国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

藍(lán)寶石襯底上PECVD生長(zhǎng)石墨烯及其氣敏傳感器

2017-11-22 10:21蔚翠何澤召劉慶彬李嫻謝丹蔡樹(shù)軍馮志紅
化工學(xué)報(bào) 2017年11期
關(guān)鍵詞:氣敏襯底藍(lán)寶石

蔚翠,何澤召,劉慶彬,李嫻,謝丹,蔡樹(shù)軍,馮志紅

(1河北半導(dǎo)體研究所專用集成電路重點(diǎn)實(shí)驗(yàn)室,河北 石家莊 050051;2清華大學(xué)微電子所,北京 100084)

藍(lán)寶石襯底上PECVD生長(zhǎng)石墨烯及其氣敏傳感器

蔚翠1,何澤召1,劉慶彬1,李嫻2,謝丹2,蔡樹(shù)軍1,馮志紅1

(1河北半導(dǎo)體研究所專用集成電路重點(diǎn)實(shí)驗(yàn)室,河北 石家莊 050051;2清華大學(xué)微電子所,北京 100084)

在藍(lán)寶石襯底上,利用 PECVD在相對(duì)較低的溫度和相對(duì)短的時(shí)間制備石墨烯。實(shí)驗(yàn)發(fā)現(xiàn),在 950℃,生長(zhǎng)15 min,可制備納米晶石墨烯。所制備的石墨烯為雙層結(jié)構(gòu),存在較多的缺陷,使得其適合用于制作氣敏傳感器。制作的納米晶石墨烯氣敏傳感器對(duì)甲醛氣體顯示出良好的響應(yīng)和恢復(fù)特性。分析發(fā)現(xiàn)納米晶石墨烯中大量的晶界和褶皺使氣體的吸附和解吸附能壘降低是其表現(xiàn)出良好氣敏特性的主要原因。

石墨烯;吸附;膜;測(cè)量;甲醛;曝氣

引 言

氣敏傳感器在環(huán)境監(jiān)測(cè),工業(yè)生產(chǎn)和安全,醫(yī)療診斷,軍事和宇航等領(lǐng)域發(fā)揮著重要作用[1]。固態(tài)氣敏傳感器具有尺寸小、功率低、靈敏度高、成本低等優(yōu)勢(shì)。它們可以探測(cè)多種氣體,探測(cè)濃度可以達(dá)到百萬(wàn)分之一(mg·L-1)量級(jí)[2]。甲醛氣體在環(huán)境中非常常見(jiàn),對(duì)人類的身體健康產(chǎn)生嚴(yán)重的影響,甲醛濃度高于幾個(gè)mg·L-1時(shí),會(huì)對(duì)人類的呼吸系統(tǒng)產(chǎn)生非常大的傷害[3-4]。此外,甲醛還被列為致癌物[5-6]。因此及時(shí)準(zhǔn)確地在位探測(cè)甲醛氣體對(duì)控制環(huán)境污染、保護(hù)人類健康極其重要。石墨烯具有高載流子遷移率,大的比表面積,低噪聲等特性[7],是制作固態(tài)氣敏傳感器的理想選擇。研究人員對(duì)石墨烯氣敏傳感器已開(kāi)展大量的研究,取得了很大進(jìn)展[8-11]。石墨烯氣敏傳感器可以探測(cè) NO2、N2O、NO、CO2、O2、NH3、H2S、甲苯、乙醇等[12]。Li等[13]前期利用還原氧化石墨烯探測(cè)甲醛氣體,10 mg·L-1下對(duì)甲醛氣體的響應(yīng)度約為1.8%,響應(yīng)時(shí)間約16 s。Mu等[14]利用化學(xué)氣相沉積生長(zhǎng)石墨烯并轉(zhuǎn)移至 Si/SiO2襯底,對(duì) 9 mg·L-1甲醛氣體響應(yīng)度2%,響應(yīng)時(shí)間130 s。

還原氧化石墨烯可控性較差,化學(xué)氣相沉積在金屬催化劑上生長(zhǎng)的石墨烯則需要轉(zhuǎn)移至其他絕緣襯底。在介質(zhì)襯底上,不使用金屬催化劑生長(zhǎng)石墨烯可以直接用于制備石墨烯器件,具有很大的研究?jī)r(jià)值。藍(lán)寶石是低成本制備石墨烯的理想候選襯底。一些課題組報(bào)告了在藍(lán)寶石上直接生長(zhǎng)石墨烯。Hwang等[15]在高溫下(1350~1600℃)生長(zhǎng)少層外延石墨烯。Miyasaka等[16]嘗試通過(guò)乙醇CVD在相對(duì)較低的溫度下(800~1000℃)生長(zhǎng)石墨烯。Fanton等[17]在高溫下(1425~1600℃)在藍(lán)寶石上生長(zhǎng)了石墨烯,其質(zhì)量與SiC上外延石墨烯可以比擬。

同時(shí),等離子體化學(xué)氣相沉積(PECVD)被用來(lái)合成大尺寸石墨烯[18]。該方法與常規(guī)合成技術(shù)比,可以在較低溫度下生長(zhǎng)。本工作在藍(lán)寶石襯底上生長(zhǎng)了納米晶石墨烯,并用于制備石墨烯氣敏傳感器。石墨烯氣敏傳感器對(duì)甲醛氣體表現(xiàn)出良好的響應(yīng)。

1 實(shí)驗(yàn)材料和方法

1.1 石墨烯材料制備

單面拋光的直徑50.8 mm的單晶a-Al2O3(0001)襯底使用乙醇和丙酮清洗后放入冷壁低壓 CVD系統(tǒng)中。生長(zhǎng)溫度為950℃,腔體壓力1 kPa。甲烷作為碳源,氫氣作為載氣。襯底溫度達(dá)到目標(biāo)溫度后,石墨烯生長(zhǎng)前,藍(lán)寶石襯底在H2中刻蝕7 min,氣流 1000 ml·min-1。然后 H2和甲烷流速分別為 300 ml·min-1和 6 ml·min-1,通入 CVD 腔體。沉積過(guò)程中射頻等離子體功率保持在100 W。沉積15 min后,H2和甲烷氣流和射頻電源關(guān)斷,襯底在Ar氣氣氛下冷卻至室溫。

1.2 石墨烯氣敏傳感器制備

石墨烯氣敏傳感器通過(guò)標(biāo)準(zhǔn)光刻制備。溝道外的石墨烯通過(guò)氧等離子體刻蝕去除。金屬Au作為歐姆接觸金屬,歐姆接觸通過(guò)光刻、電子束蒸發(fā)沉積、剝離后獲得。

圖1為納米晶石墨烯氣敏傳感器的光學(xué)顯微(OM)照片。納米晶石墨烯氣敏傳感器采用叉指電極結(jié)構(gòu)。圖1(a)為某一個(gè)石墨烯氣敏傳感器。圖1(b)和(c)為局域放大圖。

圖1 納米晶石墨烯氣敏傳感器光學(xué)OM照片F(xiàn)ig.1 OM images of nano-grain graphene gas sensor

1.3 分析測(cè)試儀器

原子力顯微鏡(AFM,Asylum infinity),拉曼光譜儀(Raman,Horiba Jobin Yvon Lab RAM HR800),氣敏特性測(cè)試系統(tǒng)(自制,其中器件的電阻采用Keithley 2700 數(shù)據(jù)采集系統(tǒng)測(cè)試)。

2 實(shí)驗(yàn)結(jié)果與討論

2.1 石墨烯材料制備與表征

圖2給出了PECVD在950℃生長(zhǎng)石墨烯的拉曼光譜。如圖2(a)所示,圖中標(biāo)出了石墨烯的D、G、D'和2D峰。G峰在1596 cm-1附近,2D峰在2696 cm-1附近。2D峰峰位表明石墨烯薄膜內(nèi)的應(yīng)力較小,說(shuō)明石墨烯和藍(lán)寶石襯底相互作用小[19]。2D峰半高寬(FWHM)為55 cm-1,且2D峰可以擬合為4個(gè)洛倫茲峰,2D峰與G峰面積比I2D/IG≈1.1,表明石墨烯為雙層結(jié)構(gòu)[20-23]。1335 cm-1附近為 D峰,來(lái)自碳原子空位或堆積,造成石墨烯材料的六方對(duì)稱性被破壞。由于D峰強(qiáng)度很大,在1626 cm-1處出現(xiàn)了D'峰[19]。PECVD制備石墨烯的缺陷峰D峰特別強(qiáng),強(qiáng)度比 ID/IG≈2.4。非常強(qiáng)的 D 峰表明PECVD法制備的石墨烯樣品中存在較多缺陷。

圖2(b)和(c)為20 μm×20 μm區(qū)域 2D峰 FWHM和峰位的面掃描結(jié)果。從圖中可以看到,所制備的石墨烯樣品2D峰FWHM和峰位在測(cè)試區(qū)域內(nèi)變化很小,表明石墨烯層數(shù)和應(yīng)力分布很均勻。

圖3為PECVD在藍(lán)寶石襯底上生長(zhǎng)石墨烯的2 μm×2 μm區(qū)域范圍的AFM圖。從圖中可以看到,樣品為晶粒結(jié)構(gòu),晶疇尺寸約300 nm,并且在晶界處可觀察到明顯的石墨烯褶皺。Raman和AFM分析表明PECVD在藍(lán)寶石襯底上生長(zhǎng)的為缺陷密度很高的納米晶石墨烯。

圖3 PECVD在藍(lán)寶石襯底上生長(zhǎng)石墨烯的AFM圖Fig.3 AFM image of graphene sample grown on sapphire by PECVD

2.2 石墨烯氣敏傳感器性能測(cè)試和分析

納米晶石墨烯薄膜的氣敏特性通過(guò)在室溫下暴露于甲醛氣氛下測(cè)試其電阻變化來(lái)表征。圖4(a)給出了納米晶石墨烯氣敏傳感器對(duì)室溫下不同濃度甲醛氣體的響應(yīng)。納米晶石墨烯氣敏傳感器對(duì) 20 mg·L-1甲醛氣體室溫響應(yīng)度為 3%。響應(yīng)時(shí)間 9.92 min,恢復(fù)時(shí)間17 min。較低的甲醛濃度下,響應(yīng)度變低。10和 5 mg·L-1甲醛氣氛下響應(yīng)度分別為1.6%和0.8%。傳感器對(duì)不同濃度甲醛氣體表現(xiàn)出良好的響應(yīng)和恢復(fù)特性。本文的PECVD藍(lán)寶石基納米晶石墨烯氣敏傳感器與文獻(xiàn)中報(bào)道的氧化還原石墨烯氣敏傳感器和化學(xué)氣相沉積石墨烯氣敏傳感器響應(yīng)度基本相當(dāng)[13-14]。作為對(duì)比,也制備了SiC基外延石墨烯氣敏傳感器,如圖4(b)所示。在SiC (0001)襯底上生長(zhǎng)了單層石墨烯,生長(zhǎng)細(xì)節(jié)參照之前的工作[24-25]。SiC上外延石墨烯在甲醛氣氛下方阻降低,這是因?yàn)橥庋邮閚型,甲醛對(duì)石墨烯為n型摻雜,因此使其電阻降低。外延石墨烯對(duì)甲醛氣體也有明顯的響應(yīng),但是其恢復(fù)特性很差。氣體關(guān)閉后,長(zhǎng)時(shí)間恢復(fù)后,樣品的電阻基本不變。

圖4 室溫下石墨烯氣敏傳感器對(duì)不同濃度甲醛氣體的響應(yīng)曲線Fig.4 Plots of response of graphene gas sensor vs HCHO concentration at room temperature

PECVD法在藍(lán)寶石上生長(zhǎng)的納米晶石墨烯對(duì)甲醛氣體表現(xiàn)出良好的響應(yīng),氣體關(guān)閉后具有良好的恢復(fù)特性。外延石墨烯氣敏傳感器對(duì)甲醛氣體有良好的響應(yīng),但是其恢復(fù)特性很差。這應(yīng)該是由于兩個(gè)樣品中缺陷種類和數(shù)量不同造成的。PECVD法在藍(lán)寶石上制備的納米晶石墨烯中含有大量晶界和褶皺。在這些缺陷區(qū)域,氣體吸附和脫附的能量勢(shì)壘低[26-29]。外延石墨烯的晶體質(zhì)量高,拉曼光譜ID/IG≈ 0.36,且沒(méi)有D'峰[25]。D峰主要來(lái)源于過(guò)渡層,H插入去除過(guò)渡層后缺陷D峰消失[30]。外延石墨烯氣敏傳感器,甲醛氣體主要吸附在石墨烯晶格上,而不是缺陷處。由于其大的能量勢(shì)壘,氣體分子難以從石墨烯薄膜中解吸附,因此,關(guān)閉氣體后,電阻難以恢復(fù)。

3 結(jié) 論

用PECVD方法在藍(lán)寶石襯底上制備了納米晶石墨烯,研究了其氣敏傳感性能。藍(lán)寶石上石墨烯氣敏傳感器對(duì)不同濃度的甲醛氣體表現(xiàn)出良好的響應(yīng)和恢復(fù)特性。PECVD在藍(lán)寶石上生長(zhǎng)石墨烯尺寸大,成本低,可能具有潛在的商業(yè)應(yīng)用價(jià)值。

[1] LIU X, CHENG S T, LIU H,et al.A survey on gas sensing technology[J]. Sensors, 2012, 12: 9635-9665.

[2] CAPONE S, FORLEO A, FRANCIOSO L,et al.Solid state gas sensors: state of the art and future activities[J]. J. Optoelectron. Adv.Mater., 2003, 5: 1335-1348.

[3] GUPTA K C, ULSAMER A G, PREUSS P W. Formaldehyde indoor air: sources and toxicity[J]. Environ. Int., 1983, 8: 349.

[4] WANG X F, DING B, SUN M,et al.Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors[J]. Sens. Actuators B,2010, 144: 11-17.

[5] HERSCHKOVITZ Y, ESHKENAZI I, CAMPBELL C E,et al.An electrochemical biosensor for formaldehyde[J]. J. Electroanal. Chem.,2000, 491: 182-187.

[6] ZHOU K W, JI X L, ZHANG N,et al.On-line monitoring of formaldehyde in air by cataluminescence-based gas sensor[J]. Sens.Actuators B, 2006, 119: 392-397.

[7] VARGHESE S S, VARGHESE S H, SWAMINATHAN S,et al.Two-dimensional materials for sensing: graphene and beyond[J].Electronics, 2015, 4: 651-687.

[8] LI X, ZHAO Y, WANG X,et al.Reduced graphene oxide (rGO)decorated TiO2microspheres for selective room-temperature gas sensors[J]. Sensors and Actuators B: Chemical, 2016, 230: 330-336.

[9] BASU S, BHATTACHARYYA P, Recent developments on graphene and graphene oxide based solid state gas sensors[J]. Sens. Actuators B: Chem., 2012, 173: 1-21.

[10] LEBEDEV A A, LEBEDEVA S P, NOVIKOVC S N,et al.Supersensitive graphene-based gas sensor[J]. Technical Physics, 2016,61(3): 453-457.

[11] CHEN G, PARONYAN T M, HARUTYUNYAN R. Sub-ppt gas detection with pristine graphene[J]. Appl. Phys. Lett., 2012, 101:652-655.

[12] YUAN W, SHI G. Graphene-based gas sensors[J]. Journal of Materials Chemistry A, 2013, l: 10078-10091.

[13] LI X, XIE D, DAI R,et al.Formadelyde-sensing properties of reduced graphene oxide by layer-by-Iayer self-assemble method[C]//2014 IEEE International Conference on Electron Devices &Solid-State Circuits. 2015: 1-2.

[14] MU H, ZHANG Z, ZHAO X,et al.High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films[J]. Appl. Phys. Lett., 2014, 105: 033107.

[15] HWANG J, KIM M, MPBELL D,et al. Van der waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst[J]. ACS Nano, 2013, 7: 385-395.

[16] MIYASAKA Y, NAKAMURA A, TEMMYO J. Graphite thin films consisting of nanograins of multilayer graphene on sapphire substrates directly grown by alcohol chemical vapor deposition[J].Jpn. J. Appl. Phys., 2011, 50: 04DH12.

[17] FANTON M A, ROBINSON J A, PULS C,et al.Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition[J]. ACS Nano, 2011, 5: 8062-8069.

[18] TERASAWA T O, SAIKI K. Growth of graphene on Cu by plasma enhanced chemical vapor deposition[J]. Carbon, 2012, 50: 869-874.

[19] FERRARI A C. Raman spectroscopy of graphene and graphite:disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Commun., 2007, 143: 47-57.

[20] NI Z H, WANG Y Y, YU T,et al.Raman spectroscopy and imaging of graphene[J]. Nano Res., 2008, 1: 273.

[21] FERRARI A C, MEYER J C, SCARDACI V,et al.Raman spectrum of graphene and graphene layers[J]. Phys. Rev. Lett., 2006, 97:187401.

[22] NI Z H, WANG H M, KASIM J,et al.Graphene Thickness determination using reflection and contrast spectroscopy[J]. Nano Lett., 2007, 7(9): 2758-2763.

[23] ROBINSON J A, WETHERINGTON M, TEDESCO J L,et al.Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale[J]. Nano Letters, 2009, 9(8): 2873-2876.

[24] YU C, LI J, LIU Q B,et al.Buffer layer induced band gap and surface low energy optical phonon scattering in epitaxial graphene on SiC(0001)[J]. Appl. Phys. Lett., 2013, 102: 013107.

[25] YU C, LI J, LIU Q B,et al. Quasi-equilibrium growth of monolayer epitaxial graphene on SiC (0001)[J]. Acta Phys. Sin., 2014, 63:038102.

[26] ZHANG H, FAN L, DONG H,et al.Spectroscopic investigation of plasma-fluorinated monolayer graphene and application for gas sensing[J]. ACS Appl. Mater. Interfaces., 2016, 8: 8652-8661.

[27] LEE G, YANG G, CHO A,et al.Defect-engineered graphene chemical sensors with ultrahigh sensitivity[J]. Phys. Chem. Chem.Phys., 2016, 18: 14198.

[28] VARGHESE S S, LONKAR S, SINGH K K,et al.Recent advances in graphene based gas sensors[J]. Sensors and Actuators B, 2015, 218:160-183.

[29] WANG T, HUANG D, YANG Z,et al.A review on graphene-based gas/vapor sensors with unique properties and potential applications[J].Nano-Micro Lett., 2016, 8(2): 95-119.

[30] YU C, LIU Q B, LI J,et al.Preparation and electrical transport properties of quasi free standing bilayer graphene on SiC (0001)substrate by H intercalation[J]. Appl. Phys. Lett., 2014, 105: 183105.

date:2017-03-30.

Prof. FENG Zhihong, ga917vv@163.com

supported by the National Natural Science Foundation of China (61674131, 61306006).

PECVD growth of graphene on sapphire substrate and its gas sensor

YU Cui1, HE Zezhao1, LIU Qingbin1, LI Xian2, XIE Dan2, CAI Shujun1, FENG Zhihong1
(1National Key Laboratory of ASIC,Semiconductor Research Institute,Shijiazhuang050051,Hebei,China;2Institute of Microelectronics,Tsinghua University,Beijing100084,China)

Gas sensors play a significant role in the fields of environmental monitoring, industrial production,safety, medical diagnosis, military and aerospace. Solid state gas sensors possess advantages of small size, low power, high sensitivity and low cost. They can detect very low concentrations of a wide range of gases in the range of parts-per-million (mg·L-1). Graphene is a promising material for solid state gas sensors with high sensitivity due to its high carrier mobility, maximum surface-to-volume ratio, and low noise level. In this work, nano-grain graphene is grown on sapphire substrate by plasma enhanced chemical vapor deposition at a relative low temperature at 950℃ and a short time of 15 min. The as-prepared graphene shows bilayer structure with large amount of defects, which brings advantages for graphene gas sensors. The nano-grain graphene gas sensor on sapphire shows good response and recovery characteristics for formaldehyde gas, and exhibits good sensitivity of 3% response toward a concentration of formaldehyde gas of 20 mg·L-1at room temperature with a response time of 9.92 min. The recovery time of the nano-grain graphene sensor for formaldehyde gas of 20 mg·L-1is 17 min.Low energy barrier of the gas adsorption and desorption induced by large numbers of grain boundaries and wrinkles in the nano-grain graphene is the main reason for its good gas sense characteristics.

graphene; adsorption; membranes; measurement; formaldehyde; aeration

TQ 127. 1+1

A

0438—1157(2017)11—4423—05

10.11949/j.issn.0438-1157.20170331

2017-03-30收到初稿,2017-07-05收到修改稿。

聯(lián)系人:馮志紅。

蔚翠(1983—),女,博士,高級(jí)工程師。

國(guó)家自然科學(xué)基金項(xiàng)目(61674131,61306006)。

猜你喜歡
氣敏襯底藍(lán)寶石
基于氣敏傳感器陣列特征優(yōu)化的儲(chǔ)糧害蟲(chóng)赤擬谷盜檢測(cè)
藍(lán)寶石單晶爐隔熱屏內(nèi)膽損壞機(jī)理
水熱法合成WO3納米片及其甲苯氣敏性能研究
翡翠襯底顏色對(duì)翡翠質(zhì)量判斷的影響
氣敏傳感器的研究進(jìn)展
失蹤的“藍(lán)寶石”
大尺寸低阻ZnO單晶襯底
福爾摩斯·藍(lán)寶石(下)
大尺寸低阻ZnO 單晶襯底
大尺寸低阻ZnO 單晶襯底
保康县| 南丰县| 三亚市| 固原市| 中牟县| 瓦房店市| 克拉玛依市| 卓资县| 方城县| 凤山市| 浦城县| 海原县| 贵德县| 松桃| 黄浦区| 闵行区| 集安市| 永济市| 灵台县| 彭阳县| 合山市| 弋阳县| 香河县| 互助| 云梦县| 富裕县| 襄汾县| 桃江县| 车险| 南昌县| 云林县| 即墨市| 南投县| 苏州市| 遵义市| 安平县| 鸡泽县| 呼和浩特市| 赣榆县| 扎赉特旗| 长治县|