韓長(zhǎng)杰,徐 陽(yáng),張 靜,尤 佳,郭 輝
?
半自動(dòng)壓縮基質(zhì)型西瓜缽苗移栽機(jī)設(shè)計(jì)與試驗(yàn)
韓長(zhǎng)杰,徐 陽(yáng),張 靜,尤 佳,郭 輝
(新疆農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,烏魯木齊 830052)
針對(duì)目前使用壓縮基質(zhì)培育的缽苗無(wú)法使用現(xiàn)有移栽機(jī)械完成栽植工作的問(wèn)題,模仿人工先打穴后放苗的移栽方式,設(shè)計(jì)了一種半自動(dòng)壓縮基質(zhì)型缽苗移栽機(jī),包含有間歇式打穴裝置、持苗栽植裝置和缽苗輸送裝置。通過(guò)單因素試驗(yàn)測(cè)得2組不同含水率的西瓜缽苗的缽體側(cè)面與滑道的摩擦系數(shù)分別為0.755、0.634,并分析了2組缽體抗壓載荷與壓縮量之間的關(guān)系。根據(jù)西瓜種植農(nóng)藝要求及西瓜缽苗外形尺寸,確定了打穴器及缽苗夾持機(jī)構(gòu)的結(jié)構(gòu)尺寸。按照已知運(yùn)動(dòng)規(guī)律對(duì)擺動(dòng)機(jī)構(gòu)進(jìn)行優(yōu)化設(shè)計(jì),闡述了持苗栽植裝置的工作過(guò)程,使用解析法對(duì)其進(jìn)行了運(yùn)動(dòng)分析。試驗(yàn)結(jié)果表明,拖拉機(jī)保持2.1~2.6 km/h的速度前進(jìn)時(shí),該機(jī)作業(yè)的平均株距為98.6 cm,株距合格率為90.62%;倒伏率為21.9%,能夠基本滿足西瓜缽苗移栽的要求。該研究為半自動(dòng)壓縮基質(zhì)型西瓜缽苗移栽機(jī)的設(shè)計(jì)提供了參考。
機(jī)械化;設(shè)計(jì);移栽;壓縮基質(zhì);缽苗;試驗(yàn)
使用壓縮基質(zhì)育苗,具有病害少、秧苗健壯、成活率高等優(yōu)點(diǎn)[1],適合非連作且單位面積種植株數(shù)少、經(jīng)濟(jì)效益高的作物育苗移栽[2]。以西、甜瓜為例,作為中國(guó)重要的經(jīng)濟(jì)作物之一,種植面積約達(dá)200萬(wàn)hm2[3],目前國(guó)內(nèi)的種植模式,多采用覆膜缽體苗人工移栽的栽培方式,起苗方便,不易傷苗,栽后生長(zhǎng)速度快,適合栽種西瓜、甜瓜這類經(jīng)濟(jì)作物。為減輕農(nóng)民勞動(dòng)強(qiáng)度、降低人工成本、提高栽植質(zhì)量,實(shí)現(xiàn)機(jī)械化移栽是必然趨勢(shì)。
國(guó)外旱地栽植機(jī)械研究起步較早,向著高效率、全自動(dòng)的方向發(fā)展[4-5],部分成熟的機(jī)型已有推廣應(yīng)用,如意大利Ferrari公司研發(fā)的Futura系列,日本洋馬PF2R乘坐式全自動(dòng)蔬菜移栽機(jī),意大利Checchi & Magli及英國(guó)Pearson等公司生產(chǎn)的全自動(dòng)移栽機(jī),這些全自動(dòng)移栽機(jī)大都在原有的半自動(dòng)移栽機(jī)的基礎(chǔ)上增加自動(dòng)取苗裝置得以實(shí)現(xiàn),且主要結(jié)合其本國(guó)作物種植模式和農(nóng)藝要求進(jìn)行研制,不能很好地適應(yīng)中國(guó)耕地及農(nóng)藝特點(diǎn)[4-7]。中國(guó)開(kāi)展移栽機(jī)研究時(shí)間較晚,王曉東[8]對(duì)水輪式打穴移栽機(jī)的成穴機(jī)理進(jìn)行了理論分析和模擬計(jì)算,得到了打穴鏟結(jié)構(gòu)參數(shù)與孔穴形狀之間的相互關(guān)系,完成了國(guó)內(nèi)第一臺(tái)水輪式打穴移栽機(jī)的研制工作。金偉豐[9]提出了2種蔬菜缽苗自動(dòng)化栽植機(jī)構(gòu),考慮行星輪系栽植器和錐齒輪行星輪系栽植器的特點(diǎn)及栽植作業(yè)穩(wěn)定性要求,優(yōu)選出了錐齒輪行星輪系栽植器作為蔬菜缽苗自動(dòng)化栽植機(jī)構(gòu)。黃前澤[10]提出了缽苗移栽機(jī)變形橢圓齒輪行星系植苗機(jī)構(gòu),研制了變形橢圓齒輪行星系植苗機(jī)構(gòu)試驗(yàn)臺(tái),驗(yàn)證了植苗機(jī)構(gòu)理論模型與運(yùn)動(dòng)學(xué)分析的準(zhǔn)確性。
目前常見(jiàn)的盤(pán)夾式、鏈夾式移栽機(jī)適用于裸苗栽植;盤(pán)式移栽機(jī)用于裸苗和紙筒苗栽植;導(dǎo)苗管式、帶式喂入移栽機(jī)多用于開(kāi)溝移栽;吊籃式移栽機(jī)適用于地膜覆蓋后打孔栽植,但在栽植缽體尺寸較大的缽苗時(shí),由于部分土壤回流造成穴底不平整,無(wú)法保證壓縮基質(zhì)型缽苗移栽直立[11-13]。本文設(shè)計(jì)的半自動(dòng)壓縮基質(zhì)型西瓜缽苗移栽機(jī),采用先打穴后放苗的移栽方式,以期實(shí)現(xiàn)壓縮基質(zhì)型缽苗膜上打穴栽植。
壓縮基質(zhì)型缽苗具有的外形尺寸及力學(xué)特性是設(shè)計(jì)取苗栽植方案及結(jié)構(gòu)的關(guān)鍵依據(jù)。以西瓜缽苗為研究對(duì)象,通過(guò)測(cè)量缽苗的外形尺寸、測(cè)定不同含水率缽體的摩擦系數(shù)及缽體抗壓強(qiáng)度,為后續(xù)壓縮基質(zhì)型缽苗移栽機(jī)的設(shè)計(jì)研究提供依據(jù)[14-18]。
選用圓餅狀壓縮基質(zhì)(以草本泥炭、木質(zhì)素為主要原料,單個(gè)質(zhì)量(40±3)g)、特大京欣瓜種,播種后生長(zhǎng)期14~17d,缽體直徑為50~51.5 mm,高度為31.5~33 mm,苗高130~150 mm,寬110~150 mm。試驗(yàn)儀器采用自制牽引式摩擦力試驗(yàn)裝置、ALIPO牌ZP-100N電子測(cè)力計(jì)(測(cè)力范圍0~100 N,精度:示值的±0.5%,分辨率:0.01 N)、水平儀、瑞格爾RGM-4002智能控制電子萬(wàn)能試驗(yàn)機(jī)(測(cè)力范圍0~2 kN,精度:示值的±0.5%)、DHG-9123A型電熱恒溫鼓風(fēng)干燥箱(控溫范圍10~200 ℃;控溫精度0.1 ℃)及半圓形夾具。
分別對(duì)適栽的西瓜缽苗移栽出現(xiàn)的高含水率和低含水率2種狀態(tài),各選取3株進(jìn)行摩擦力試驗(yàn)及缽體抗壓強(qiáng)度試驗(yàn)。含水率為缽體抗壓強(qiáng)度試驗(yàn)結(jié)束后烘干計(jì)算得出。采用如圖1a所示牽引式摩擦力測(cè)試裝置測(cè)量不同含水率缽體側(cè)面與滑道的摩擦系數(shù),同一組試驗(yàn)缽體每旋轉(zhuǎn)120°測(cè)量1次,共測(cè)量3次。結(jié)合公式/得出,取平均值,試驗(yàn)結(jié)果如表1所示。由表1的試驗(yàn)結(jié)果可知,缽體含水率高的組1摩擦系數(shù)大于含水率低的組2,說(shuō)明含水率高的缽苗摩擦系數(shù)大于含水率低的缽苗。
1.牽引式摩擦力測(cè)試裝置 2,5.缽苗 3.滑道4.電子萬(wàn)能試驗(yàn)機(jī) 6.半圓形夾具
表1 摩擦力試驗(yàn)結(jié)果
注:缽體抗壓強(qiáng)度試驗(yàn)結(jié)束后,烘干計(jì)算得出組1與組2中每個(gè)缽體的含水率。組1中3個(gè)缽體的含水率分別為58.50%、64.04%、65.82%;組2中3個(gè)缽體的含水率分別為36.72%、36.18%、37.17%。
Note:After Compressive strength test of seedlings pot is completed, Calculate moisture content of each seedling pot in groups 1 and 2 by drying. water content of 3 seedling pots in group 1 was 58.50%, 64.04% and 65.82%, respectively; water content of 3 seedling pots in Group 2 was 36.72%, 36.18% and 37.17%, respectively.
使用電子萬(wàn)能試驗(yàn)機(jī)及半圓形夾具,測(cè)量2組不同含水率缽體抗壓強(qiáng)度,如圖1b所示,壓縮速度為1 mm/s。圖2為組1、組2缽體抗壓強(qiáng)度曲線。由圖2可知,載荷為0~5 N時(shí),缽體在壓縮的初始階段,由于缽體表面較大的粗糙度與半圓狀薄金屬是點(diǎn)接觸,載荷均勻增大壓縮量急劇增大;當(dāng)載荷為5~20 N之間時(shí),由于缽體表面與半圓狀薄金屬是面接觸,載荷均勻增大對(duì)壓縮量的影響較小[15];當(dāng)載荷大于25 N時(shí),試驗(yàn)中觀察到部分缽體外部產(chǎn)生裂紋。對(duì)比2組試驗(yàn)可以看出含水率較高的缽體抗壓強(qiáng)度低,不容易被破壞。
圖2 缽體抗壓強(qiáng)度曲線
半自動(dòng)壓縮基質(zhì)型西瓜缽苗移栽機(jī)主要由地輪、擺動(dòng)機(jī)構(gòu)、棘輪、打穴器、移位機(jī)構(gòu)、缽苗夾持機(jī)構(gòu)、輸送裝置、傳動(dòng)系統(tǒng)、機(jī)架等組成。壓縮基質(zhì)型缽苗移栽機(jī)結(jié)構(gòu)如圖3所示。
1.驅(qū)動(dòng)鏈輪 2.六方軸 3.棘輪機(jī)構(gòu) 4.動(dòng)力鏈輪 5.栽植裝置鏈輪 6.缽苗夾持機(jī)構(gòu) 7.取苗氣缸 8.阻苗氣缸 9.接近開(kāi)關(guān)A 10.機(jī)架 11.缽苗輸送裝置 12.地輪 13.接近開(kāi)關(guān)B 14.打穴器
半自動(dòng)壓縮基質(zhì)型西瓜缽苗移栽機(jī)由29.8 kW以上拖拉機(jī)牽引,地輪動(dòng)力經(jīng)鏈傳動(dòng)同時(shí)傳遞給擺動(dòng)機(jī)構(gòu)和移位機(jī)構(gòu)。擺動(dòng)機(jī)構(gòu)利用從動(dòng)桿往復(fù)擺動(dòng)的運(yùn)動(dòng)特性帶動(dòng)棘輪旋轉(zhuǎn),棘輪推動(dòng)安裝棘爪的鏈輪間歇轉(zhuǎn)動(dòng)帶動(dòng)打穴器旋轉(zhuǎn)完成間歇打穴;移位機(jī)構(gòu)帶動(dòng)缽苗夾持機(jī)構(gòu)在取苗位置和放苗位置之間往復(fù)運(yùn)動(dòng),并通過(guò)齒輪傳動(dòng)驅(qū)動(dòng)輸送帶順時(shí)針旋轉(zhuǎn)將缽苗送至托苗板上(取苗位置),當(dāng)接近開(kāi)關(guān)A檢測(cè)到缽苗夾持機(jī)構(gòu)移至取苗位置時(shí),缽苗夾持機(jī)構(gòu)夾取缽苗,缽苗夾持機(jī)構(gòu)隨移位機(jī)構(gòu)向放苗位置運(yùn)動(dòng),接近開(kāi)關(guān)B檢測(cè)到夾取缽苗的缽苗夾持機(jī)構(gòu)移至放苗位置時(shí),缽苗夾持機(jī)構(gòu)釋放缽苗,完成栽植。
3.1.1 運(yùn)動(dòng)分析
間歇式打穴裝置主要由擺動(dòng)機(jī)構(gòu)、棘輪機(jī)構(gòu)及打穴器組成,擺動(dòng)機(jī)構(gòu)由曲柄、傳動(dòng)桿、從動(dòng)桿和機(jī)架組成。曲柄轉(zhuǎn)動(dòng)一整圈,從動(dòng)桿往復(fù)擺動(dòng)一次,四等分棘輪隨從動(dòng)桿擺動(dòng)推動(dòng)安裝棘爪的鏈輪轉(zhuǎn)動(dòng),帶動(dòng)打穴軸鏈輪旋轉(zhuǎn),完成打穴。
3.1.2 擺動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì)
圖4所示的擺動(dòng)機(jī)構(gòu)中,0為曲柄的初始角。曲柄由0轉(zhuǎn)到0+90°時(shí)要求從動(dòng)桿輸出角實(shí)現(xiàn)給定運(yùn)動(dòng)規(guī)律()[19-20],即
注:1為曲柄的長(zhǎng)度,mm;2為連桿的長(zhǎng)度,mm;3為從動(dòng)桿的長(zhǎng)度,mm;4為機(jī)架的長(zhǎng)度,mm;0為曲柄的初始角,(°);E為曲柄的輸出角,(°);0為從動(dòng)桿的初始角,(°);E為從動(dòng)桿輸出角,(°)。
Note:1is the length of crank, mm;2is the length of connecting rod, mm;3is the length of driven rod, mm;4is the length of chassis, mm;0is initial Angle of crank, (°);Eis output angle of crank, (°);0is initial Angle of driven rod, (°);Eis output angle of driven rod, (°).
圖4 擺動(dòng)機(jī)構(gòu)簡(jiǎn)圖
Fig.4 Schematic diagram of swing mechanism
擺動(dòng)機(jī)構(gòu)各零件尺寸為1、2、3、4。考慮到空間布局應(yīng)盡可能緊湊,初設(shè)定1=57 mm,4=170 mm。取曲柄的初始位置角0為極位角,則
設(shè)計(jì)變量為=[23]T=[23]T,根據(jù)間歇式打穴裝置的工作原理,為使打穴作業(yè)過(guò)程更加精確,以擺動(dòng)機(jī)構(gòu)運(yùn)動(dòng)規(guī)律與實(shí)際運(yùn)動(dòng)規(guī)律之間的偏差最小為指標(biāo)建立數(shù)學(xué)模型,即
式中Ei為期望輸出角,(°);為輸出角的等分?jǐn)?shù);Ф為從動(dòng)桿的實(shí)際輸出角,(°)。圖5為擺動(dòng)機(jī)構(gòu)運(yùn)動(dòng)學(xué)關(guān)系,由圖5可知
注:0≤φi﹤π時(shí)(實(shí)線),φi為曲柄AB的實(shí)際輸入角,(°);Φi為從動(dòng)桿CD的實(shí)際輸出角,(°);γ為傳動(dòng)角,(°);ρ為B點(diǎn)與D點(diǎn)連線的長(zhǎng)度,mm;αi為ρ與從動(dòng)桿CD的夾角,(°);βi為ρ與機(jī)架AD的夾角,(°)。π≤φi'﹤2π時(shí)(雙點(diǎn)劃線),φi'為曲柄AB'的實(shí)際輸入角,(°);Φi'為從動(dòng)桿C'D的實(shí)際輸出角,(°);ρ'為B'點(diǎn)與D點(diǎn)連線的長(zhǎng)度,mm;αi'為ρ'與從動(dòng)桿C'D的夾角,(°);βi'為ρ'與機(jī)架AD的夾角,(°)。
根據(jù)擺動(dòng)機(jī)構(gòu)中曲柄存在的條件,可得
傳動(dòng)角一般不小于40°,取40°≤≤140°,可得
采用MATLAB軟件對(duì)該問(wèn)題進(jìn)行優(yōu)化[19-21],擺動(dòng)機(jī)構(gòu)零件尺寸為1=57 mm、2=161 mm、3=79 mm、4=170 mm。從動(dòng)桿擺動(dòng)角度為92.3°,滿足四等分棘輪機(jī)構(gòu)工作要求。
3.1.3 打穴器設(shè)計(jì)
打穴器作為間歇式打穴裝置入土成穴的重要組成部分,穴形的好壞直接影響移栽機(jī)的栽植質(zhì)量。根據(jù)西瓜缽苗的外形特征,打穴器設(shè)計(jì)為上端大、下端小的圓錐形,如圖6所示。打穴時(shí)破膜取土,保證穴形底面平整。刃口端面寬度′是影響破膜取土的主要參數(shù)之一,刃口端面寬度越小,破膜取土阻力就越小,但也容易發(fā)生變形甚至崩裂,選取刃口端面寬度′為1.5 mm[22]。
注:l′為刃口端面寬度,mm;de為打穴器大端內(nèi)徑,mm;di為打穴器小端內(nèi)徑,mm;b1為打穴器錐形部分高度,mm;θ為切入角,(°)。
為保證穴形底面直徑大于缽體直徑51.5 mm,小端內(nèi)徑d取64 mm;根據(jù)栽植深度要求,打穴器錐形部分高度1取65 mm;切入角過(guò)大取土阻力大且造成穴壁土壤緊實(shí)度增加,切入角過(guò)小不利于將土從穴中取出且不易倒土,結(jié)合初期的取土試驗(yàn)將切入角取21°,則大端內(nèi)徑d約為114 mm。
3.1.4 打穴器運(yùn)動(dòng)軌跡分析
使用Solidworks三維繪圖軟件繪制虛擬樣機(jī),在Motion運(yùn)動(dòng)分析環(huán)境中定義各部件的運(yùn)動(dòng)參數(shù),設(shè)定整機(jī)向前運(yùn)動(dòng)速度為600 mm/s,選擇打穴器頂端中心點(diǎn)進(jìn)行軌跡跟蹤,運(yùn)動(dòng)軌跡如圖7所示,其軌跡為擺線,株距為90 cm,栽植深度為7 cm,滿足西瓜移栽種植模式的要求。
注:R為株距,mm;T為打穴器運(yùn)動(dòng)軌跡;S為地膜表面;H為栽植深度,mm。
持苗栽植裝置是半自動(dòng)壓縮基質(zhì)型西瓜缽苗移栽機(jī)的核心部件,主要由移位機(jī)構(gòu)、缽苗夾持機(jī)構(gòu)組成,電控裝置和氣動(dòng)元件為持苗栽植裝置的輔助元件。
3.2.1 持苗栽植位置分析
持苗栽植裝置在整個(gè)運(yùn)動(dòng)過(guò)程中有2個(gè)工作位置,一個(gè)是取苗位置(圖8雙點(diǎn)畫(huà)線所示),另一個(gè)是放苗位置(圖8實(shí)線所示)。
在取苗位置時(shí),動(dòng)力桿′與傳動(dòng)桿′′共線,此時(shí)安裝在雙連桿′′上的缽苗夾持機(jī)構(gòu)′′向上運(yùn)動(dòng)到最高點(diǎn),接近開(kāi)關(guān)A檢測(cè)到缽苗夾持機(jī)構(gòu)′′到達(dá)取苗位置,控制電磁閥換向,取苗氣缸活塞桿收縮,缽苗夾持機(jī)構(gòu)′′夾取缽苗;缽苗夾持機(jī)構(gòu)按照既定運(yùn)動(dòng)軌跡運(yùn)動(dòng)至放苗位置。到達(dá)放苗位置時(shí),動(dòng)力桿與傳動(dòng)桿共線,此時(shí)安裝在雙連桿上的缽苗夾持機(jī)構(gòu)向下運(yùn)動(dòng)到最低點(diǎn),接近開(kāi)關(guān)B檢測(cè)到缽苗夾持機(jī)構(gòu)到達(dá)放苗位置,控制電磁閥換向,取苗氣缸活塞桿伸長(zhǎng),缽苗夾持機(jī)構(gòu)釋放缽苗,完成一次栽植。
注:雙點(diǎn)畫(huà)線表示取苗位置,實(shí)線表示放苗位。φ1'、φ2'、φ3'、φ4'、φ5'、φ6'、θ1、θ2分別為動(dòng)力桿EF、傳動(dòng)桿FG、從動(dòng)桿GH、動(dòng)力雙擺桿HI、雙連桿IJ、從動(dòng)雙擺桿KJ、機(jī)架EH、機(jī)架HK與x軸逆時(shí)針?lè)较驃A角,(°);θ3為從動(dòng)桿GH與動(dòng)力雙擺桿HI的夾角,(°);θ4為缽苗夾持機(jī)構(gòu)LM與雙連桿IJ的夾角,(°)。
3.2.2 持苗栽植裝置運(yùn)動(dòng)分析
已知1'、1'、1、2、3、4及各桿長(zhǎng)度,利用解析法對(duì)處于放苗位置的移位機(jī)構(gòu)進(jìn)行運(yùn)動(dòng)分析[23-25]。根據(jù)圖8建立水平方向?yàn)檩S,垂直方向?yàn)檩S,點(diǎn)的軸坐標(biāo)為0,缽體的軸坐標(biāo)為。
式中l為動(dòng)力桿的長(zhǎng)度;l為傳動(dòng)桿的長(zhǎng)度;l為從動(dòng)桿的長(zhǎng)度;l為機(jī)架的長(zhǎng)度。
2'、3'由式(11)實(shí)部虛部分別相等解出,對(duì)式(11)求導(dǎo),進(jìn)行速度分析
式中1為動(dòng)力桿的角速度,rad/s;2為傳動(dòng)桿的角速度,rad/s;3為從動(dòng)桿的角速度,rad/s。
令式(12)實(shí)部虛部分別相等整理得
對(duì)式(12)求導(dǎo),進(jìn)行加速度分析
令式(13)實(shí)部虛部分別相等得
式中2為傳動(dòng)桿的加速度;3為從動(dòng)桿的加速度。
式中l為動(dòng)力雙擺桿的長(zhǎng)度;l為雙連桿的長(zhǎng)度;l為從動(dòng)雙擺桿的長(zhǎng)度;l為機(jī)架的長(zhǎng)度。
式(15)意義為V+V=V。令式(15)實(shí)部虛部分別相等,與固接,3=4,求得式中5、6
將5、6帶入式(15)中求解出V、V。
式中4為動(dòng)力雙擺桿的角速度,rad/s;5為雙連桿的角速度,rad/s;6為從動(dòng)雙擺桿的角速度,rad/s。
運(yùn)用速度影像原理,并根據(jù)速度多邊形的特點(diǎn)求解出西瓜缽苗在點(diǎn)的絕對(duì)速度V[26-30],m/s。設(shè)其水平分速度為V,m/s,移栽機(jī)前進(jìn)速度0,m/s,則有
當(dāng)移栽機(jī)前進(jìn)速度一定時(shí),西瓜缽苗釋放時(shí)的水平速度V直接影響移栽質(zhì)量,Δ值過(guò)大,會(huì)出現(xiàn)缽苗倒伏直立度不好;理論上Δ值越小,移栽機(jī)的栽植質(zhì)量越好,同時(shí)也可通過(guò)減小投苗高度,保證缽苗直立。
根據(jù)西瓜缽苗力學(xué)性能測(cè)定結(jié)果,在一定范圍內(nèi)缽體含水率高的摩擦系數(shù)大、抗壓強(qiáng)度低。相同含水率的缽體,因組成缽體原料分布不均勻及西瓜苗根系個(gè)體差異,其承受的最大載荷也不相同[15]。由缽體抗壓試驗(yàn)可知,當(dāng)外部載荷大于25 N時(shí),部分缽體外部產(chǎn)生裂紋??紤]個(gè)體差異,安全系數(shù)取2.5,夾取力′=25/,則′為10 N。為保證缽苗夾持機(jī)構(gòu)在滿足缽苗抗壓強(qiáng)度條件下牢固的夾持缽苗,設(shè)缽苗重力為,夾持機(jī)構(gòu)兩側(cè)的夾持臂對(duì)缽體的夾持力分別為j1和j2。滿足如下關(guān)系
摩擦系數(shù)=0.634,max=0.1 kg時(shí),滿足式(17)和式(18),說(shuō)明當(dāng)缽苗摩擦系數(shù)較小,西瓜缽苗重力為最大時(shí),缽苗基質(zhì)不被夾碎散落的前提下能夠克服缽苗的自身重力,保證移栽時(shí)缽苗夾持機(jī)構(gòu)能夠牢固夾取西瓜缽苗。
缽苗夾持機(jī)構(gòu)用于夾取和轉(zhuǎn)移西瓜缽苗,為實(shí)現(xiàn)準(zhǔn)確夾取及釋放缽苗自動(dòng)化控制,使用氣缸控制夾持機(jī)構(gòu)的開(kāi)合[31]。缽苗夾持機(jī)構(gòu)示意圖如圖9所示。
1.氣缸 2.固定支點(diǎn) 3.鉸接點(diǎn) 4.夾持臂 5.缽苗
1.Cylinder 2.Fixed point 3.Hinge point 4.Holdingarm 5.Seedlings
注:a為夾持臂總長(zhǎng),mm;b為鉸接點(diǎn)到夾持臂底端長(zhǎng)度,mm;c為夾持臂寬度,mm;d為缽體直徑,mm;e為氣缸工作行程,mm;f為缽體高度,mm;j1和j2為兩側(cè)夾持臂對(duì)缽體的夾持力,N;1為氣缸拉力,N;為鉸接點(diǎn)受氣缸拉力方向與水平面夾角,(°)。
Note:ais length of clamping arm, mm;bis length from hinge point to bottom end of clamp arm, mm;cis the clamping arm width, mm;dis seedlings pot diameter, mm;eis cylinder working stroke, mm;fis height of seedlings pot, mm;j1andj2are clamping forces of clamping arms on two sides, N;1is the cylinder pull force, N;is the angle between direction of cylinder pulling force and horizontal plane at hinge point, (°).
圖9 缽苗夾持機(jī)構(gòu)簡(jiǎn)圖
Fig.9 Schematic diagram of seedlings clamping mechanism
缽苗夾持機(jī)構(gòu)處于閉合位置時(shí),滿足如下關(guān)系
按西瓜幼苗最大苗高150 mm(含基質(zhì)塊),最寬處120 mm,考慮空間限制及結(jié)構(gòu)要求取a、b、c、d、e、f分別為280、170、150、50、30、35 mm。將已知數(shù)值帶入式(19)和(20),解得1約為26 N。
缽苗輸送裝置如圖10所示,缽苗輸送裝置與持苗栽植裝置采用同一個(gè)動(dòng)力源驅(qū)動(dòng),保證了缽苗的進(jìn)給速度與持苗栽植裝置的取苗動(dòng)作同步。采用輸送帶輸送的方式可以減少缽苗因滑落帶來(lái)的摩擦和碰撞損傷,輸送帶設(shè)計(jì)送苗速度為40株/min。為避免缽苗在下一次取苗之前掉落,設(shè)計(jì)了擋苗板及阻苗裝置。工作時(shí),投苗人員使用條型鏟將缽苗從成排排列的苗盤(pán)中取出放在輸送帶上,輸送帶將缽苗輸送至托苗板上(取苗位置),當(dāng)接近開(kāi)關(guān)A檢測(cè)到缽苗夾持機(jī)構(gòu)移至取苗位置時(shí),阻苗氣缸驅(qū)動(dòng)阻苗板打開(kāi),缽苗下移至托苗板,缽苗夾持機(jī)構(gòu)夾取缽苗,安裝在從動(dòng)鏈輪上的撥桿將擋苗板推開(kāi);缽苗夾持機(jī)構(gòu)隨移位機(jī)構(gòu)向放苗位置運(yùn)動(dòng),接近開(kāi)關(guān)B檢測(cè)到夾取缽苗的缽苗夾持機(jī)構(gòu)移至放苗位置時(shí),阻苗氣缸推動(dòng)阻苗板閉合,缽苗夾持機(jī)構(gòu)釋放缽苗。
1.阻苗氣缸 2.阻苗板 3.輸送帶 4.撥桿 5.從動(dòng)鏈輪 6.主動(dòng)齒輪 7.半軸 8.從動(dòng)齒輪 9.從動(dòng)齒輪軸 10.擋苗板 11.托苗板
田間試驗(yàn)于2017年5月在山東省寧津縣金利達(dá)公司試驗(yàn)地進(jìn)行(如圖11所示),地塊長(zhǎng)度180 m,土壤含水率為12.4%,試驗(yàn)用地經(jīng)過(guò)旋耕作業(yè),保證土壤疏松平整。由于西瓜缽苗在適宜移栽時(shí),瓜苗的質(zhì)量?jī)H占缽苗總質(zhì)量的1.5%~3.2%,瓜苗相對(duì)基質(zhì)質(zhì)量很小且柔軟,瓜苗落地所產(chǎn)生的力矩對(duì)基質(zhì)傾斜無(wú)影響。隨機(jī)抽取不同含水率的壓縮基質(zhì)進(jìn)行栽植功能驗(yàn)證試驗(yàn)。
圖11 樣機(jī)和田間試驗(yàn)
移栽機(jī)與拖拉機(jī)掛接方式為三點(diǎn)懸掛,拖拉機(jī)動(dòng)力為29.8 kW,試驗(yàn)時(shí)移栽機(jī)保持2.1~2.6 km/h的速度前進(jìn),參照《中華人民共和國(guó)機(jī)械行業(yè)標(biāo)準(zhǔn)JB/T 10291-2013》中旱地栽植機(jī)械的相關(guān)試驗(yàn)方法,每次取連續(xù)的16株為數(shù)據(jù)采集樣本點(diǎn),測(cè)量4組共64株取平均值。以株距合格率、倒伏率為性能評(píng)價(jià)指標(biāo)。設(shè)計(jì)株距為X,當(dāng)相鄰2株的實(shí)測(cè)株距X在(0,0.8X]范圍內(nèi),為重栽;當(dāng)相鄰2株的實(shí)測(cè)株距在(0.8X,1.2X]范圍內(nèi),為合格;當(dāng)相鄰2株的實(shí)測(cè)株距在(1.2X,2.2X]范圍內(nèi),為漏栽;行業(yè)標(biāo)準(zhǔn)中規(guī)定栽植后秧苗主莖與地面夾角小于30°為倒伏,根據(jù)壓縮基質(zhì)的圓餅狀外形,即當(dāng)?shù)孛媾c壓縮基質(zhì)表面夾角大于60°為倒伏。
4.3.1 試驗(yàn)結(jié)果
栽植倒伏和株距測(cè)試數(shù)據(jù)統(tǒng)計(jì)結(jié)果如表2和表3所示。由表2及表3中測(cè)量結(jié)果可知,倒伏率為21.9%,栽植平均株距98.6 cm,株距合格率為90.62%。
表2 倒伏率測(cè)量結(jié)果
表3 株距測(cè)量結(jié)果
4.3.2 試驗(yàn)結(jié)果分析
表2中倒伏率較高的主要原因:打穴器內(nèi)壁較為光滑,試驗(yàn)土壤含水率較低、土壤松散,打穴器取土后部分松軟土壤回填穴底導(dǎo)致穴底不平,部分缽體產(chǎn)生歪斜;因樣機(jī)未設(shè)計(jì)仿形裝置,當(dāng)?shù)剌唭蓚?cè)地勢(shì)高低相差過(guò)大時(shí),造成機(jī)架擺動(dòng),使缽體放入穴時(shí)與穴壁接觸,導(dǎo)致少量缽體歪斜。表3中平均株距與設(shè)計(jì)株距存在偏差,造成偏差的原因?yàn)闄C(jī)器采用單側(cè)地輪傳動(dòng),且試驗(yàn)地旋耕作業(yè)后土壤松軟,地輪發(fā)生滑移。
1)本文設(shè)計(jì)了一種能夠?qū)崿F(xiàn)移栽壓縮基質(zhì)型缽苗移栽的機(jī)械。根據(jù)測(cè)定的西瓜缽苗力學(xué)特性及外形尺寸參數(shù),設(shè)計(jì)了缽苗夾持機(jī)構(gòu)和缽苗輸送裝置,利用MATLAB軟件對(duì)擺動(dòng)機(jī)構(gòu)進(jìn)行優(yōu)化設(shè)計(jì)。據(jù)測(cè)定的西瓜缽苗外形尺寸及栽植深度要求,確定了打穴器結(jié)構(gòu)及尺寸參數(shù)。
2)通過(guò)單因素試驗(yàn)測(cè)得2組不同含水率的西瓜缽苗缽體側(cè)面與滑道的摩擦系數(shù)分別為0.755、0.634。采用壓縮基質(zhì)進(jìn)行田間栽植驗(yàn)證試驗(yàn),拖拉機(jī)保持2.1~2.6 km/h的速度前進(jìn)時(shí),平均株距98.6 cm,株距合格率為90.62%;倒伏率為21.9%。倒伏率略高。
在后續(xù)研究中采用雙地輪驅(qū)動(dòng)提高傳動(dòng)的可靠性,獲得均勻株距;進(jìn)一步優(yōu)化改進(jìn)打穴器的形狀結(jié)構(gòu),使取土后穴底平整,提高打穴質(zhì)量;增加仿形機(jī)構(gòu)保證機(jī)器水平,控制入土深度,降低倒伏率。
[1] 張慶. 壓縮型基質(zhì)營(yíng)養(yǎng)缽西瓜育苗技術(shù)研究[D]. 上海:上海交通大學(xué),2010. Zhang Qing. Study on Nursery Technique of Watermelon with Compressed Substrate Block[D]. Shanghai: Shanghai Jiao Tong University, 2010. (in Chinese with English abstract)
[2] 李桂芬,何毅,覃斯華,等. 西瓜和甜瓜壓縮型基質(zhì)營(yíng)養(yǎng)缽育苗技術(shù)規(guī)程[J]. 中國(guó)瓜菜,2016,29(10):46-48.
[3] 王田利. 我國(guó)現(xiàn)代西瓜產(chǎn)業(yè)特點(diǎn)、問(wèn)題與對(duì)策建議[J]. 西北園藝(蔬菜),2014(3):4-7.
[4] 于曉旭,趙勻,陳寶成,等. 移栽機(jī)械發(fā)展現(xiàn)狀與展望[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(8):44-53.
Yu Xiaoxu, Zhao Yun, Chen Baocheng, et al. Current situation and prospect of transsplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 44-53. (in Chinese with English abstract)
[5] 周海燕,楊炳南,顏華,等. 旱作移栽機(jī)械產(chǎn)業(yè)發(fā)展現(xiàn)狀及展望[J]. 農(nóng)業(yè)工程,2015,5(1):12-13,16.Zhou Haiyan, Yang Bingnan, Yan Hua, et al. Status quo anddevelopment prospects of dry land transplanting machine industry[J]. Agricultural Engineering, 2015, 5(1): 12-13,16.(in Chinese with English abstract)
[6] 李華,曹衛(wèi)彬,李樹(shù)峰,等.2ZXM-2型全自動(dòng)蔬菜穴盤(pán)苗鋪膜移栽機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):23-33.
Li Hua, Cao Weibin, Li Shufeng,et al. Development of 2ZXM-2 automatic plastic film mulching plug seedling transplanter for vegetable[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 23-33. (in Chinese with English abstract)
[7] 李旭英,王玉偉,魯國(guó)成,等. 吊杯式栽植器的優(yōu)化設(shè)計(jì)及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(14):58-64.
Li Xuying, Wang Yuwei, Lu Guocheng, et al. Optimization design and test of Dibble-type transplanting device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 58-64. (in Chinese with English abstract)
[8] 王曉東. 水輪式打穴移栽機(jī)成穴機(jī)理及試驗(yàn)研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2005.
Wang Xiaodong. The Experimental Study on the Water-Wheel Transplanter’s Punching Mechanism[D]. Beijing: China Agricultural University, 2005. (in Chinese with English abstract)
[9] 金偉豐. 蔬菜缽苗行星輪系栽植器設(shè)計(jì)與運(yùn)動(dòng)學(xué)分析[D]. 杭州:浙江大學(xué),2013.
Jin Weifeng. Mechanism Design and Motion Simulation of Vegetable Transplanter with Planetary Bevel Gear Train[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract)
[10] 黃前澤. 缽苗移栽機(jī)行星輪系植苗機(jī)構(gòu)關(guān)鍵技術(shù)研究及試驗(yàn)[D]. 杭州:浙江理工大學(xué),2013.
Huang Qianze. Study on Key Technology and Test of Transplanting Mechanism with Planetary Gears for Potted-seedling Transplanter[D]. Hangzhou: Zhejiang Sci-Tech University, 2013. (in Chinese with English abstract)
[11] 李寶筏. 農(nóng)業(yè)機(jī)械學(xué)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2003.
[12] 石鐵. 全自動(dòng)玉米秧苗移栽機(jī)的研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):23-30.
Shi Tie. Development and test of automatic corn seedling transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 23-30. (in Chinese with English abstract)
[13] 封俊,秦貴,宋衛(wèi)堂,等. 移栽機(jī)的吊杯運(yùn)動(dòng)分析與設(shè)計(jì)準(zhǔn)則[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2002,33(5):48-50.
Feng Jun, Qin Gui, Song Weitang, et al. The kinematic analysis and design criteria of the dibble-type transplanters[J]. Transactions of the Chinese Society for Agricultural Machinery, 2002, 33(5): 48-50. (in Chinese with English abstract)
[14] 童俊華,蔣煥煜,蔣卓華,等. 缽苗自動(dòng)移栽機(jī)器人抓取指針夾持苗坨參數(shù)優(yōu)化試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(16):8-16.
Tong Junhua, Jiang Huanyu, Jiang Zhuohua, et al. Experiment on parameter optimization of gripper needles clamping seedling plug for automatic transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 8-16. (in Chinese with English abstract)
[15] 王英. 面向高立苗率要求的栽植機(jī)構(gòu)參數(shù)優(yōu)化與試驗(yàn)研究[D]. 杭州:浙江理工大學(xué),2014.
Wang Ying. Parameter Optimization and Experimental Study on High Seedling Erectness Rate Oriented Planting Mechanism[D]. Hangzhou: Zhejiang Sci-Tech University, 2014. (in Chinese with English abstract)
[16] 賀一鳴,馮世杰,顏波,等. 油菜缽苗缽體的力學(xué)特性[J]. 農(nóng)業(yè)工程,2017,7(4):1-6.
He Yiming, Feng Shijie, Yan Bo, et al. Mechanical properties of rape seedling pot[J]. Agricultural Engineering, 2017, 7(4): 1-6. (in Chinese with English abstract)
[17] 劉姣娣,曹衛(wèi)彬,田東洋,等. 基于苗缽力學(xué)特性的自動(dòng)移栽機(jī)執(zhí)行機(jī)構(gòu)參數(shù)優(yōu)化試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(16):32-39.
Liu Jiaodi, Cao Weibin, Tian Dongyang,et al. Optimization ex-periment of transplanting actuator parameters based on mechanical property of seedling pot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 32-39. (in Chinese with English abstract)
[18] 王英,陳建能,吳加偉,等. 用于機(jī)械化栽植的西蘭花缽苗力學(xué)特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):1-10.
Wang Ying, Chen Jianneng, Wu Jiawei, et al. Mechanics property experiment of oli seedling oriented to mechanized planting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 1-10. (in Chinese with English abstract)
[19] 孫桓,陳作模,葛文杰. 機(jī)械原理[M]. 北京:高等教育出版社,2006.
[20] 孫靖民,梁迎春. 機(jī)械優(yōu)化設(shè)計(jì)[M]. 北京:機(jī)械工業(yè)出版社,2012.
[21] 李蕾,蘇福蓮,石磊. 基于MATLAB和ADAMS的曲柄搖桿機(jī)構(gòu)優(yōu)化設(shè)計(jì)[J]. 機(jī)械工程師,2011(10):36-38.
Li Lei, Su Fulian, Shi Lei. The optimization design of crank and rocker mechanism based on MATLAB and ADAMS[J]. Mechanical Engine, 2011(10): 36-38. (in Chinese with English abstract)
[22] 周雪青,李洪文,何進(jìn),等. 土壤容重測(cè)定用分段式原狀取土器的設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(8):127-130.
Zhou Xueqing, Li Hongwen, He Jin, et al. Design of multi-segment in situ soil sampler testing bulk density[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(8): 127-130. (in Chinese with English abstract)
[23] 崔巍,趙亮,宋建農(nóng),等. 吊杯式移栽機(jī)栽植器運(yùn)動(dòng)學(xué)分析與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(增刊1):35-38, 34.
Cui Wei, Zhao Liang, Song Jiannong, et al. Kinematic analysisand experiment of dibble-type planting devices[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(Supp.1): 35-38, 34. (in Chinese with English abstract)
[24] 胡建平,張建兵,何俊藝,等. 移栽機(jī)行星輪轉(zhuǎn)臂式栽植器運(yùn)動(dòng)分析與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(10):57-61.
Hu Jianping, Zhang Jianbing, He Junyi, et al. Motion analysis and experiment planting mechanism with planetary gears of transplanting machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 57-61. (in Chinese with English abstract)
[25] 俞高紅,黃小艷,葉秉良,等. 旋轉(zhuǎn)式水稻缽苗移栽機(jī)構(gòu)的機(jī)理分析與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(3):16-22.
Yu Gaohong, Huang Xiaoyan, Ye Bingliang, et al. Principle analysis and parameters optimization of rotary rice pot seedling transplanting mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 16-22. (in Chinese with English abstract)
[26] 趙雄,沈明,陳建能,等. 棉花移栽機(jī)旋轉(zhuǎn)式取苗機(jī)構(gòu)的運(yùn)動(dòng)學(xué)分析及虛擬試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):13-20.
Zhao Xiong, Shen Ming, Chen Jianneng, et al. Kinematic analysis and virtual experiment of rotary pick-up mechanism on cotton transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 13-20. (in Chinese with English abstract)
[27] 陳建能,王伯鴻,張翔,等. 多桿式零速度缽苗移栽機(jī)植苗機(jī)構(gòu)運(yùn)動(dòng)學(xué)模型與參數(shù)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(9):7-12.
Chen Jianneng, Wang Bohong, Zhang Xiang, et al. Kinematics modeling and characteristic analysis of multi-linkage transplanting mechanism of pot seedling transplanter with zero speed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(9): 7-12. (in Chinese with English abstract)
[28] 孫桓,陳作模,葛文杰. 機(jī)械原理[M]. 北京:高等教育出版社,2006.
[29] 毛鵬軍,李晶,張松鴿,等. 七桿式移栽機(jī)栽植機(jī)構(gòu)運(yùn)動(dòng)學(xué)分析[J]. 農(nóng)機(jī)化研究,2013,35(12):59-62.
Mao Pengjun, Li Jing, Zhang Songge, et al. Kinematic analysis of seven-rod planting mechanism of seedling transplanter[J]. Journal of Agricultural Mechanization Research, 2013, 35(12): 59-62. (in Chinese with English abstract)
[30] Kurt Luck, Karl-Heinz Modler.機(jī)械原理分析·綜合·優(yōu)化(孔建益譯)[M]. 北京:機(jī)械工業(yè)出版社,2003.
[31] 陳科,楊學(xué)軍,顏華等,等. 基于Matlab的全自動(dòng)移栽機(jī)取苗機(jī)構(gòu)設(shè)計(jì)與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(增刊1):24-26,32.
Chen Ke, Yang Xuejun, Yan Hua, et al. Design and parameter optimization of seedling pick-up mechanism based on Matlab[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(Supp.1) : 24-26, 32. (in Chinese with English abstract)
Design and experiment of semi-automatic transplanter for watermelon seedlings raised on compression substrate
Han Changjie, Xu Yang, Zhang Jing, You Jia, Guo Hui
(,,830052,)
In order to solve the problem that seedlings cultivated by pie-shaped compression matrix can not be planted by the existing transplanter, a semi-automatic compression matrix seedling transplanter was designed in this paper by mimicking the artificially transplanting method of putting seedlings after punching a hole. The compression matrix type seedling transplanter mainly consists of a ground wheel, a swing mechanism, a ratchet wheel, a hole puncher, a displacement mechanism, a seedling clamping mechanism, a conveying device, a transmission system, a rack, and so on. The physical dimensions and mechanical properties of the compression matrix type seedling are the key basis for the design of the seedling planting schemes and structures. Taking watermelon seedlings as the research object, the dimensions of the seedlings were measured, and the friction coefficient of the compression matrix with different water contents and the compressive strength of the compression matrix were determined. The coefficients of friction between the slideways and the flanks of watermelon seedlings with 2 groups of different water contents were determined to be 0.755 and 0.634 respectively by single-factor tests. The relationship between the compression load and the compression amount of the 2 groups was also analyzed. When the load is 0-5 N, as the surface of the seedling is in point contact with the semi-circular thin metal at the initial stage of compression, the compression load increases evenly and the amount increases rapidly. When the load is between 5 and 20 N, as the surface of the seedling is in surface contact with the semi-circular thin metal, the compression load increases evenly with less impact on compression. When the load is greater than 25 N, some external cracks are observed on the surface of the seeding during the test. Comparing the 2 tests, it can be seen that the seedling with high water content is not easily destroyed. The swing mechanism is optimized according to the known movement law of the initial angle of the crank and the output angle of the driven rod. The dimensions of optimized parts are 57, 161, 79 and 170 mm, respectively. When the crank rotates one revolution of 360°, the reciprocating swing angle of the driven rod is 92.3°, which satisfies the working requirements of the four-equal-part ratchet wheel mechanism. The structure and specific size parameters of the hole puncher are determined according to the measurement size and planting depth requirements of the watermelon seedling. The width of the edge surface is 1.5 mm. The inner diameter of the small end is 64 mm, and the height of the tapered part of the hole puncher is 65 mm, and when the incision angle is 21°, the inner diameter of the big end is about 114 mm. The structure parameters of the seedling clamping mechanism are determined according to the mechanical properties and the dimension of watermelon seedling. And it is also concluded that the seedling’s matrix can overcome the self-gravity of the seedling, which ensures that the seedling clamping mechanism can securely grip the seedlings when transplanting with a clamping force of 26 N. The seedling conveying device and the planting holding device are driven by the same power source, ensuring that the feeding speed of the seedlings is synchronized with taking seedling action of the planting holding device. The conveyor belt is used to transport the seedlings, and the conveyor belt was designed to send seedlings at a speed of 40 plants per minute. Using a compression matrix for field planting functional verification tests, the average plant spacing is 98.6 cm when the transplanter moves at a stable speed of 2.1-2.6 km/h. The pass rate of the plant spacing is 90.62% and the lodging rate is 21.9% which is slightly higher. In the follow-up study, dual-ground-wheel driving would be used to improve the reliability of the transmission and obtain uniform spacing; a hole shape with the same level and the same depth should be acquired, and the lodging rate after the landing of pie-shaped matrix would be reduced by increasing the copying mechanism and optimizing the shape and structural parameters of the hole puncher.
mechanization; design; transplants; compressed substrate; seedlings; test
韓長(zhǎng)杰,徐 陽(yáng),張 靜,尤 佳,郭 輝. 半自動(dòng)壓縮基質(zhì)型西瓜缽苗移栽機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):54-61. doi:10.11975/j.issn.1002-6819.2018.13.007 http://www.tcsae.org
Han Changjie, Xu Yang, Zhang Jing, You Jia, Guo Hui. Design and experiment of semi-automatic transplanter for watermelon seedlings raised on compression substrate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 54-61. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.13.007 http://www.tcsae.org
2017-11-04
2018-04-04
國(guó)家自然科學(xué)基金項(xiàng)目(50905153,51565059);“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0700803-2);2017年自治區(qū)農(nóng)業(yè)科技推廣與服務(wù)項(xiàng)目
韓長(zhǎng)杰,副教授,博士,主要從事農(nóng)業(yè)機(jī)械設(shè)計(jì)與智能農(nóng)業(yè)裝備的研究。Email:hcj_627@163.com
10.11975/j.issn.1002-6819.2018.13.007
S223.92
A
1002-6819(2018)-13-0054-08