨著轉(zhuǎn)速的增加,積聚態(tài)顆粒物質(zhì)量呈明顯增加趨勢,對應(yīng)峰值在7×106~30×106ng/cm3之間,核態(tài)顆粒物質(zhì)量隨轉(zhuǎn)速增加而增大,其對應(yīng)峰值在2×104~9×104ng/cm3之間,比積聚態(tài)顆粒物質(zhì)量峰值低2個(gè)量級(jí)以上。相比顆粒物數(shù)目濃度和表面積分布,顆粒物質(zhì)量分布對應(yīng)峰值無論是積聚態(tài)還是核態(tài)均往大粒徑方向偏離。因此,大粒徑顆粒物是顆粒物質(zhì)量的主要來源,且積聚態(tài)顆粒物遠(yuǎn)大于核態(tài)顆粒物。

圖3 穩(wěn)態(tài)工況下轉(zhuǎn)速對顆粒物分布的影響

2.1.3 穩(wěn)態(tài)工況顆粒物分布

為完成全工況顆粒物排放數(shù)目脈譜,穩(wěn)態(tài)試驗(yàn)包括十三工況及其他54個(gè)工況。圖4為穩(wěn)態(tài)工況下全工況平面內(nèi)總顆粒物數(shù)目濃度(圖4a)、核態(tài)顆粒物數(shù)目濃度(圖4b)、積聚態(tài)顆粒物數(shù)目濃度(圖4c)及當(dāng)量比分布規(guī)律(圖4d)。其中總顆粒物數(shù)目濃度在1.5×107~4.5×107個(gè)/cm3,積聚態(tài)顆粒物數(shù)目濃度為2×106~1×107個(gè)/cm3,核態(tài)顆粒物數(shù)目濃度為1×107~3×107個(gè)/cm3,在總顆粒物數(shù)目濃度中占比65%~96%。從整個(gè)穩(wěn)態(tài)工況平面可以看出,全工況當(dāng)量比均小于0.7,在中低轉(zhuǎn)速,當(dāng)量比對顆粒物分布影響較為明顯,而在高轉(zhuǎn)速尤其是大負(fù)荷條件下,當(dāng)量比的影響減弱。

圖4 穩(wěn)態(tài)工況下顆粒物數(shù)目濃度及對應(yīng)的當(dāng)量比分布

2.2 瞬態(tài)測試循環(huán)的顆粒物分布

本文按照歐洲瞬態(tài)測試循環(huán)(ETC)完成,瞬態(tài)控制策略參考文獻(xiàn)[27]。圖5為在ETC瞬態(tài)測試循環(huán)中轉(zhuǎn)速和扭矩、當(dāng)量比變化趨勢和顆粒物分布規(guī)律,包括總顆粒物數(shù)目濃度、核態(tài)顆粒物數(shù)目濃度和積聚態(tài)顆粒物數(shù)目濃度。從顆粒物數(shù)目濃度來看,瞬態(tài)工況下出現(xiàn)了與顆粒物質(zhì)量類似的排放尖峰現(xiàn)象,數(shù)目濃度峰值甚至達(dá)到了2×108~7×108個(gè)/cm3,比其對應(yīng)的穩(wěn)態(tài)工況出現(xiàn)的濃度峰值高出1個(gè)數(shù)量級(jí)。而且排放尖峰現(xiàn)象中,積聚態(tài)顆粒物占主要部分,這與穩(wěn)態(tài)工況有很大不同,其數(shù)目濃度峰值比穩(wěn)態(tài)工況要高出2個(gè)數(shù)量級(jí),從穩(wěn)態(tài)工況的2×106~1×107個(gè)/cm3跨越式增長到1×108~8×108個(gè)/cm3;此時(shí)排放尖峰現(xiàn)象中核態(tài)顆粒物數(shù)目濃度也出現(xiàn)明顯的增長,其數(shù)目濃度峰值從穩(wěn)態(tài)工況的1×107~3×107個(gè)/cm3增長到3×107~3×108個(gè)/cm3。排放尖峰現(xiàn)象主要是因?yàn)楫?dāng)量比在瞬態(tài)過程出現(xiàn)了對應(yīng)的峰值,穩(wěn)態(tài)工況下當(dāng)量比沒有超過0.7,但是排放尖峰對應(yīng)的工況出現(xiàn)了超過臨界當(dāng)量比0.8的情況[27]。

圖5 瞬態(tài)工況下顆粒物分布

在城市道路工況中,排放尖峰出現(xiàn)12次,總顆粒物數(shù)目濃度峰值為2×108~8×108個(gè)/cm3,積聚態(tài)顆粒物數(shù)目濃度峰值為1×108~5×108個(gè)/cm3,核聚態(tài)顆粒物數(shù)目濃度峰值為3×107~3×108個(gè)/cm3;在鄉(xiāng)村道路工況中,排放尖峰出現(xiàn)8次,總顆粒物數(shù)目濃度峰值明顯低于城市道路工況,為1×108~3×108個(gè)/cm3,積聚態(tài)顆粒物數(shù)目濃度峰值為1×108~2×108個(gè)/cm3,核聚態(tài)顆粒物數(shù)目濃度峰值為3×107~1×108個(gè)/cm3;在高速道路工況中,排放尖峰沒有出現(xiàn),總顆粒物數(shù)目濃度、積聚態(tài)顆粒物數(shù)目濃度、核聚態(tài)顆粒物數(shù)目濃度與穩(wěn)態(tài)工況顆粒物粒徑分布規(guī)律相當(dāng)。圖6為在ETC瞬態(tài)測試循環(huán)中顆粒物粒徑分布的頻譜圖,更準(zhǔn)確地反應(yīng)了各個(gè)顆粒物粒徑對應(yīng)的顆粒物數(shù)目濃度。

圖6 瞬態(tài)工況顆粒物粒徑分布頻譜圖

為了方便分析,把城市道路工況、鄉(xiāng)村道路工況和高速道路工況的前50 s對應(yīng)的顆粒物粒徑分布頻譜圖放大,與整個(gè)測試循環(huán)并列展示。

從整個(gè)測試循環(huán)可以發(fā)現(xiàn),在顆粒物粒徑大于200 nm時(shí),3個(gè)道路工況并沒有明顯區(qū)別。在顆粒物粒徑50~200 nm內(nèi),數(shù)目濃度峰值達(dá)到1×108個(gè)/cm3以上的情況(即圖中白色區(qū)域)主要集中在城市道路工況(12次)和鄉(xiāng)村道路工況(8次),高速道路工況沒有,這也就是前面討論的瞬態(tài)排放尖峰中的積聚態(tài)顆粒物。城市道路工況對應(yīng)的數(shù)目濃度峰值達(dá)到1×108個(gè)/cm3以上的情況(即圖中白色區(qū)域)持續(xù)時(shí)間長,大多超過10 s,而鄉(xiāng)村道路工況對應(yīng)的數(shù)目濃度峰值達(dá)到1×108個(gè)/cm3以上的情況(即圖中白色區(qū)域)持續(xù)時(shí)間較短,大多在5 s以內(nèi)。顆粒物粒徑在20~50 nm時(shí),城市道路工況和鄉(xiāng)村道路工況出現(xiàn)排放尖峰的時(shí)刻,該粒徑段也出現(xiàn)了數(shù)目濃度峰值達(dá)到1×108個(gè)/cm3以上的情況(即圖中白色區(qū)域)。顆粒物粒徑小于20 nm時(shí),城市道路工況中數(shù)目濃度峰值達(dá)到1×108個(gè)/cm3以上的情況(即圖中白色區(qū)域)很少,而鄉(xiāng)村道路工況和高速道路工況較多,且數(shù)目濃度峰值均出現(xiàn)在顆粒物粒徑為6~8 nm時(shí)。因此,在瞬態(tài)工況下排放尖峰現(xiàn)象對應(yīng)的粒徑主要集中在積聚態(tài)顆粒物的50~200 nm范圍和核態(tài)顆粒物的6~8 nm及20~50 nm范圍。

3 結(jié) 論

本文對穩(wěn)態(tài)工況及瞬態(tài)工況下柴油機(jī)排放顆粒物粒徑分布規(guī)律分別進(jìn)行了分析,結(jié)果如下:

1)在穩(wěn)態(tài)工況下,隨著負(fù)荷的增加,積聚態(tài)顆粒物數(shù)目濃度呈現(xiàn)上升趨勢,其對應(yīng)的CMD也呈現(xiàn)增大趨勢,積聚態(tài)顆粒物表面積和質(zhì)量均呈現(xiàn)增大趨勢且峰值向大粒徑方向偏移;核態(tài)顆粒物數(shù)目濃度總體呈現(xiàn)增大趨勢,其對應(yīng)的CMD也呈現(xiàn)增大趨勢,核態(tài)顆粒物表面積和質(zhì)量均呈現(xiàn)增大趨勢且峰值向大粒徑方向偏移。

2)隨著轉(zhuǎn)速的提高,積聚態(tài)顆粒物數(shù)目濃度上升,其對應(yīng)的CMD呈現(xiàn)增大趨勢,積聚態(tài)顆粒物表面積和質(zhì)量均呈現(xiàn)增大趨勢且峰值向大粒徑方向偏移;核態(tài)顆粒物數(shù)目濃度呈現(xiàn)增大趨勢,其對應(yīng)的CMD呈現(xiàn)增大趨勢,核態(tài)顆粒物表面積和質(zhì)量均呈現(xiàn)增大趨勢且峰值向大粒徑方向偏移。

3)穩(wěn)態(tài)工況全工況平面內(nèi)總顆粒物數(shù)目濃度為1.5×107~4.5×107個(gè)/cm3,積聚態(tài)顆粒物數(shù)目濃度為2×106~1×107個(gè)/cm3,核態(tài)顆粒物數(shù)目濃度為1×107~3×107個(gè)/cm3,且在總顆粒物數(shù)目濃度中占比65%~96%之間,因此在穩(wěn)態(tài)工況下,核態(tài)顆粒物數(shù)目是總顆粒物數(shù)目的主要來源。全工況當(dāng)量比均小于0.7,在中低轉(zhuǎn)速當(dāng)量比對顆粒物分布影響較為明顯,而在高轉(zhuǎn)速尤其是大負(fù)荷條件下,當(dāng)量比的影響減弱。

4)在瞬態(tài)工況下,顆粒物數(shù)目濃度出現(xiàn)了與顆粒物質(zhì)量類似的排放尖峰現(xiàn)象,濃度峰值達(dá)到2×108~7×108個(gè)/cm3,比其對應(yīng)的穩(wěn)態(tài)工況出現(xiàn)的濃度峰值高出1個(gè)數(shù)量級(jí)。而且排放尖峰現(xiàn)象中,積聚態(tài)顆粒物數(shù)目濃度占主要部分,其峰值濃度比穩(wěn)態(tài)工況要高出2個(gè)數(shù)量級(jí),從穩(wěn)態(tài)工況的2×106~1×107個(gè)/cm3跨越式增長到1×108~8×108個(gè)/cm3;排放尖峰現(xiàn)象中核態(tài)顆粒物數(shù)目濃度也出現(xiàn)明顯的增長,其峰值濃度從穩(wěn)態(tài)工況的1×107~3×107個(gè)/cm3增長到3×107~3×108個(gè)/cm3。排放尖峰現(xiàn)象對應(yīng)的粒徑主要集中在積聚態(tài)顆粒物的50~200 nm范圍和核態(tài)顆粒物的6~8 nm及20~50 nm范圍。

[1] Lamarche B, Moorjani S, Cantin B, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men: prospective results from the Qué bec Cardiovascular Study[J]. Circulation, 1997, 95(1): 69-75.

[2] Wasko M K, Goodman S B. Emperor’s new clothes: Is particle disease really infected particle disease?[J]. Journal of Orthopaedic Research, 2016, 34(9): 1497-1504.

[3] 馮仲科,毛海穎,李虹. 環(huán)首都圈植被分布與可吸入顆粒物的空間相關(guān)性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):220-227.

Feng Zhongke, Mao Haiying, Li Hong. Spatial correlation between vegetation distribution and respirable particulate matter around capital region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 220-227. (in Chinese with English abstract)

[4] Suzuki S, Nishikawa A, Kuwana M, et al. Inflammatory myopathy with anti-signal recognition particle antibodies: case series of 100 patients[J]. Orphanet journal of rare diseases, 2015, 10(1): 61.

[5] 張延峰,宋崇林,成存玉,等. 車用柴油機(jī)排放顆粒物中有機(jī)組分和無機(jī)組分的分析[J]. 燃燒科學(xué)與技術(shù),2004,10(3):197-201.

Zhang Yanfeng, Song Zonglin, Cheng Cuiyu, et al. Analysis of the organic and inorganic components in the emission particulates from diesel engine[J]. Journal of Combustion Science & Technology, 2004, 10(3): 197-201. (in Chinese with English abstract)

[6] Stewart Goldman M D, Turner C D, Jr D P, et al. Katsouyanni K, Touloumi G, Spix C. Short-term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from times series data from the APHEA project[J]. British Medical Journal, 1997, 314(7095): 1658-1653.

[7] 李林,周啟星. 不同粒徑大氣顆粒物與死亡終點(diǎn)關(guān)系的流行病學(xué)研究回顧[J]. 環(huán)境與職業(yè)醫(yī)學(xué),2015,32(2):168-174.

Li Lin, Zhou Qixing. Size-fractionated atmospheric particulate matters and mortality: An epidemiological review[J]. Journal of Environmental & Occupational Medicine, 2015, 32(2): 168-174. (in Chinese with English abstract)

[8] 郝斌. 不同燃料對柴油機(jī)排放顆粒物的影響研究[D]. 天津:天津大學(xué),2014.

Hao Bin. Effect of Fuel Identity on the Exhaust Particles from Diesel Engine[D]. Tianjin: Tianjin University, 2014. (in Chinese with English abstract)

[9] 梅德清,趙翔,王書龍,等. 柴油機(jī)排放顆粒物的熱重特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(16):50-56.

Mei Deqing, Zhao Xiang, Wang Shulong, et al. Thermogravimetric characteristics analysis of particulate matter of emission of divided diesel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(16): 50-56. (in Chinese with English abstract)

[10] 王強(qiáng). 乙烯預(yù)混火焰中碳煙微觀形貌、納觀結(jié)構(gòu)及氧化特性研究[D]. 天津:天津大學(xué),2015.

Wang Qiang. Studies on the Morphology, Nanostructure and Oxidation Reactivity of Soot in a C2H4/O2/Ar Premixed Flame[D]. Tianjin: Tianjin University, 2015. (in Chinese with English abstract)

[11] 于文斌. 基于混合與化學(xué)反應(yīng)協(xié)同作用的混合燃燒控制策略的研究[D]. 天津:天津大學(xué),2012.

Yu Wenbin. Research on Hybrid Combustion Control Strategy Based on Interaction of Mixing and Chemical Factors[D]. Tianjin: Tianjin University, 2012. (in Chinese with English abstract)

[12] Giechaskiel B, Carriero M, Martini G, et al. Heavy Duty Particle Measurement Programme (PMP): Exploratory Work for the Definition of the Test Protocol[J]. Sae International Journal of Engines, 2009, 2(1): 1528-1546.

[13] Giechaskiel B, Dilara P, Sandbach E, et al. Particle measurement programme (PMP) light-duty inter-laboratory exercise: comparison of different particle number measurement systems[J]. Measurement Science & Technology, 2008, 19(9): 44-46.

[14] Benajes J, García A, Monsalve-Serrano J, et al. Gaseous emissions and particle size distribution of dual-mode dual-fuel diesel-gasoline concept from low to full load[J]. Applied Thermal Engineering, 2017, 120: 138-149.

[15] Barrios C C, Domínguez-Sáez A, Martín C, et al. Effects of animal fat based biodiesel on a TDI diesel engine performance, combustion characteristics and particle number and size distribution emissions[J]. Fuel, 2014, 117: 618-623.

[16] Barrios C C, Martin C, Dominguez-Saez A, et al. Effects of the addition of oxygenated fuels as additives on combustion characteristics and particle number and size distribution emissions of a TDI diesel engine[J]. Fuel, 2014, 132: 93-100.

[17] 王忠,孫波,趙洋,等. 小型非道路柴油機(jī)排氣管內(nèi)顆粒的粒徑分布與氧化特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(10):41-46.

Wang Zhong, Sun Bo, Zhao Yang, et al. Characteristics of particle coagulation and oxidation in exhaust pipe of diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016. (in Chinese with English abstract)

[18] 李新令,黃震,王嘉松,等. 柴油機(jī)排氣顆粒濃度和粒徑分布特征試驗(yàn)研究[J]. 內(nèi)燃機(jī)學(xué)報(bào),2007,25(2):113-117.

Li Xinling, Huang Zhen, Wang Jiasong, et al. Investigation on concentrations and size distribution characteristic of particles from diesel engine[J]. Transactions of Csice, 2007, 25(2): 113-117. (in Chinese with English abstract)

[19] 孟建,劉軍恒,孫平,等. 雙極荷電凝并降低柴油機(jī)顆粒排放數(shù)量的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(14):78-84.

Meng Jian, Liu Junheng, Sun Ping, et al. Experimental research on decreasing particles emission number of diesel engine by bipolar charged coagulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 78-84. (in Chinese with English abstract)

[20] Kittelson D B. Engines and nanoparticles: a review[J]. Journal of Aerosol Science, 1998, 29(5/6): 575-588.

[21] Kazakov A, Foster D E. Modeling of soot formation during di diesel combustion using a multi-step phenomenological model[J]. Sae Technical Papers, 1998.

[22] Desantes J M, Bermúdez V, García J M, et al. Effects of current engine strategies on the exhaust aerosol particle size distribution from a Heavy-Duty Diesel Engine[J]. Journal of Aerosol Science, 2005, 36(10): 1251-1276.

[23] Shi J P, Khan A A, Harrison R M. Measurements of ultrafine particle concentration and size distribution in the urban atmosphere[J]. Science of the Total Environment, 1999, 235(1/2/3): 51-64.

[24] Shi J P, Evans D E, Khan A A, et al. Sources and concentrationof nanoparticles (<10 nm diameter) in the urban atmosphere[J]. Atmospheric Environment, 2001, 35(7): 1193-1202.

[25] Tan P Q, Ruan S S, Hu Z Y, et al. Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions[J]. Applied Energy, 2014, 113(113): 22-31.

[26] Wang Jian, John Storey, Norberto Domingo, et al. Studies of diesel engine particle emissions during transient operations using an engine exhaust particle sizer[J]. Aerosol Science and Technology, 2006, 40(11): 1002-1015.

[27] Xiaobo Zhou, Erxi Liu, Dezeng Sun, Wanhua Su, Study on transient emission spikes reduction of a heavy-duty diesel engine equipped with a variable intake valve closing timing mechanism and a two-stage turbocharger[J]. International Journal of Engine Research, 2018(13): 146808741774883.

[28] 戰(zhàn)強(qiáng). 重型柴油機(jī)可變氣門系統(tǒng)的開發(fā)及實(shí)驗(yàn)研究[D]. 天津:天津大學(xué),2013.

Zhan Qiang. Design of The Variable Valve Timing System for Heavy Duty Diesel Engine and Its Experimental Study [D]. Tianjin: Tianjin University, 2013. (in Chinese with English abstract)

[29] 劉志華,葛蘊(yùn)珊,丁艷,等. 柴油機(jī)和 LNG 發(fā)動(dòng)機(jī)排放顆粒物粒徑分布特性研究[J]. 內(nèi)燃機(jī)學(xué)報(bào),2009,27(6):518-522.

Liu Zhihua, Ge Yunshan, Ding Yan, et al. The size distribution characteristic of PM emitted from diesel engine and LNG engine[J]. Transactions of Csice, 2009. (in Chinese with English abstract)

[30] Ibald-Mulli A, Wichmann H E, Kreyling W, et al. Epidemiological evidence on health effects of ultrafine particles. J Aerosol Med, 2002, 15: 189-201

[31] Oberd?ster G, Utell M J. Ultrafine particles in the urban air: To the respiratory track and beyond. Environ Health Perspec, 2002, 110 A: 440-441.

Experimental study on particle distribution of exhaust emission of heavy-duty diesel engine

Zhou Xiaobo1,2, Hu Qinghua1※, Yan Feng3, Su Wanhua2

(1.300350,; 2.300072,; 3.,300300,)

In recent years, smog has emerged in most of major cities in China. Epidemiological and toxicological studies showed that the ultrafine particles in the atmosphere adhere to a large number of toxic substances, which can cause serious harm to human respiratory and cardiovascular and other organs after they enter the human body through the respiratory tract. and the data indicated that it had a significant correlation with human morbidity and mortality. Particulate emissions from diesel engines are an important source of ultrafine particles in urban atmosphere. The researchers found that the weighing method of particulate matter detection cannot accurately reflect the emission levels of internal combustion engines. This new method for measuring the number of particulate matter emissions after removing volatile matter from the method has been widely recognized and included in the scope of regulatory investigation. However, there are few studies on the number and size distribution of particles in the transient process of diesel engine. In order to simultaneously control the quality and quantity of particulate matter emitted from heavy duty diesel engines, the particle distribution of exhaust particulates from diesel engines under steady and transient conditions was studied. The test bench is a 12 L heavy duty diesel engine and an electric dynamometer. The test bench is a prototype with no post-processor and meets the Euro IV regulations. It has been certified by China Automotive Technology Research Center (CATRC). The engine intake system consists of a two-stage turbocharging system with variable geometry section turbine (VGT), a high-pressure EGR system and an intake valve late closing system (IVCT system, which is developed by the research group independently). Cambustion DMS500 fast particle spectrometer was used to analyze the particle size distribution of diesel engine under transient conditions. The experimental results showed that, in the steady state, with the increase of load or speed, the concentration of accumulated particles showed an upward trend, corresponding to the increase of count median diameter (CMD), the surface area and mass of accumulated particles showed an increasing trend, and the peak value shifted to the direction of large particle size. In this study, the total number concentration of particles during the steady state is 1.5×106-4.5×106/cm3, and accumulation mode particle was 2×106-1×107/cm3, nucleation mode particle was 1×107-3×107/cm3which account for 65%-96%. In the steady state, the number of nucleation mode particles is the main source of the total number of particles. The equivalent ratio of all steady state conditions is less than 0.7. The effect of equivalent ratio on particle distribution is obvious at middle and low rotational speed, but weakens at high rotational speed, especially at high load. The European Transient Cycle (ETC) was used for the transient test. In transient condition, the spikes also appear in the number concentration of particles which similar to that of quality of particulate matter, and the number concentration peak even reaches 2×108-7×108/cm3, which is 2 orders of magnitude higher than that of the corresponding steady state operation. The number concentration of nucleation mode particle increases significantly in the spikes, but the proportion of the number concentration of nucleation mode particle in the total particles is reduced. The number concentration of accumulation mode particle is the main part of the spikes which is different from the steady state condition. The particle size peak is mainly concentrated in the 50-200 nm range at accumulation mode, the 6-8 nm and 20-50 nm at nucleation mode, this mainly because that the equivalent ratio in the transient process appears to exceed the critical equivalent ratio of 0.8 working conditions. The equivalent ratio does not exceed 0.7 in steady state operation, but the condition corresponding to the emission peak appears to exceed the critical equivalent ratio 0.8. The results are of great significance for particulate emission control and generation mechanism of heavy-duty diesel engine, and can provide data support for matching calculation of post-exhaust processor.

diesel engineers; exhaust gas; particulate matter; steady state condition; transient condition; distribution function; nucleation and accumulation mode

周小波,胡清華,閆 峰,蘇萬華. 重型柴油機(jī)顆粒物分布規(guī)律的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):62-69.doi:10.11975/j.issn.1002-6819.2018.13.008 http://www.tcsae.org

Zhou Xiaobo, Hu Qinghua, Yan Feng, Su Wanhua. Experimental study on particle distribution of exhaust emission of heavy-duty diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 62-69. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.13.008 http://www.tcsae.org

2018-03-26

2018-06-06

周小波,博士后,主要研究柴油機(jī)排放控制及自動(dòng)駕駛。 Email:xiaobo_zhou@tju.edu.cn

胡清華,教授,博士生導(dǎo)師。主要研究不確定性建模和多模態(tài)學(xué)習(xí)等。Email:huqinghua@tju.edu.cn

10.11975/j.issn.1002-6819.2018.13.008

TK421+.5

A

1002-6819(2018)-13-0062-08

猜你喜歡
瞬態(tài)數(shù)目穩(wěn)態(tài)
可變速抽水蓄能機(jī)組穩(wěn)態(tài)運(yùn)行特性研究
碳化硅復(fù)合包殼穩(wěn)態(tài)應(yīng)力與失效概率分析
移火柴
電廠熱力系統(tǒng)穩(wěn)態(tài)仿真軟件開發(fā)
激發(fā)態(tài)和瞬態(tài)中間體的光譜探測與調(diào)控
高壓感應(yīng)電動(dòng)機(jī)斷電重啟時(shí)的瞬態(tài)仿真
元中期歷史劇對社會(huì)穩(wěn)態(tài)的皈依與維護(hù)
基于改進(jìn)HHT的非高斯噪聲中瞬態(tài)通信信號(hào)檢測
牧場里的馬
DC/DC變換器中的瞬態(tài)特性分析