李光宇 吳次芳
(浙江大學(xué)公共管理學(xué)院,杭州 310058)
農(nóng)田可持續(xù)發(fā)展與農(nóng)田生態(tài)服務(wù)功能息息相關(guān)。農(nóng)田質(zhì)量建設(shè)應(yīng)建立在平衡各生態(tài)功能的基礎(chǔ)上,提高其生產(chǎn)服務(wù)能力,方可保證農(nóng)田發(fā)展的可持續(xù)[1]。根據(jù)近年來對生態(tài)服務(wù)功能研究發(fā)現(xiàn),生態(tài)系統(tǒng)的多功能性是維持可持續(xù)發(fā)展的關(guān)鍵因素,而土壤生物群落多樣性的破壞將造成多功能性的喪失,進(jìn)一步導(dǎo)致生態(tài)系統(tǒng)不可持續(xù)[2]。根據(jù)國土資源部2016年發(fā)布的《高標(biāo)準(zhǔn)農(nóng)田建設(shè)評價規(guī)范》(GB/T33130-2016)所述,高標(biāo)準(zhǔn)農(nóng)田建設(shè)旨在建設(shè)高產(chǎn)穩(wěn)產(chǎn)、生態(tài)良好及抗災(zāi)能力強(qiáng)的高標(biāo)準(zhǔn)基本農(nóng)田[3]。然而,其中的生態(tài)狀況及抗病能力均難以用現(xiàn)有的農(nóng)田質(zhì)量指標(biāo)系統(tǒng)進(jìn)行直接衡量,但根據(jù)對農(nóng)田土壤微生物研究發(fā)現(xiàn),微生物與農(nóng)田生態(tài)及抗病功能密切相關(guān),故有學(xué)者認(rèn)為可用微生物指標(biāo)對農(nóng)田土壤功能進(jìn)行測定[4-5]。因此,土壤生物群落多樣性以及功能特征可考慮納入農(nóng)田可持續(xù)評價的范圍內(nèi),并且已有學(xué)者嘗試地將微生物量作為指標(biāo)加入農(nóng)用地質(zhì)量評價系統(tǒng)[6-7]。從近年來的土壤學(xué)研究可知,對于土壤微生物研究已經(jīng)日趨成熟。尤其是分子生物學(xué)方面,DNA二代測序技術(shù)具有信息量豐富、成本低的特性,并在農(nóng)業(yè)管理及森林土壤方面有了較為廣泛的應(yīng)用[8]。雖然諸多文獻(xiàn)指出,微生物指標(biāo)更易于解釋農(nóng)田質(zhì)量變化,但如何將微生物指標(biāo)應(yīng)用于農(nóng)田質(zhì)量評價,相關(guān)研究依然較少。然而,直接將土壤微生物指標(biāo)放入原有的農(nóng)田質(zhì)量評價系統(tǒng)是低效的,大規(guī)模的對每一塊耕地都進(jìn)行評價顯然會造成評價成本失控、難以推廣等問題。因此,本文旨在針對當(dāng)前評價體系尚未成熟階段,探索如何將土壤微生物指標(biāo)有效應(yīng)用于農(nóng)田質(zhì)量評價中。
該領(lǐng)域研究內(nèi)容最為豐富,對土壤微生物指標(biāo)的選取具有較大的參考價值。土壤微生物生物量碳(Microbial biomass carbon, MBC)可預(yù)測土壤有機(jī)碳總量的變化,MBC與有機(jī)碳含量測定相結(jié)合,可成為評價土壤碳源狀況的有效指標(biāo)微生物熵(microbial entropy, Cmic∶Corg)[9-10]。有學(xué)者利用氯仿熏蒸浸提法對MBC進(jìn)行測定,對比牧草地與種植大麥的耕地在耕作或免耕中的MBC變化,種植大麥的耕地MBC最低,牧草地MBC最高,并且結(jié)果顯示MBC對管理變化的響應(yīng)較有機(jī)質(zhì)更為敏感,并驗證了微生物熵可作為評價有機(jī)質(zhì)變化的有效指標(biāo)[11]。在針對玉米地、草地、林地以及自然草地的研究中,研究人員指出呼吸熵可反映出農(nóng)田出現(xiàn)的碳供給狀況,呼吸熵的升高說明碳供給存在不足,免耕在提高微生物量的同時也增加了其對碳源的需求,但對比傳統(tǒng)耕作,免耕有效提升了微生物豐度[12]。在之后總結(jié)前人研究發(fā)現(xiàn),土壤代謝熵(metabolism entroph, qCO2)可以呈現(xiàn)出微生物對碳的利用狀況,且與微生物熵呈現(xiàn)出反比關(guān)系,二者可相輔相成可以準(zhǔn)確反映出土壤環(huán)境的變化[13]。當(dāng)然有學(xué)者曾經(jīng)提出,多數(shù)研究很難直接界定農(nóng)業(yè)管理與微生物量間產(chǎn)生的關(guān)系如何,但也同時提到,主要問題在于技術(shù),未來研究可能會更進(jìn)一步闡明土壤微生物變化機(jī)理[14]。隨著16SrRNA技術(shù)的逐漸成熟,結(jié)合基因庫及PLFA進(jìn)行研究,可以更為清晰地分析農(nóng)田生態(tài)系統(tǒng)中肥料管理及植被變化對土壤微生物產(chǎn)生的影響[15]。研究人員利用Meta分析土壤與人造氮肥關(guān)系時,發(fā)現(xiàn)氮肥不利于微生物的生長,但也可在一定程度上抑制土壤CO2的排放[16]。針對不同農(nóng)業(yè)管理方式下英國蔬菜農(nóng)田進(jìn)行研究發(fā)現(xiàn),富碳大團(tuán)聚體可直接為微生物生長提供養(yǎng)分,故土壤微生物對管理的響應(yīng)要強(qiáng)于土壤動物[17]。相關(guān)學(xué)者研究結(jié)果證明土壤微生物較土壤物理化學(xué)指標(biāo)更敏感,更適用于耕地質(zhì)量的評價[18]。在對農(nóng)田有機(jī)改良措施研究發(fā)現(xiàn),土壤微生物會隨著有機(jī)改良劑的加入而恢復(fù),微生物的恢復(fù)會對氮循環(huán)、土壤質(zhì)量及作物產(chǎn)量產(chǎn)生正向影響,牛糞效果遠(yuǎn)勝于豬糞和禽糞[19]。在地表植被方面,有研究認(rèn)為輪作是否可以有效改善耕地質(zhì)量,需要考慮植被類型,從微生物量上看,存在經(jīng)濟(jì)作物對微生物影響較小的情況,這說明部分經(jīng)濟(jì)作物的連作依然可以保證收益與生態(tài)的平衡[20]。
土壤微生物指標(biāo)是否可用于指示農(nóng)田產(chǎn)能,在2000年前的研究較少。隨著微生物研究技術(shù)的逐漸成熟,該類研究逐漸成為當(dāng)前熱點。近期多個研究提出土壤微生物多樣性及群落組成影響著土壤生態(tài)多功能性,其中包括地上植被的生產(chǎn)能力[21-22]。此前有學(xué)者針對農(nóng)作物產(chǎn)量與土壤中的MBC、有機(jī)碳、微生物熵以及代謝熵的關(guān)系進(jìn)行研究,指出MBC與產(chǎn)量正相關(guān),主要是源于外部碳輸入的增加,更重要的是微生物熵與產(chǎn)量也呈現(xiàn)出正相關(guān)關(guān)系;研究還指出代謝熵與產(chǎn)量關(guān)系并不明朗,但土壤基礎(chǔ)呼吸過高可能造成碳的流失,需要注意控制土壤碳平衡[23]。也有學(xué)者針對我國冬小麥和水稻農(nóng)田系統(tǒng)進(jìn)行研究,產(chǎn)量越好的情況下,作物植被根系釋放更多滲濾液,有利于微生物量的增加[24]。在指示土壤肥力方面,有研究發(fā)現(xiàn)部分脂肪酸甲脂(FAMEs)以及基因末端限制性片段(T-RFs)可以作為指示土壤肥力的“關(guān)鍵性生態(tài)參數(shù)”[25]。近年來,有學(xué)者提出利用微生物指標(biāo)來解釋玉米與大豆的相對累積產(chǎn)率,以有機(jī)碳及可提取態(tài)磷含量為媒介,搭建了土壤微生物量、基礎(chǔ)呼吸及酶活性與產(chǎn)率間的關(guān)系,并確定了微生物指標(biāo)等級對應(yīng)的相對產(chǎn)率等級[26]。伴隨著叢枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)研究的日趨成熟,越來越多文獻(xiàn)顯示該真菌與作物產(chǎn)量存在密切相關(guān)關(guān)系[27]。越來越多學(xué)者也開始利用AMF作為指標(biāo),指示土壤健康、植被生產(chǎn)能力及其他生態(tài)服務(wù)功能,甚至可根據(jù)其對土壤營養(yǎng)物質(zhì)轉(zhuǎn)化能力、作物的抗病能力以及促生長功能,研究設(shè)計更為優(yōu)化的農(nóng)田管理方式[28,29]。自然生態(tài)系統(tǒng)中,土壤微生物多樣性與植被生產(chǎn)能力往往關(guān)系密切,在針對澳洲大陸多個生態(tài)系統(tǒng)表層土研究發(fā)現(xiàn),在表土層中生物多樣性與土壤肥力、植被生產(chǎn)力有著顯著正相關(guān)關(guān)系[30]。因此,土壤微生物多樣性也可作為監(jiān)控農(nóng)田產(chǎn)能動態(tài)變化的重要指標(biāo)。
該類研究一直是環(huán)境學(xué)的研究重點,以重金屬污染為例,在農(nóng)田中施加淤泥常作為提高土壤保水能力的重要措施,但是社會工業(yè)化使得淤泥中包含多種重金屬污染物質(zhì),相關(guān)研究對比施用淤泥和肥料的耕地,長期施用淤泥將導(dǎo)致土壤微生物量降低,但研究同時發(fā)現(xiàn)微生物受到Zn與Cr這兩種重金屬的影響并不能確定[31]。一直以來,諸多學(xué)者均在試圖將土壤微生物作為觀測農(nóng)田污染的指標(biāo),因受制于研究方法、自然波動變化以及土壤異質(zhì)性的影響,很難準(zhǔn)確采用微生物指標(biāo)對污染狀況進(jìn)行評定,但也有學(xué)者同時指出隨著分子生物學(xué)在土壤領(lǐng)域發(fā)展成熟,這種評價方式具有較大研究潛力[32]。之后越來越多研究顯示,在農(nóng)田重金屬污染方面,微生物指標(biāo)往往較土壤理化指標(biāo)更具代表性[33]。研究人員通過研究不同微生物指標(biāo)及生化指標(biāo)發(fā)現(xiàn),土壤中固氮細(xì)菌、代謝熵及反硝化作用受到金屬Pb影響最為顯著,其中固氮細(xì)菌最為敏感[34]。此外,依據(jù)電鍍行業(yè)Zn對土壤微生物產(chǎn)生的毒性影響分析,pH變化對重金屬狀態(tài)影響較為明顯,酸性條件下,Zn的毒性較強(qiáng),但中性或堿性土壤,Zn的毒性被抵消,導(dǎo)致關(guān)于Zn對微生物功能影響存在爭議[35]。相關(guān)研究發(fā)現(xiàn),鋅銅冶金廠周圍的土壤微生物基礎(chǔ)功能受損顯著,然而高濃度的重金屬污染將產(chǎn)生存在重金屬抗性的菌種,但也將造成不適培養(yǎng)的菌種數(shù)量銳減,從而導(dǎo)致微生物碳氮比(Cmic∶Nmic)升高,因此在已知存在重金屬污染的部分情況下,可利用微生物生物量碳氮比作為評價是否存在重金屬污染的重要指標(biāo)據(jù)[36]。雖然土壤微生物量對重金屬污染反應(yīng)敏感度不足,特征菌種卻受到重金屬影響十分顯著,具有代表性的是根瘤菌(Rhizobium),且具有巨大潛力成為重金屬污染的指示物之一,未來土壤微生物也將成為生態(tài)決策的重要依據(jù)[37]。越來越多研究指出,微生物可以監(jiān)控植物修復(fù)重金屬的效果,微生物指標(biāo)表現(xiàn)得更為敏感且高效[38]。
根據(jù)現(xiàn)行的農(nóng)田質(zhì)量評價標(biāo)準(zhǔn)GB/T 33130-2016及農(nóng)業(yè)部的《耕地質(zhì)量等級》GB/T 33469-2016可知,農(nóng)田質(zhì)量評價體系已經(jīng)日漸地完善,涉及范圍越來越廣,并明確了評價的對象與內(nèi)容,提出從“數(shù)、質(zhì)、效、管、影響”五個方面對耕地進(jìn)行評價[3,39]。但在耕地質(zhì)量評價方面,多依據(jù)土壤基礎(chǔ)理化性質(zhì)進(jìn)行評價,未能從土壤微生態(tài)角度進(jìn)行探討,存在深入研究的空間。其他對于農(nóng)田質(zhì)量的評價中,最常用的是以主成分分析及層次分析為基礎(chǔ)發(fā)展而來的最小數(shù)據(jù)集法。以上幾類評價方法均是基于規(guī)模性數(shù)據(jù)調(diào)查,并不是針對特定項目進(jìn)行分析,這就造成測定成本較高、指標(biāo)選取較粗略等問題。
在耕地的物理結(jié)構(gòu)組成上,土壤和植被是最為主要的兩大方面,毋庸置疑植被主要是指農(nóng)作物。農(nóng)作物的產(chǎn)量及質(zhì)量可反映出植被的健康情況,而決定其產(chǎn)量和質(zhì)量的,除地表影響因子外,土壤健康同樣是決定性因素。國家統(tǒng)計局?jǐn)?shù)據(jù)顯示,農(nóng)作物產(chǎn)量的提升過度依賴化肥農(nóng)藥,忽視了在保證產(chǎn)能穩(wěn)定的情況下,同樣要兼顧耕地生態(tài)效益。因此,在現(xiàn)有指標(biāo)的基礎(chǔ)上,可以加入微生物指標(biāo),以補(bǔ)充評價體系的不足,構(gòu)建新的農(nóng)田質(zhì)量評價體系。在指標(biāo)選取方面,筆者認(rèn)為具體微生物指標(biāo)需要按照評價區(qū)域?qū)嶋H情況進(jìn)行選取,在尚無可參考背景數(shù)據(jù)的情況下,已有國際及行業(yè)衡量標(biāo)準(zhǔn)的指標(biāo)可以優(yōu)先考慮,比如微生物生物量碳氮、土壤呼吸及微生物多樣性等,如表1所示。但在微生物群落分析方面,因不同環(huán)境背景導(dǎo)致的差異性較顯著,需設(shè)定靶標(biāo)微生物類群進(jìn)行針對性的分析評價。按照當(dāng)前微生物學(xué)研究,有學(xué)者認(rèn)為能夠衡量土壤功能的指標(biāo)有微生物生物量、多樣性、土壤呼吸以及部分酶活性[21,40]。其中土壤呼吸的測定已有現(xiàn)成標(biāo)準(zhǔn),我國利用底物誘導(dǎo)土壤微生物呼吸,密閉氣室分析土壤呼吸已經(jīng)發(fā)展較為成熟,并建立了相應(yīng)的國家標(biāo)準(zhǔn),并可通過該法獲得土壤微生物量,及計算出土壤呼吸熵狀況[41]。在國際上,熏蒸浸提測定微生物量及磷脂脂肪酸譜圖法測定微生物多樣性已經(jīng)比較成熟,可根據(jù)已有國際標(biāo)準(zhǔn)進(jìn)行衡量分析[42,43]。在土壤酶活性方面,可采取國際行業(yè)標(biāo)準(zhǔn),利用微孔板對土壤酶活性進(jìn)行測定[44]。在衡量土壤障礙因子方面,可采用微生物群落豐度進(jìn)行衡量,近年提出的國際標(biāo)準(zhǔn)ISO 17601:2016可作為確定群落結(jié)構(gòu)的標(biāo)準(zhǔn)方法也可用于確定微生物多樣性[45]。
表1 農(nóng)田土壤質(zhì)量評價Table 1 Farmland soil quality evaluation
在農(nóng)田土壤基礎(chǔ)質(zhì)量測定方面,有機(jī)質(zhì)往往是根據(jù)有機(jī)碳含量進(jìn)行衡量的,有機(jī)碳與土壤微生物量存在正相關(guān)關(guān)系,不應(yīng)忽略的是土壤氮含量是農(nóng)作物及土壤微生物的直接氮源,故也應(yīng)依據(jù)與微生物相關(guān)情況對土壤氮指標(biāo)進(jìn)行完善,比如硝態(tài)氮、銨態(tài)氮與土壤固氮能力關(guān)系緊密,而且在國際上常作為確定土壤氮源的重要指標(biāo),近年來國內(nèi)也開始出臺了一系列相應(yīng)國家標(biāo)準(zhǔn)及行業(yè)標(biāo)準(zhǔn)[59,60,73],并在測定水平上已經(jīng)逐漸成熟。根據(jù)相關(guān)文獻(xiàn)對我國部分地區(qū)的土壤研究,土壤中存在各類形態(tài)氮,其中可礦化氮與微生物關(guān)系最為密切,因此,氮礦化能力可作為衡量土壤氮轉(zhuǎn)化能力的重要指標(biāo)[74]。氮礦化能力可用凈氮礦化率來衡量,該指標(biāo)可在生物培養(yǎng)的基礎(chǔ)上用國標(biāo)的方法測定銨態(tài)氮和硝態(tài)氮獲得,也可參照國際標(biāo)準(zhǔn)ISO 14238∶2012,但考慮到該指標(biāo)與土壤其他形式氮存在重復(fù)性,故可作為備選指標(biāo)[75]。此外,有效磷、速效鉀等應(yīng)當(dāng)加入土壤養(yǎng)分測定范圍內(nèi),然而當(dāng)前指定的國家標(biāo)準(zhǔn)中GB/T 30600-2014并未明確說明土壤養(yǎng)分的具體內(nèi)容[76]。
圖1 農(nóng)田改良項目的質(zhì)量評價流程Fig. 1 Flowchart for quality evaluation of farmland improvement project
根據(jù)對當(dāng)前農(nóng)田質(zhì)量評價方法匯總可知,評價指標(biāo)的選取方法主要為最小數(shù)據(jù)集法(Minimum Data Set, MDS)及總數(shù)據(jù)集法(Total Data Set, TDS)。總數(shù)據(jù)集顧名思義為不進(jìn)行指標(biāo)篩選,利用所有指標(biāo)進(jìn)行評價的方法。在確定適用的評價指標(biāo)之后,需選取合理的評價方法進(jìn)行評價,農(nóng)田質(zhì)量評價常用的方法為土壤質(zhì)量指數(shù)法(Soil Quality Index, SQI),其理念應(yīng)用于當(dāng)前各類評價體系中,例如綜合指數(shù)評價、耕地質(zhì)量等級評價標(biāo)準(zhǔn)等[77-79]。其他環(huán)境學(xué)常見的評價方法,如內(nèi)梅羅指數(shù)(Nemoro Quality Index,NQI)、支持向量機(jī)(Support Vector Machine,SVM)以及判別分析的方法也可用于土壤質(zhì)量評價中(如表2)。在伊朗地區(qū)針對兩種指標(biāo)選取方法進(jìn)行比對發(fā)現(xiàn),當(dāng)MDS與SQI結(jié)合時,可以得到與TSD類似的結(jié)果,故最小數(shù)據(jù)集法是減少工作量的有效方法,但值得注意的是,MDS與NQI結(jié)合與TDS的結(jié)果是不一致的[80]。隨著數(shù)據(jù)挖掘技術(shù)的不斷普及,機(jī)器學(xué)習(xí)中常見的分類方法,也開始在各類質(zhì)量評價體系中得到應(yīng)用,最具代表性的方法為SVM。SVM是利用已有的分等數(shù)據(jù)作為訓(xùn)練數(shù)據(jù),將測定的數(shù)據(jù)進(jìn)行分類,最終確定農(nóng)田質(zhì)量,該方法建立在大量采樣數(shù)據(jù)的基礎(chǔ)上[81]。此外,判別分析也可作為分類方法,以呈現(xiàn)出不同管理方式對農(nóng)田土壤質(zhì)量的影響差異,可用于分析管理效益[82]。對于以上多種評價方法綜合可知,評價方法一般有幾個特點:1)基于穩(wěn)定農(nóng)田狀態(tài)進(jìn)行評價;2)因研究對象狀態(tài)穩(wěn)定,故較少考慮自然因素動態(tài)影響狀況,無需設(shè)立對照組;3)需要一定數(shù)據(jù)基礎(chǔ),或者旨在定位區(qū)域性土壤特征,如大量的布點及土樣采集工作;4)理化性質(zhì)分析為主導(dǎo),少有文獻(xiàn)將酶活性或微生物指標(biāo)加入評價體系中;5)數(shù)據(jù)分析較復(fù)雜,更適用于研究分析,很難用以衡量實際農(nóng)田整治項目產(chǎn)生的效益。
表2 常用的土壤質(zhì)量的評價方法Table 2 The common method of soil quality assessment
然而,在缺乏土壤微生物數(shù)據(jù)庫的前提下,直接利用現(xiàn)有的評價方法,確立微生物評價方案是不易實現(xiàn)。由于以往的土壤調(diào)查數(shù)據(jù),不能從微生物學(xué)角度對耕地質(zhì)量進(jìn)行范圍界定,故評價指標(biāo)難以結(jié)合實際。考慮到生態(tài)學(xué)對照實驗設(shè)計方法,可以以實地數(shù)據(jù)為主,利用統(tǒng)計學(xué)方法進(jìn)行分析,并與項目的初始目的進(jìn)行對照分析,獲得真實可靠的工程效益信息,將評價分析框架在圖1中構(gòu)建。在分析流程中,可增加對照區(qū)域,該區(qū)域的選取應(yīng)以自然條件穩(wěn)定、管理措施不變?yōu)榛緶?zhǔn)則,盡可能選取毗鄰項目區(qū)卻受影響較小的農(nóng)田,如圖2A所示。對照農(nóng)田可考慮選擇多塊區(qū)域,土壤背景性質(zhì)盡可能相似。當(dāng)項目區(qū)面積較大時,可根據(jù)項目區(qū)的地理區(qū)位選擇對照區(qū),以去除自然條件差異造成的影響,如圖2B所示。施工之前,在同一項目區(qū)劃定三至四個采樣區(qū),每個采樣區(qū)混合采樣,并測定土壤數(shù)據(jù),并保存數(shù)據(jù)。
圖2 農(nóng)田項目采樣區(qū)示意圖Fig. 2 Samplingsites in the treatment plots of the field experiment
項目完成后,在農(nóng)田處于穩(wěn)定狀態(tài)后進(jìn)行原區(qū)域采樣(按照肥料有效周期,一般為3~6個月后),獲得數(shù)據(jù)后,計算指標(biāo)的變化指數(shù),第i塊樣區(qū)的第j個指標(biāo)變化指數(shù)公式如下:
第j塊對照區(qū)第j個指標(biāo)變化指數(shù)為:
αij1和cij1分別為農(nóng)田整治項目施工前,采樣區(qū)和對照區(qū)的指標(biāo)測定值;αij2和cij2為施工后的測定值。設(shè)定顯著性水平為0.05,進(jìn)行獨(dú)立樣本t檢驗,公式如下:
其中,和分別代表針對第i個變量Δαj的平均值和Δcj的平均值,nα和nc分別為采樣區(qū)和對照區(qū)的數(shù)量,與分別為項目采樣區(qū)指標(biāo)變化指數(shù)的方差和對照區(qū)變化指數(shù)的方差。項目區(qū)范圍較大造成自然條件差異時,在不同位置確定對照區(qū)和采樣區(qū),如圖2B,再分別采樣按照上述算法分析,以保證項目區(qū)域內(nèi)農(nóng)田質(zhì)量得到提升。當(dāng)項目區(qū)土壤不均質(zhì),或者多種項目類型時,如圖3,可先劃分不同類型采樣區(qū),再確定內(nèi)部的采樣區(qū),再進(jìn)行采樣及數(shù)據(jù)分析,但與上面統(tǒng)計檢驗不同的是,需用多重比較分析整治措施與對照組數(shù)據(jù)間的顯著性(方差齊性選擇Dunnett’s雙尾檢驗控制對照組分析,方差不齊可選用Dunnett’s T3檢驗)。
圖3 多類型采樣示意圖Fig. 3 Multi-types sampling area
上述是以增長指數(shù)為依據(jù)的算法,在選取采樣區(qū)或?qū)φ諈^(qū)存在偏差的情況下,部分指標(biāo)的變化指數(shù)可能會受到第一次采樣數(shù)據(jù)αij1和cij1的影響。因此,對于變化指數(shù)未通過檢測的指標(biāo),可進(jìn)行第二次統(tǒng)計檢驗,用變化差值直接衡量變化,不再除以第一次采樣數(shù)據(jù),最終以兩次變化顯著的指標(biāo)為準(zhǔn)。評價初級結(jié)果為定性結(jié)果,可繪制項目效益表格。根據(jù)表格中產(chǎn)生的效益,和指標(biāo)要求進(jìn)行對比,如不能符合要求需采取補(bǔ)救工程措施,完成后進(jìn)行重復(fù)上述測定。該分析方法易于操作,并采用了較為寬松的結(jié)果討論方式。
該方法更適用于定量指標(biāo)的測定,需要結(jié)合土壤理化性質(zhì)分析結(jié)論。對于測序獲得的群落相對豐度數(shù)據(jù),不建議采用該法,可考慮采取主坐標(biāo)軸分析與群落分類分析相結(jié)合的方式對微生物群落進(jìn)行分析[83-84]。值得注意的是,微生物指標(biāo)并不是萬能藥,在近年來的研究中,部分文獻(xiàn)指出,微生物多樣性與糧食產(chǎn)量不能呈現(xiàn)出絕對正相關(guān)的關(guān)系,其關(guān)系受到作物類型、微生物群落等因素影響更為明顯[85-86]。此外,在部分微生物指標(biāo)的測定技術(shù)上仍有不足,測定方法存在一定爭議,作為評價指標(biāo)需結(jié)合土壤理化性質(zhì),慎重使用[87]。
綜上可知,對于農(nóng)田土壤的質(zhì)量評價,有必要從微生物角度進(jìn)行分析,且微生物參與的農(nóng)田質(zhì)量評價具有以下特點:
1)評價指標(biāo)代表性更強(qiáng),并可通過研究其相關(guān)關(guān)系得到更多信息。有學(xué)者提到土壤管理確實會對土壤有機(jī)質(zhì)產(chǎn)生顯著影響,但土地利用影響在有機(jī)質(zhì)上的反饋并不顯著,并指出利用溶解性有機(jī)碳、氮及磷作為指標(biāo)更為敏感[88]。傳統(tǒng)評價體系中缺少對氮磷指標(biāo)的重視,尤其是對土壤氮源的重視是遠(yuǎn)遠(yuǎn)不夠的。土壤氮含量測定的加入可豐富土壤指標(biāo),例如,土壤有機(jī)碳和全氮比例可反映出土壤氮源是否利于土壤微生物生長[89],過高說明土壤氮源不足,過低則說明含氮量過高產(chǎn)生氮流失造成農(nóng)田污染風(fēng)險加大,并可能造成土壤微生物量的降低[90]。微生物生物量碳及微生物生物量氮的測定,不僅僅能夠反映出土壤微生物量的多少,還可以根據(jù)二者的比例獲知土壤真菌占比情況[91]。
2)更傾向于針對具體農(nóng)田整治項目的研究,在尚未進(jìn)行規(guī)模采樣的基礎(chǔ)上,可以更準(zhǔn)確反映出農(nóng)田中存在的問題。在當(dāng)前土壤微生物數(shù)據(jù)未形成數(shù)據(jù)庫的情況下,對照評價分析可規(guī)避缺少多年數(shù)據(jù)積累的問題。該采樣評價方式源于對生態(tài)學(xué)實驗設(shè)計的改進(jìn),隨機(jī)布點采樣可提現(xiàn)其科學(xué)合理性[92]。統(tǒng)計學(xué)檢驗的方式相對更加保守,可保證農(nóng)田質(zhì)量變化的真實性。
3)土壤的微生物群落結(jié)構(gòu)與土壤理化性質(zhì)結(jié)合,可定位對農(nóng)田影響最為顯著的環(huán)境因素。根據(jù)當(dāng)?shù)刈匀环A賦特征,可改善管理措施,提高土壤質(zhì)量,以達(dá)到提高農(nóng)田質(zhì)量的要求。土壤微生物與作物及根際微生物可產(chǎn)生復(fù)雜的交互作用,分析闡明其中機(jī)理,可以尋求農(nóng)田管理的最優(yōu)模式,當(dāng)然,土壤微生物的復(fù)雜程度也是當(dāng)前研究的巨大挑戰(zhàn)[93]。有學(xué)者指出,充分利用微生物與作物的相互作用對抗不利環(huán)境,是未來的發(fā)展方向[94-95]。
農(nóng)田質(zhì)量評價從廣度上看已經(jīng)逐漸完善,但從可持續(xù)發(fā)展角度看仍有可深入的空間。文章以土壤微生物學(xué)為視角,通過對現(xiàn)有土壤微生物學(xué)研究的匯總,提出了新的農(nóng)田質(zhì)量評價體系及分析流程,總結(jié)了土壤微生物評價所具備的優(yōu)勢及特點。農(nóng)田的可持續(xù)發(fā)展與土壤微生物息息相關(guān),本文為推進(jìn)土壤微生物在農(nóng)田質(zhì)量評價中的應(yīng)用研究提供了理論依據(jù),未來研究可偏重于評價體系量化方向,更為精確地評價農(nóng)田質(zhì)量水平。
[ 1 ] Bommarco R,Kleijn D,Potts S G. Ecological intensification:Harnessing ecosystem services for food security. Trends in Ecology & Evolution,2013,28(4):230—238
[ 2 ] Bender S F,Wagg C,van der Heijden M G A.An underground revolution:Biodiversity and soil ecological engineering for agricultural sustainability.Trends in Ecology & Evolution,2016,31(6):440—452
[ 3 ] 全國國土資源標(biāo)準(zhǔn)化技術(shù)委員會. 高標(biāo)準(zhǔn)農(nóng)田建設(shè)評價規(guī)范:GB/T 33130-2016. 北京:中國標(biāo)準(zhǔn)出版社,2016:10 National Technical Committee for Standardization of Land and Resources. Assessment standard of well facilitated farmland construction:GB/T 33130-2016(In Chinese). Beijing:Standards Press of China,2016:10
[ 4 ] Plassart P,Terrat S,Thomson B,et al. Evaluation of the ISO standard 11063 DNA extraction procedure for assessing soil microbial abundance and community structure. PLoS ONE,2012,DOI:10. 1371/journal.pone. 0044279
[ 5 ] Singh J S,Pandey V C,Singh D P. Efficient soil microorganisms:A new dimension for sustainable agriculture and environmental development.Agriculture,Ecosystems & Environment,2011,140(3/4):339—353
[ 6 ] Gelaw A M,Singh B R,Lal R. Soil quality indices for evaluating smallholder agricultural land uses in northern ethiopia. Sustainability,2015,7(3):1—16
[ 7 ] van Bruggen A H C,Semenov A M. In search of biological indicators for soil health and disease suppression. Applied Soil Ecology,2000,15(1):13—24
[ 8 ] 樓駿,柳勇,李延. 高通量測序技術(shù)在土壤微生物多樣性研究中的研究進(jìn)展. 中國農(nóng)學(xué)通報,2014,30(15):256—260 Lou J,Liu Y,Li Y. Review of high-throughput sequencing techniques in studies of soil microbial diversity (In Chinese). Chinese Agricultural Science Bulletin,2014,30(15):256—260
[ 9 ] Carter M R. Microbial biomass as an index for tillageinduced changes in soil biological properties. Soil and Tillage Research,1986,7(1):29—40
[10] Sparling G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil Research,1992,30(2):195—207
[11] Haynes R J. Size and activity of the soil microbial biomass under grass and arable management. Biology and Fertility of Soils,1999,30(3):210—216
[12] Nsabimana D,Haynes R J,Wallis F M. Size,activity and catabolic diversity of the soil microbial biomass as affected by land use. Applied Soil Ecology,2004,26(2):81—92
[13] Anderson T-H,Domsch K H. Soil microbial biomass:The eco-physiological approach. Soil Biology &Biochemistry,2010,42(12):2039—2043
[14] Murphy D V,Stockdale E A,Brookes P C,et al.Impact of microorganisms on chemical transformations in soil//Murphy D V,Stockdale E A,Brookes P C,et al. Soil biological fertility:A key to sustainable land use in agriculture. Dordrecht,Netherlands:Springer,2007:37—59
[15] Tarlera S,Jangid K,Ivester A H,et al. Microbial community succession and bacterial diversity in soils during 77 000 years of ecosystem development. FEMS Microbiology Ecology,2008,64(1):129—140
[16] Treseder K K. Nitrogen additions and microbial biomass:A meta-analysis of ecosystem studies.Ecology Letters,2008,11(10):1111—1120
[17] Briar S S,F(xiàn)onte S J,Park I,et al. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems.Soil Biology & Biochemistry,2011,43(5):905—914
[18] García-Orenes F,Morugán-Coronado A,Zornoza R,et al. Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem. PLoS ONE,2013,DOI:10. 1371/journal. pone. 1080522
[19] Kallenbach C,Grandy A S. Controls over soil microbial biomass responses to carbon amendments in agricultural systems:A meta-analysis. Agriculture,Ecosystems & Environment,2011,144(1):241—252
[20] McDaniel M D,Tiemann L K,Grandy A S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis.Ecological Applications,2014,24(3):560—570
[21] Delgado-Baquerizo M,Maestre F T,Reich P B,et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications,2016,7:10541, DOI:10. 1038/ncomms10541
[22] Wagg C,Bender S F,Widmer F,et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences,2014,111(14):5266—5270
[23] Insam H,Mitchell C C,Dormaar J F. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols. Soil Biology& Biochemistry,1991,23(5):459—464
[24] Gu Y,Zhang X,Tu S,et al. Soil microbial biomass,crop yields,and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping. European Journal of Soil Biology,2009,45(3):239—246
[25] Suzuki C,Kunito T,Aono T,et al. Microbial indices of soil fertility. Journal of Applied Microbiology,2005,98(5):1062—1074
[26] Alves de Castro Lopes A,Gomes de Sousa D M,Chaer G M,et al. Interpretation of microbial soil indicators as a function of crop yield and organic carbon. Soil Science Society of America Journal,2013,77(2):461—472
[27] Klironomos J N,McCune J,Hart M,et al. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters,2000,3(2):137—141
[28] Dias T,Dukes A,Antunes P M. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. Journal of the Science of Food and Agriculture,2015,95(3):447—454
[29] K?hl L,Oehl F,van der Heijden M G A. Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota.Ecological Applications,2014,24(7):1842—1853
[30] Delgado-Baquerizo M,Powell J R,Hamonts K,et al. Circular linkages between soil biodiversity,fertility and plant productivity are limited to topsoil at the continental scale. New Phytologist,2017,215(3):1186—1196
[31] Brookes P C,McGrath S P. Effect of metal toxicity on the size of the soil microbial biomass. Journal of Soil Science,1984,35(2):341—346
[32] Brookes P C. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils,1995,19(4):269—279
[33] Giller K E,Witter E,McGrath S P. Assessing risks of heavy metal toxicity in agricultural soils:Do microbes matter? Human and Ecological Risk Assessment,1999,5(4):683—689
[34] Filip Z. International approach to assessing soil quality by ecologically-related biological parameters.Agriculture,Ecosystems & Environment,2002,88(2):169—174
[35] Smolders E,Buekers J,Oliver I,et al. Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils. Environmental Toxicology and Chemistry,2004,23(11):2633—2640
[36] Li Z,Xu J,Tang C,et al. Application of 16s rDNAPCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-,Zn-,and Cd-contaminated paddy soils.Chemosphere,2006,62(8):1374—1380
[37] Giller K E,Witter E,McGrath S P. Heavy metals and soil microbes. Soil Biology&Biochemistry,2009,41(10):2031—2037
[38] Gómez-Sagasti M T,Alkorta I,Becerril J M,et al.Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water,Air,&Soil Pollution,2012,223(6):3249—3262
[39] 全國土壤質(zhì)量標(biāo)準(zhǔn)化技術(shù)委員會. 耕地質(zhì)量等級:GB/T 33469-2016. 北京:中國標(biāo)準(zhǔn)出版社,2016:12 National Technical Committee for Soil Quality Standardization. Cultivated land quality grade:GB/T 33469-2016 (In Chinese). Beijing:Standards Press of China,2016:12
[40] Epelde L,Becerril J M,Garbisu C. Adaptive long-term monitoring of soil health in metal phytostabilization:Ecological attributes and ecosystem services based on soil microbial parametersxs. International Journal of Phytoremediation,2014,16(10):971—981
[41] 全國土壤質(zhì)量標(biāo)準(zhǔn)化技術(shù)委員會. 土壤微生物呼吸的實驗室測定方法:GB/T 32720-2016. 北京:中國標(biāo)準(zhǔn)出版社,2016:8 National Technical Committee for Soil Quality Standardization. Laboratory methods for determination of microbial soil respiration:GB/T 32720-2016(In Chinese). Beijing:Standards Press of China,2016:8
[42] Soil quality — Determination of soil microbial biomass — Part 2:Fumigation-extraction method:ISO 14240-2:1997. [2017-06-13]. https://www.iso. org/obp/ui/#iso:std:iso:14240:-2:ed-1:v1:en
[43] Soil quality — Determination of soil microbial diversity — Part 2:Method by phospholipid fatty acid analysis (PLFA) using the simple PLFA extraction method:ISO/TS 29843-2:2011. [2017-06-13].https://www. iso. org/obp/ui/#iso:std:iso:ts:29843:-2:ed-1:v2:en
[44] Soil quality — Measurement of enzyme activity patterns in soil samples using fluorogenic substrates in micro-well plates:ISO/TS 22939:2010. [2017-06-15]. https://www. iso. org/obp/ui/#iso:std:iso:ts:22939:ed-1:v1:en
[45] Soil quality — Estimation of abundance of selected microbial gene sequences by quantitative PCR from DNA directly extracted from soil:ISO 17601:2016.[2017-06-14]. https://www. iso. org/obp/ui/#iso:std:iso:17601:ed-1:v1:en
[46] 中華人民共和國農(nóng)業(yè)部. 土壤檢測第2部分:土壤pH的測定:NY/T 1121. 2-2006. 北京:中華人民共和國農(nóng)業(yè)部,2006:7 Ministry of Agriculture of the People’s Republic of China. Soil testing—Part 2:Method for determination of soil pH:NY/T 1121. 2-2006 (In Chinese).Beijing:Ministry of Agriculture of the People’s Republic of China,2006:7
[47] 中華人民共和國農(nóng)業(yè)部. 土壤pH的測定:NY/T 1377-2007. 北京:中華人民共和國農(nóng)業(yè)部,2007:6 Ministry of Agriculture of the People’s Republic of China. Determination of pH in Soil:NY/T 1377-2007(In Chinese). Beijing:Ministry of Agriculture of the People’s Republic of China,2007:6
[48] Soil quality —Determination of pH:ISO 10390:2005. [2017-06-15]. https://www. iso. org/obp/ui/#iso:std:iso:10390:ed-2:v1:en
[49] 全國危險化學(xué)品管理標(biāo)準(zhǔn)化技術(shù)委員會. 化學(xué)品土壤粒度分析試驗方法:GB/T 27845-2011. 北京:中國標(biāo)準(zhǔn)出版社,2011:12 Dangerous Chemicals Management of Standardization Administration of China. Chemicals —Test method for particle-size analysis of soils:GB/T 27845-2011(In Chinese). Beijing:Standards Press of China,2011:12
[50] 中國林業(yè)科學(xué)研究院林業(yè)研究所. 森林土壤顆粒組成(機(jī)械組成)的測定:LY/T 1225-1999. 北京:中國林業(yè)科學(xué)研究院林業(yè)研究所,1999:7 Institute of Forestry,Chinese Academy of Forestry.Determination of forest soil particle-size composition(mechanical composition):LY/T 1225-1999 (In Chinese). Beijing:Institute of Forestry,Chinese Academy of Forestry 1999:7
[51] Geotechnical investigation and testing —Laboratory testing of soil —Part 4:Determination of particle size distribution:ISO 17892-4:2016. [2017-06-15]. https://www. iso. org/obp/ui/#iso:std:iso:17892:-4:ed-1:v1:en
[52] 中華人民共和國環(huán)境保護(hù)部. 土壤有機(jī)碳的測定重鉻酸鉀氧化-分光光度法:HJ615-2011. 北京:中國環(huán)境科學(xué)出版社,2011:4.Ministry of Environmental Protection of the People’s Republic of China. Soil — Determination of organic carbon — Potassium dichromate oxidation spectrophotometric method:HJ615-2011 (In Chinese). Beijing:China Environmental Science Press,2011:4
[53] 中華人民共和國環(huán)境保護(hù)部. 土壤有機(jī)碳的測定燃燒氧化-非分散紅外法:HJ695-2014. 北京:中國環(huán)境科學(xué)出版社,2014:3 Ministry of Environmental Protection of the People’s Republic of China. Soil — Determination of organic carbon— Combustion oxidation nondispersive infrared absorption method:HJ695-2014 (In Chinese).Beijing:China Environmental Science Press,2014:3
[54] 中華人民共和國農(nóng)業(yè)部. 土壤檢測第6部分:土壤有機(jī)質(zhì)的測定:NY/T 1121. 6-2006. 北京:中華人民共和國農(nóng)業(yè)部,2006:7 Ministry of Agriculture of the People’s Republic of China. Soil testing—Part 6:Method for determination of soil organic matter:NY/T 1121. 6-2006 (In Chinese). Beijing:Ministry of Agriculture of the People’s Republic of China,2006:7
[55] Soil quality—Determination of organic carbon by sulfochromic oxidation:ISO 14235:1998. [2017-06-15]. https://www. iso. org/obp/ui/#iso:std:iso:14235:ed-1:v1:en
[56] 中華人民共和國農(nóng)業(yè)部. 土壤檢測第24部分:土壤全氮的測定自動定氮儀法:NY/T 1121. 24-2012. 北京:中國標(biāo)準(zhǔn)出版社,2012:6 Ministry of Agriculture of the People’s Republic of China. Soil testing —Part 24:Determination of total nitrogen in soil - Automatic Kjeldahl apparatus method:NY/T 1121. 24-2012 (In Chinese).Beijing:Standards Press of China,2012:6
[57] 中華人民共和國農(nóng)業(yè)部. 土壤全氮測定法(半微量開氏法):NY/T 53-1987. 北京:中華人民共和國農(nóng)業(yè)部,1987:1 Ministry of Agriculture of the People’s Republic of China. Method for the determination of soil total nitrogen (Semi-micro Kjeldahl method):NY/T 53-1987 (In Chinese). Beijing:Ministry of Agriculture of the People’s Republic of China,1987:1
[58] Soil quality —Determination of total nitrogen content by dry combustion (“elemental analysis”):ISO 13878:1998. [2017-06-16]. https://www. iso.org/obp/ui/#iso:std:iso:13878:ed-1:v1:en
[59] 全國土壤質(zhì)量標(biāo)準(zhǔn)化技術(shù)委員會. 土壤硝態(tài)氮的測定紫外分光光度法:GB/T 32737-2016. 北京:中國標(biāo)準(zhǔn)出版社,2016:8 National Technical Committee for Soil Quality Standardization. Determination of nitrate nitrogen in soil—Ultraviolet spectrophotometry method:GB/T 32737-2016 (In Chinese). Beijing:Standards Press of China,2016:8
[60] 中華人民共和國農(nóng)業(yè)部. 中性、石灰性土壤銨態(tài)氮、有效磷、速效鉀的測定聯(lián)合浸提—比色法:NY/T 1848-2010. 北京:中華人民共和國農(nóng)業(yè)部,2010:5 Ministry of Agriculture of the People’s Republic of China. Method for determination of ammonium nitrogen,available phosphorus and rapidly-available potassium in neutrality or calcareous soil—Universal extract-colorimetric method:NY/T 1848-2010 (In Chinese). Beijing:Ministry of Agriculture of the People’s Republic of China,2010:5
[61] 中華人民共和國農(nóng)業(yè)部. 酸性土壤銨態(tài)氮、有效磷、速效鉀的速測聯(lián)合浸提—比色分析方法:NY/T 1849-2010. 北京:中華人民共和國農(nóng)業(yè)部,2010:5 Ministry of Agriculture of the People’s Republic of China. Method for determination of ammonium nitrogen,available phosphorus and rapidly-available potassium in acid soil—Universal extract-colorimetric method:NY/T 1849-2010 (In Chinese). Beijing:Ministry of Agriculture of the People’s Republic of China,2010:5
[62] Soil quality —Determination of potential nitrification and inhibition of nitrification —Rapid test by ammonium oxidation:ISO 15685:2012. [2017-06-16]. https://www. iso. org/obp/ui/#iso:std:iso:15685:ed-2:v1:en
[63] Soil quality —Determination of nitrate,nitrite and ammonium in field-moist soils by extraction with potassium chloride solution —Part 2:Automated method with segmented flow analysis:ISO 14256-2:2005. [2017-06-16]. https://www. iso. org/obp/ui/#iso:std:iso:14256:-2:ed-1:v1:en
[64] Soil quality —Determination of nitrate,nitrite and ammonium in field-moist soils by extraction with potassium chloride solution —Part 1:Manual method:ISO/TS 14256-1:2003. [2017-06-16].https://www. iso. org/obp/ui/#iso:std:iso:ts:14256:-1:ed-1:v1:en
[65] 中華人民共和國農(nóng)業(yè)部. 土壤檢測第7部分:土壤有效磷的測定:NY/T 1121. 7-2014. 北京:中華人民共和國農(nóng)業(yè)部,2014:10 Ministry of Agriculture of the People’s Republic of China. Soil testing —Part 7:Method for determination of available phosphorus in soil:NY/T 1121. 7-2014(In Chinese). Beijing:Ministry of Agriculture of the People’s Republic of China,2014:10
[66] 中華人民共和國農(nóng)業(yè)部. 土壤檢測第25部分:土壤有效磷的測定連續(xù)流動分析儀法:NY/T 1121. 25-2012.北京:中華人民共和國農(nóng)業(yè)部,2012:6 Ministry of Agriculture of the People’s Republic of China. Soil testing —Part 25:Method for determination of available phosphorus by continuous flow analyzer:NY/T 1121. 25-2012 (In Chinese).Beijing:Ministry of Agriculture of the People’s Republic of China,2012:6
[67] 中華人民共和國環(huán)境保護(hù)部. 土壤有效磷的測定碳酸氫鈉浸提-鉬銻抗分光光度法:HJ 704-2014. 北京:中國環(huán)境科學(xué)出版社,2014:9 Ministry of Environmental Protection of the People’s Republic of China. Soil quality — Determination available phosphorus — Sodium hydrogen carbonate solution-Mo-Sb anti spectrophotometric method:HJ 704-2014 (In Chinese). Beijing:China Environmental Science Press,2014:9
[68] Soil quality —Determination of phosphorus —Spectrometric determination of phosphorus soluble in sodium hydrogen carbonate solution:ISO 11263:1994. [2017-06-16]. https://www. iso. org/obp/ui/#iso:std:iso:11263:ed-1:v1:en
[69] 全國土壤質(zhì)量標(biāo)準(zhǔn)化技術(shù)委員會. 土壤微生物生物量的測定底物誘導(dǎo)呼吸法:GB/T 32723-2016. 北京:中國標(biāo)準(zhǔn)出版社,2016:8 National Technical Committee for Soil Quality Standardization. Determination of soil microbial biomass — Substrate-induced respiration method:GB/T 32723-2016 (In Chinese). Beijing:Standards Press of China,2016:8
[70] Soil quality —Laboratory methods for determination of microbial soil respiration:ISO 16072:2002. [2017-06-16]. https://www. iso. org/obp/ui/#iso:std:iso:16072:ed-1:v1:en
[71] Soil quality —Determination of soil microbial diversity—Part 1:Method by phospholipid fatty acid analysis(PLFA) and phospholipid ether lipids (PLEL)analysis:ISO/TS 29843-1:2010. [2017-06-16].https://www. iso. org/obp/ui/#iso:std:45703:en
[72] Soil quality —Effects of pollutants on mycorrhizal fungi —Spore germination test:ISO/TS 10832:2009.[2017-06-16]. https://www. iso. org/obp/ui/#iso:std:iso:ts:10832:ed-1:v2:en
[73] 吉林省質(zhì)量技術(shù)監(jiān)督局. 農(nóng)田土壤中銨態(tài)氮、硝態(tài)氮的測定流動注射分析法:DB22/T 2270-2015. 吉林:吉林省質(zhì)量技術(shù)監(jiān)督局,2015:3 Quality and Technical Supervision of Jilin Province.Farmland soil — Determination of ammonium and nitrate nitrogen —Flow injection analysis:DB22/T 2270-2015 (In Chinese). Jilin:Quality and Technical Supervision of Jilin Province,2015:3
[74] Huang YM,Liu D,An SS. Effects of slope aspect on soil nitrogen and microbial properties in the chinese loess region. Catena,2015,125:135—145
[75] Soil quality —Biological methods —Determination of nitrogen mineralization and nitrification in soils and the influence of chemicals on these processes:ISO 14238:2012. [2017-06-16]. https://www. iso.org/obp/ui/#iso:std:iso:14238:ed-2:v1:en
[76] 中華人民共和國國土資源部. 高標(biāo)準(zhǔn)農(nóng)田建設(shè)通則:GB/T 30600-2014. 北京:中國標(biāo)準(zhǔn)出版社,2014:5 Ministry of Land and Resourcesof the People’s Republic of China. Well-facilitated farmland construction— General rules:GB/T 30600-2014 (In Chinese).Beijing:Standards Press of China,2014:5
[77] Cherubin M R,Karlen D L,F(xiàn)ranco A L C,et al.A soil management assessment framework (smaf)evaluation of brazilian sugarcane expansion on soil quality. Soil Science Society of America Journal,2016,80(1):215—226
[78] Masto R E,Sheik S,Nehru G,et al. Assessment of environmental soil quality around sonepur bazari mine of raniganj coalfield,india. Solid Earth,2015,6(3):811—821
[79] Tu J,Wang B,McGrouther K,et al. Soil quality assessment under different paulownia fortunei plantations in mid-subtropical china. Journal of Soils and Sediments,2017,17(9):2371—2382
[80] Rahmanipour F,Marzaioli R,Bahrami H A,et al.Assessment of soil quality indices in agricultural lands of qazvin province,iran. Ecological Indicators,2014,40:19—26
[81] Liu Y,Wang H,Zhang H,et al. A comprehensive support vector machine-based classification model for soil quality assessment. Soil and Tillage Research,2016,155:19—26
[82] Yao R,Yang J,Gao P,et al. Determining minimum data set for soil quality assessment of typical salt affected farmland in the coastal reclamation area. Soil and Tillage Research,2013,128:137—148
[83] Li G,Wu C. Effects of short-term set-aside management practices on soil microorganism and enzyme activity in china. International Journal of Environmental Research and Public Health,2017,14(8):913,DOI:10. 3390/ijerph14080913
[84] Li G,Wu C,Gao W. Effects of short-term fallow managements on soil microbial properties:A case study in china. Applied Soil Ecology,2018,DOI:10. 1016/j. apsoil. 2017. 12. 005
[85] Bever J D,Broadhurst L M,Thrall P H. Microbial phylotype composition and diversity predicts plant productivity and plant–soil feedbacks. Ecology Letters,2013,16(2):167—174
[86] Tautges N E,Sullivan T S,Reardon C L,et al. Soil microbial diversity and activity linked to crop yield and quality in a dryland organic wheat production system. Applied Soil Ecology,2016,108(Suppl C):258—268
[87] Frosteg?rd ?,Tunlid A,B??th E. Use and misuse of plfa measurements in soils. Soil Biology &Biochemistry,2011,43(8):1621—1625
[88] Haynes R J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in new zealand. Soil Biology & Biochemistry,2000,32(2):211—219
[89] Hu S,ChapinIII F S,F(xiàn)irestone M K,et al. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature,2001,409(6817):188—191
[90] He Y T,Qi Y C,Dong Y S,et al. Effects of nitrogen fertilization on soil microbial biomass and community functional diversity in temperate grassland in Inner Mongolia,China. Clean – Soil,Air,Water,2013,41(12):1216—1221
[91] Campbell C A,Biederbeck V O,Zentner R P,et al.Effect of crop rotations and cultural practices on soil organic matter,microbial biomass and respiration in a thin black chernozem. Canadian Journal of Soil Science,1991,71(3):363—376
[92] 章家恩. 生態(tài)學(xué)常用實驗研究方法與技術(shù). 北京:化學(xué)工業(yè)出版社,2007 Zhang J E. Methods and techniques of common experimental research on ecology (In Chinese).Beijing:Chemical Industry Press,2007
[93] Bhatia C R. Role of microbial diversity for soil,health and plant nutrition//Bhatia C R. Molecular mechanisms of plant and microbe coexistence. Berlin,Heidelberg:Springer Berlin Heidelberg,2008:53—74
[94] East R. Microbiome:Soil science comes to life.Nature,2013,501(7468):18—19
[95] Woodward C,Hansen L,Beckwith F,et al.Symbiogenics:An epigenetic approach to mitigating impacts of climate change on plants. Hort Science,2012,47(6):699—703