徐崇凱,劉池洋,郭佩,黎茂穩(wěn),黃雷,趙巖,潘銀華,張益銀
1.西北大學大陸動力學國家重點實驗室,西北大學地質學系,西安 710069
2.頁巖油氣富集機理與有效開發(fā)國家重點實驗室,中國石油化工股份有限公司石油勘探開發(fā)研究院,北京 100083
我國的古近紀咸化含油氣盆地(凹陷),如江漢盆地、東濮凹陷、柴達木盆地、塔里木盆地等,其主力烴源巖與膏鹽層無論在平面上還是剖面上均存在較好的共生關系[1-3]。一般來說,烴源巖形成于溫暖潮濕深水環(huán)境,而膏鹽巖形成于干旱淺水蒸發(fā)環(huán)境,二者似乎難以共生。這種似乎矛盾但卻共生的巖性組合,使人們對長期流行的北西西向“古近紀干旱氣候帶”[4-7]的存在提出質疑,即認為我國古近紀期間并不存在一條緯向亞熱干燥帶[7-11];同時也對烴源巖及鹽巖形成的環(huán)境、水深、鹽度產(chǎn)生疑惑,即認為咸化環(huán)境下烴源巖可形成于淺水條件下[12-13]或鹽巖亦可形成深水環(huán)境中[14-16]。以往對該類咸化含油氣湖盆古環(huán)境的研究集中于膏鹽巖形成環(huán)境方面[17-20],但分析結果差異較大,不同指標指示結果自相矛盾[21],而對與其互層共生的富有機質泥巖、白云質泥巖形成的環(huán)境探討較少。因此關于我國古近紀咸化湖盆的形成環(huán)境及古氣候條件仍存在廣泛爭議。
江漢盆地是我國古近紀咸化面積最大的盆地,盆內潛江組烴源巖與鹽巖最發(fā)育的地區(qū)為潛江凹陷,始新統(tǒng)—漸新統(tǒng)潛江組為主要的烴源巖和儲集層。潛江凹陷為潛北、通??诖髷鄬涌刂葡碌睦^承性凹陷,生烴中心與沉降—沉積中心基本一致,暗色泥巖厚度最厚可達2 200 m(廣深1井實鉆厚度為1 994 m),鹽巖最厚可達1 800 m,油氣資源豐富。其中潛江組的潛三下段生油巖厚度大、埋藏深,有機質轉化程度高,為潛江凹陷的主要烴源層系。前人對潛江凹陷潛江組的構造[22-23]、鹽源及成因[24-25]、沉積相展布[25-27]以及控藏因素[28-30]等進行了諸多研究,雖對該區(qū)地球化學特征方面亦有研究[6,31-33],但相對甚少。
隨著元素地球化學的發(fā)展,沉積巖中的常量元素、微量元素與稀土元素的研究已經(jīng)引起地質界的廣泛關注[34-36]。由于稀土元素、部分微量元素及其比值在巖石風化、剝蝕、搬運、沉積過程中變化較小,更易反映當時的沉積環(huán)境[36-37],因此對盆地演化史、沉積時的古氣候與古環(huán)境和沉積物質來源和構造背景的研究意義重大。本文通過系統(tǒng)連續(xù)采集潛江凹陷內部古近系潛三下段白云質泥巖、泥質白云巖及含鈣芒硝泥巖等樣品,分析全巖主微量、稀土元素含量及分布特征,旨在揭示潛江凹陷古近紀咸化湖盆形成的古氣候,古鹽度和氧化還原環(huán)境,從而為認識潛江凹陷古近系古地理環(huán)境提供依據(jù)。
江漢盆地面積36 350 km2,是發(fā)育在揚子克拉通東部的白堊紀—新生代裂陷盆地。潛江凹陷是江漢盆地內的一個次級凹陷,面積僅2 500 km2,在盆地各凹陷中面積居第三位。在江漢盆地,潛江凹陷油氣資源最豐富,發(fā)現(xiàn)油氣田最多,勘探程度也最高(圖1B)。該凹陷北、南邊界分別受潛北斷層、通??跀嗔芽刂疲瑸橐坏湫偷碾p斷式不對稱箕狀斷陷(圖1C)。始新—漸新統(tǒng)潛江組發(fā)育巨厚鹽巖沉積,最厚處可達1 800 m,鹽間段發(fā)育富有機質泥巖,包括鈣芒硝泥巖、泥質白云巖、白云質泥巖等。
潛江凹陷潛江組分為四個層段,自下而上依次為潛四段、潛三段、潛二段和潛一段。潛四下段沉積時,凹陷北部潛北斷裂活動和凹陷裂陷強烈;至潛三段和潛二段沉積時,潛北斷層活動減弱,湖盆兼斷坳沉降特征,凹陷基底坡度小,整體地形相對平緩,表現(xiàn)為北厚南薄、中間厚斜坡帶薄的特點。至潛一段沉積時期,斷裂活動進一步減弱,湖盆以坳陷為主。潛三下段的鹽巖和砂巖都比較發(fā)育,具有良好的儲蓋組合條件,為研究區(qū)最重要的勘探目的層段之一。
研究樣品取自潛江凹陷北部QYX井潛三下段鹽間泥巖段,為連續(xù)采樣,屬于Ⅲ級韻律的相對淡化階段,其巖性主要為泥質巖類夾部分碳酸鹽巖,在干旱氣候下蒸發(fā)濃縮也可析出鈣芒硝甚至鹽巖。采樣巖性主要為灰色白云質泥巖、泥質白云巖,及含鈣芒硝泥巖。選用新鮮巖樣進行測試,樣品碎樣及地球化學測試均在西北大學大陸動力學國家重點實驗室完成。全巖主量元素含量分析在Rikagu RIX 2100 X射線熒光光譜儀(XRF)上進行,全巖微量元素和稀土元素含量測試在電感耦合等離子體質譜儀(ICP-MS)上進行,標樣選用 BHVO-2,AGV-2 和GSP-1。每5個樣挑選一個重復樣,分析結果吻合,精度優(yōu)于10%。分析方法詳見文獻[39-40],所分析的15件樣品的層位分布、深度巖性及測試結果見表1,2。
表1 潛江凹陷潛三下段泥巖主量元素分析結果(%)Table 1 Major element concentrations (%) of the mudstone samples from the lower part of the Eq3 in the Qianjiang sag
潛江凹陷古近系潛江組泥巖樣品的主量元素分析結果見表1,除QYX-17外,均以SiO2、Al2O3、CaO為主,含較多的MgO(平均值為5.39%),說明與淡水泥巖、泥頁巖相比,咸化環(huán)境形成的烴源巖鈣質、膏質成分較高。分析SiO2、MgO、CaO與Na2O含量,可以看出MgO的含量是一個先增加,再減少的趨勢,縱向上巖性是從白云質泥巖—泥質白云巖—白云巖—白云質泥巖—鈣芒硝泥巖的變化序列。樣品中其他主量元素Fe2O3平均值為3.90%、Na2O平均值為3.40%、和K2O平均值為2.19%,樣品中還含有少量的TiO2(均值為0.42%),極少量的P2O5(均值為0.18%)與MnO(均值為0.05%)。
潛江凹陷潛三下段鹽間泥巖樣品的微量元素分析結果見表2,其微量元素上陸殼標準化蛛網(wǎng)圖見圖2。微量元素Nb、Zr、Hf含量明顯低于上陸殼平均豐度,與本次所采樣品均為細粒泥質巖有關,因上述元素主要賦存于重礦物等粗粒礦物中。微量元素Co、Cs、Ni、Li含量高于上陸殼平均豐度值,說明泥質含量較高,其中Li是咸化湖盆中的重要保留元素之一,可在湖盆中滯留較長時間,Li的高含量說明湖水鹽度較大,濃縮強烈。沉積巖中微量元素Sr含量一般與主量元素Ca密切相關,本次所采樣品Sr含量均高于上陸殼平均豐度值,最高值可達3 085×10-6,平均值為1 215.4×10-6。值得注意的是,樣品QYX-17主量元素Ca含量較高,其Sr含量較低,說明灰?guī)r白云化期間可能會釋放Sr元素(圖2)。
稀土元素分析結果見表2。本文所研究樣品稀土元素含量較低,稀土元素總量為42.56×10-6~142.89×10-6,平均值為109.76×10-6,低于大陸上地殼(UCC)平均值,而且LREE較富集,平均值為98.75×10-6,占90.0%;HREE豐度較低,平均值為11.01×10-6,占10.0%。因此,LREE的質量分數(shù)的變化基本決定了REE的變化?!芁REE/∑HREE比值范圍7.72~9.71,反映了研究區(qū)輕稀土富集的特征[41],(La/Yb)N平均值為9.97(7.85~10.83),有明顯的Eu負異常,δEu平均值為0.67(0.65~0.71),無Ce異常。從15個樣品稀土元素對球粒隕石標準化配分圖上看出(圖3A):1)La/Yb比值均大于1;2)曲線為右傾斜模式;3)La-Eu段曲線較陡;4)Eu-Lu段曲線較平緩;5)在Eu處“谷”狀特征(虧損),顯示中等程度的負Eu異常。樣品(Nd/Yb)N比值在3.63~4.41之間(表2),平均值為4.18,顯示輕稀土略虧損,但分異度不大。樣品含量呈現(xiàn)高低不同的特征,暗示沉積時部分樣品受物源或水動力條件等因素影響,整體上平緩且左高右低,說明所測樣品具相同的物源供給條件。從15個樣品稀土元素對北美頁巖標準化配分圖上看出(圖 3B),輕、重稀土元素分餾不明顯,曲線比較平坦,斜率較小。稀土元素均值除了白云巖樣品低于北美頁巖,其他均高于北美頁巖。
表2 潛江凹陷潛三下段泥巖稀土、微量元素測試結果(×10-6)Table 2 Trace and rare earth element concentrations of the mudstone samples from the lower partof the Eq3 in the Qianjiang sag (×10-6)
由于Sr豐度和Sr/Ba值與古鹽度存在正相關性,因此可作為沉積物沉積時古鹽度判別的靈敏指標。Sr與Ba化學性質相似,在不同沉積環(huán)境下因不同地球化學行為而發(fā)生分離,隨著水體鹽度加大,Ba會以碳酸鹽、硫酸鹽形式先發(fā)生沉淀,隨著水體鹽度繼續(xù)增大,Sr再發(fā)生沉淀[43-45]。因此,Sr/Ba比值通常被用來恢復水體古鹽度[31,46]。對于QYX井,取樣段總長80 m,Sr的含量最低386×10-6,最高3 085×10-6,且變化快,說明潛江組的古鹽度變化很快,古鹽度的變化對古氣候的變化具有一定的指示作用。Sr的高含量主要是溫濕氣候下海侵導致或是干熱氣候條件下的湖水濃縮沉淀所致[47],結合地質背景,在潛江凹陷的潛江組并未有海侵的證據(jù)。C.M.卡特欽科夫提出Sr/Ba值指標,認為Sr/Ba值<1為淡水沉積,Sr/Ba值>1為海相沉積,如果介于20~50之間變?yōu)辂}湖沉積[47-48]。本文所測樣品僅一個樣品的Sr/Ba<1(圖4),此樣品可能是因為氣候變化引起的突發(fā)性洪水使得湖水淡化,其余均大于1,比值范圍為0.80~5.04,平均值為2.35,說明此時沉積為咸湖沉積。潛江組鹽間泥巖沉積時盆地的古鹽度較大,其中發(fā)育的石膏、鹽巖晶體即是該環(huán)境下的產(chǎn)物。
通過本文所測樣品,Sr豐度和Sr/Ba值都顯示了此沉積期處于湖盆咸化期,而咸湖沉積有利于有機質的堆積與保存[49],有利于烴源巖的發(fā)育。
圖2 潛江凹陷潛三下段微量元素上陸殼標準化蛛網(wǎng)圖Fig.2 Upper continental crust normalized trace elementspattern of the mudstone samplesfrom the lower part of the Eq3 in the Qianjiang sag
圖3 潛江凹陷潛三下段稀土元素球粒隕石標準化(A)[42]和北美頁巖標準化(B)配分曲線圖Fig.3 Chondrite and PAAS normalized REE distribution patterns of the mudstone samples from the lower part of the Eq3 in the Qianjiang sag
圖4 江漢盆地潛江凹陷潛三下段泥巖沉積環(huán)境地球化學判別Fig.4 Geochemical indicators for sedimentary environments in the Qianjiang Formation of the Qianjiang sag
氧化還原環(huán)境通??捎肰/Cr、V/Ni及V/(V + Ni)比值等指標判別[40,50-53],具體判別指標見表3。研究區(qū)樣品的相關分析見圖4。如圖4所示,本文分析樣品V/Cr 比值為1.25~1.97,反映沉積環(huán)境為弱氧化環(huán)境。如果鹽巖沉積時,V/Ni比值大于1,則鹽湖為還原環(huán)境,即“深水成鹽”,反之,V/Ni比值小于1,則反映鹽湖為氧化環(huán)境[38]。本文樣品V/Ni比值為2.08~2.97,反映此沉積期鹽湖為還原環(huán)境(圖4)。
騰格兒指出V/(V + Ni)元素比值>0.5指示厭氧環(huán)境,其比值介于0.45~0.5為貧氧環(huán)境,比值<0.45指示富養(yǎng)環(huán)境[54]。V/(V + Ni)比值除了分析沉積物沉積時的氧化還原環(huán)境,還可以判斷沉積時底層的水體分層強弱,V/(V + Ni)比值介于0.4~0.6之間,表示水體呈弱水體分層的貧氧環(huán)境,比值在0.60~0.84之間表示中等分層的缺氧環(huán)境,而>0.84表示底層水體呈強分層的還原環(huán)境[53]。潛江凹陷潛江組的V/(V + Ni)元素比值為0.68~0.73,表示此時處于底層水體中等分層厭氧環(huán)境(圖4),這與東濮凹陷沙河街組鹽巖發(fā)育的沙河街一段和三段沉積環(huán)境相似[16]。V由于在有機質中優(yōu)先被結合,因此V的高值一般是在還原條件下出現(xiàn)[50]。本文分析的15件樣品中,V值范圍為33.5~110,平均值為76.13,因此V的高值也指示潛江凹陷潛江組為還原環(huán)境(圖4)。
一般認為,Ce的正異常是大陸環(huán)境沉積物的特征之一。從圖4中看出潛三下段的Ce含量基本表現(xiàn)為正偏或正異常,反映了潛三下段的大陸沉積特征。Ce的異常值可用Ce/La值代替[55],當Ce/ La<1.5時,反映富氧環(huán)境,1.5~1.8時為貧氧環(huán)境,大于2.0時為厭氧環(huán)境(圖4)。氧化還原環(huán)境還可通過δU來判別,吳朝東等[56]用鈾總量和自生鈾量關系建立了δU(δU = 2U/(U+Th/3),以此來判別沉積環(huán)境為氧化還是還原。潛江凹陷潛江組沉積環(huán)境為缺氧環(huán)境。本文樣品δU的變化趨勢不大,說明潛江組氧化還原條件相差不大,以還原環(huán)境為主(圖4)。Elderfield 和Greaves提出Ceanom可指示氧化還原環(huán)境,以北美頁巖為標準,其計算公式為:Ceanom=lg[3CeN/(2LaN+NdN)]。當Ceanom< - 0.10,表示Ce虧損,指示氧化環(huán)境;當Ceanom> - 0.10時,則表示Ce富集,指示缺氧、還原的古水體環(huán)境[57]。研究區(qū)潛江組Ceanom指數(shù)全部大于-0.1(圖4),表明Ce富集,表示其沉積時沉積環(huán)境以缺氧、還原環(huán)境為主。
表3 江漢盆地潛江凹陷潛江組元素比值特征表Table 3 Characteristics of element concentration ratiosof the samples from Qianjiang Formationfrom Qianjiang sag, Jianghan Basin
部分微量元素對氧化還原環(huán)境變化較為敏感,如V、U、Ni、Zn及Cr,其變化亦可反映水體氧化還原環(huán)境的變化[50,58-59]。本文所測樣品較富集上述元素,反映潛三下段沉積時水體處于厭氧環(huán)境。潛江凹陷潛江組氧含量較低,且縱向上潛江組的V、U、Ni、Zn和Cr的變化趨勢完全相同(圖4),并且一直處于波動中,說明潛江組沉積時,沉積環(huán)境整體處于還原環(huán)境,但是存在一定的波動,結合地質背景,潛江凹陷鹽巖附近的泥質沉積物多以深灰色及灰黑色為主,且廣泛發(fā)育黃鐵礦,缺乏底棲生物化石等特征,這些都表明了潛江凹陷潛江組鹽巖沉積時盆地整體范圍內皆處于還原或強還原環(huán)境。
泥巖主量元素的相對含量能夠提供物源區(qū)風化作用的信息,進而可以推演出古氣候信息。在風化過程中,穩(wěn)定的陽離子如Al3+、Ti4+易被保存在風化產(chǎn)物中,而不穩(wěn)定的陽離子如Na+、K+、Ca2+等則易溶于水中,隨水體流失,上述主量元素富集與虧損的程度取決于原巖的化學風化強度。Harnois于1988年提出化學蝕變指數(shù)(CIA = [Al2O3/(Al2O3+ CaO*+Na2O)×100])來判別物源區(qū)的化學分化程度,考慮到K元素的富集問題,F(xiàn)edoetal.[60]1995年提出斜長石的蝕變指數(shù)(PIA = [(Al2O3-K2O) / (Al2O3+CaO*+Na2O-K2O)×100)作為替換。潛江凹陷潛三下段鹽間泥巖的化學蝕變指數(shù)CIA介于27.9~85.5,平均為61.3,PIA介于21.7~78.1,波動較大(圖4),平均為53.3(表1),總體處于微弱至中等風化程度,說明潛三段泥巖沉積時化學風化并不強烈,氣候處于半潮濕—半干旱階段。
在陸相沉積物中,Cu與Cs等元素對氣候變化非常敏感[61]。當氣候干旱炎熱時,由于Cu、Cs等元素難以遷移到湖中,因而在湖泊沉積物中會顯示低值。如圖4所示,潛江組潛三下段Cu、Cs含量較低,且具有相同的頻繁波動趨勢,可能指示該期潛江組總體上處于半干旱炎熱氣候條件,且存在輕微的氣候波動。從巖芯上觀察,巖性也主要是灰色白云質泥巖、鈣芒硝泥巖,與地球化學分析相吻合。Mg/Ca、Sr/Cu也可作為反映古氣候特征的指標[31,62]。Mg/Ca高值指示干熱氣候,低值指示溫濕氣候,所測樣品Mg/Ca為0.11~0.71(圖4),反映此時處于相對潮濕的氣候,并存在輕微的氣候波動。
潛三下段沉積于晚始新世,據(jù)西寧盆地精確古地磁即孢粉化石研究,該時期我國氣候以快速變化為特征[63]。江漢盆地古近系孢粉組合亦顯示,始新世晚期我國有一次干旱氣候向溫濕氣候的轉變(圖6A),且濕生植物孢粉與旱生植物孢粉交替出現(xiàn),反映干濕氣候頻繁交替。頻繁的氣候變化使?jié)摻M呈現(xiàn)出各類環(huán)境的巖相組合特征,包括1)代表強烈蒸發(fā)的結核狀硬石膏,腸狀硬石膏(圖5A,B,C),該類硬石膏是石膏在埋藏過程中的成巖產(chǎn)物,是典型的泥坪、潮上帶等岸上沉積[64-65],說明此時氣候較為干旱;2)代表強烈蒸發(fā)的石鹽層,潛江組的石鹽多樣,既與頁理發(fā)育的泥巖、白云巖互層(圖5D,E),代表深水沉積,又發(fā)育溶蝕結構,底部見泥巖團塊(圖5F,G),代表極淺水沉積,說明在湖盆強烈蒸發(fā)時,鹽巖沉積遍布整個湖盆,即淺水石鹽、深水石鹽均發(fā)育;3)代表相對淡化期的富有機質泥巖、泥質白云巖,水生生物發(fā)育(圖5H,I),即使在淡化期,湖水亦出現(xiàn)多次短暫的咸化期(圖5J),沉積鈣芒硝等膏質沉積。
綜上分析,所測樣品說明潛江凹陷潛江組潛三下段化學風化并不強烈,為半干旱偏濕的氣候,這也說明鹽間沉積物沉積于咸化湖盆的淡化期。上述討論表明,江漢盆地潛江組的鹽間泥巖段形成于氣候相對潮濕的湖水淡化期,湖盆水體缺氧、還原,具較高鹽度。潛江凹陷潛江組的氣候為頻繁的干濕交替[2,64],因此頻繁的湖水平面的變化尤為重要。一次小的氣候變化便生成一個Ⅳ級韻律,每一個韻律即代表一次湖水淡化—咸化的變化過程,而每一個韻律又構成一個生儲蓋,有利于油氣的生成、聚集、保存。
關于咸化湖盆蒸發(fā)巖與烴源巖互層的形成條件,前人共總結出3種成因模式:淺水成鹽、深水成鹽及頻繁水平面變化。本文的地球化學證據(jù)較為支持第三種模式,即受始新世末期氣候頻繁變化的影響,蒸發(fā)巖主要形成于氣候相對干旱的淺水期,烴源巖主要形成于氣候相對潮濕的深水期。上述討論表明,江漢盆地潛江組的鹽間泥巖段形成于氣候相對潮濕的湖水淡化期,湖盆水體缺氧、還原,具較高鹽度。根據(jù)江漢盆地古近系孢粉化石組合研究認為,古近系存在著氣候的頻繁變化(圖6A)。統(tǒng)計前人公開發(fā)表的潛江凹陷潛江組碳酸鹽巖碳氧同位素數(shù)據(jù),發(fā)現(xiàn)潛江組沉積時湖相碳酸鹽的碳、氧同位素大多數(shù)落在開放性湖泊和封閉性湖泊之間(圖6B),說明潛江凹陷古近系沉積時期的湖盆水體具有一定的半封閉性,北部物源供給充分,入湖水系對白云巖碳氧同位素組成產(chǎn)生一定影響,使得沉積時湖盆的水體又具有一定半開放性。總體分析認為,其沉積環(huán)境為一半封閉半開放的咸水湖環(huán)境。
根據(jù)本文取樣層段巖性為泥質巖類夾碳酸鹽巖,為Ⅲ級韻律的淡化階段[67],此時的每一次古氣候的較小變化便會形成一個Ⅳ級韻律,每一個Ⅳ級韻律即代表一個淡化—咸化的過程,而由氣候波動導致湖水循環(huán)的淡化(feast)和咸化(famine)是咸化環(huán)境沉積物中發(fā)育豐富有機質的主要模式,將有利于有機質的生產(chǎn)及保存,是咸化湖泊富集有機質的主要模式[65,68-69]。現(xiàn)代和古代咸化湖盆只分布在干燥—半干燥地區(qū)[5,69]。但持續(xù)的干旱氣候會使鹽湖逐漸濃縮,面積日漸縮小,甚至消失,形成不了規(guī)模烴源巖。若在整體干燥氣候下,間歇性的出現(xiàn)溫暖潮濕氣候,河流徑流量增大,大量淡水注入鹽湖中,鹽湖面積增大,表面水體淡化,生物會出現(xiàn)短時間的大爆發(fā)(feast)[65,69],生產(chǎn)大量有機質;隨后氣候轉為干旱,強烈的蒸發(fā)使湖水面積減小,濃度增高,鹵水層上部的條件變得不適應生物生存,大量生物將死亡(famine),先是耐鹽性生物,接著是適鹽性生物,最后是嗜鹽性生物。這種生物的短暫大爆發(fā)及隨后的快速死亡將在較短時間內產(chǎn)生大量的有機質,抵消了由于湖底分解者所帶來的有機質損失,可使有機質較完整的到達湖底沉積物中,從而得以保存。
圖5 A.江漢盆地古近系孢粉化石組合[2];B.潛江凹陷潛江組湖相白云巖碳氧同位素組成與沉積環(huán)境分析圖[2,64,66]Fig.5 A. sporo-pollen assemblages of Paleogene strata in the Jianghan Basin; B. carbon and oxygen isotopes of the lacustrine dolomite from the Qianjiang Formation of the Jianghan Basin
本文所測樣品整體上為咸化湖沉積,且咸淡交替頻繁(圖4),每一個交替即產(chǎn)生一個Ⅳ級韻律,隨著每一個沉積韻律即淡化—咸化成鹽序列形成的過程,使得在各種鹽度適存的生物在所適鹽度范圍內爆發(fā),提供了豐富的有機質,在鹽度高而不適存時又出現(xiàn)短范圍內大量死亡,將豐富的有機質堆積起來。又由于本文所測鹽間泥巖樣品表征此時處于半干旱偏濕的缺氧、還原的環(huán)境,使得形成的豐富有機質良好保存。整體來說,潛三下段鹽間泥巖的沉積環(huán)境有利于有機質的生成、堆積與保存,完全具備形成較好烴源巖的條件。
(1) 通過氧化還原指標V/Cr、V/Ni、V/(V+Ni)、δU、δCe、Ce/La和Ceanom以及氧化還原敏感元素V、U、Ni、Zn和Cr的含量變化指示潛江組沉積期水體氧含量較低,處于底層水體中等分層厭氧環(huán)境;
(2) 通過Sr豐度、Sr/Ba值、碳氧同位素分析及鈣芒硝的存在揭示潛江組泥巖沉積時為一高鹽度的半封閉半開放的咸水湖環(huán)境;
(3) 通過主量元素化學蝕變指數(shù)CIA、Mg/Ca比值及對膏鹽層巖芯觀察反映潛三下段泥巖沉積于相對潮濕階段。
(4) 由氣候干濕波動造成的淡化—咸化成鹽序列,伴隨著生物短期的爆發(fā)與死亡,有利于有機質的生成與堆積;潮濕、缺氧的沉積環(huán)境有利于有機質的保存,整體上鹽間泥巖具備形成較好烴源巖的條件。
參考文獻(Reference)
[1] 孫鎮(zhèn)城,楊藩,張枝煥,等. 中國新生代咸化湖泊沉積環(huán)境與油氣生成[M]. 石油工業(yè)出版社,1997:1-338.[Sun Zhencheng, Yang Fan, Zhang Zhihuan, et al. Sedimentary environment and oil-gas generation of Cenozoic saline lakes in China[M]. Beijing: Petroleum Industry Press, 1997: 1-338.]
[2] 江繼剛,彭平安,傅家謨,等. 鹽湖油氣的形成、演化和運移聚集[M]. 廣州:廣東科技出版社,2004:1-364.[Jiang Jigang, Peng Ping’an, Fu Jiamo, et al. Generation, migration and accumlation of oils and gases in hypersaline lacustrine basin, China[M]. Guangzhou: Guangdong Science & Technology Press, 2004: 1-364.]
[3] Quan C, Liu Z H, Utescher T, et al. Revisiting the Paleogene climate pattern of East Asia: a synthetic review[J]. Earth-Science Reviews, 2014, 139: 213-230.
[4] Wang J, Wang Y J, Liu Z C, et al. Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1/2): 37-47.
[5] Sun X J, Wang P X. How old is the Asian monsoon system?: palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3/4): 181-222.
[6] Zhang R, Kravchinsky V A, Yue L P. Link between global cooling and mammalian transformation across the Eocene-Oligocene boundary in the continental interior of Asia[J]. International Journal of Earth Sciences, 2012, 101(8): 2193-2200.
[7] Wang D H, Lu S C, Han S, et al. Eocene prevalence of monsoon-like climate over eastern China reflected by hydrological dynamics[J]. Journal of Asian Earth Sciences, 2013, 62: 776-787.
[8] Tong G B, Liu Z M, Zheng M P,et al. Primary study on quantitative reconstruction of middle-late Eocene climate in Jianghan Basin[J]. Journal of China University of Geosciences, 2002, 13(3): 252-259.
[9] 史冀忠,劉招君,柳蓉,等. 遼寧撫順盆地始新世古氣候定量研究[J]. 吉林大學學報(地球科學版),2008,38(1):50-55.[Shi Jizhong, Liu Zhaojun, Liu Rong, et al. Quantitative reconstruction of the Eocene palaeoclimate in the Fushun Basin, Liaoning province[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(1): 50-55.]
[10] Quan C,Liu Y S C, Utescher T. Paleogene evolution of precipitation in northeastern China supporting the middle Eocene intensification of the East Asian monsoon[J]. Palaios, 2011, 26(11): 743-753.
[11] Ma X L, Jiang H C, Cheng J, et al. Spatiotemporal evolution of Paleogene palynoflora in China and its implication for development of the extensional basins in East China[J]. Review of Palaeobotany and Palynology, 2012, 184: 24-35.
[12] Warren J K. Shallow-water evaporitic environments and their source rock potential[J]. Journal of Sedimentary Research, 1986, 56(3): 442-454.
[13] Hussain M, Warren J K. Source rock potential of shallow-water evaporites: an investigation in holocenepleistocene Salt Flat sabkah (playa), west Texas-New Mexico[J]. Carbonates and Evaporites, 1991, 6(2): 217-224.
[14] 金強,黃醒漢. 東濮凹陷早第三紀鹽湖成因的探討:一種深水成因模式[J]. 華東石油學院學報,1985(1):1-13.[Jin Qiang, Huang Xinghan. Studies on the origin of the early Tertiary salt lake Dongpu depression: A postulated deep water model[J]. Journal of East China Petroleum Institute, 1985(1): 1-13.]
[15] 杜海峰,于興河,陳發(fā)亮. 東濮凹陷古近系沙三段鹽巖成因探討及層序地層學意義[J]. 西北地質,2007,40(4):67-74.[Du Haifeng, Yu Xinghe, Chen Faliang. Origin of salt-rock in Paleogene Shahejie Formation and its significance for sequence stratigraph in Dongpu depression[J]. Northwestern Geology, 2007, 40(4): 67-74.]
[16] 高紅燦,鄭榮才,肖應凱,等. 渤海灣盆地東濮凹陷古近系沙河街組鹽巖成因:來自沉積學和地球化學的證據(jù)[J]. 石油學報,2015,36(1):19-32.[Gao Hongcan, Zheng Rongcai, Xiao Yingkai, et al. Origin of the salt rock of Paleogene Shahejie Formation in Dongpu sag, Bohai Bay Basin: Evidences from sedimentology and geochemistry[J]. Acta Petrolei Sinica, 2015, 36(1): 19-32.]
[17] 程岳宏,于興河,韓寶清,等. 東濮凹陷北部古近系沙三段地球化學特征及地質意義[J]. 中國地質,2010,37(2):357-366.[Cheng Yuehong, Yu Xinghe, Han Baoqing, et al. Geochemical characteristics of the 3rd Member of Paleogene Shahejie Formation in Dongpu depression and their geological implications[J]. Geology in China, 2010, 37(2): 357-366.]
[18] Huang C, Yuan X, Song C, et al. Characteristics, origin, and role of salt minerals in the process of hydrocarbon accumulation in the saline lacustrine basin of the Yingxi area, Qaidam, China[J]. Carbonates & Evaporites, 2017(21):1-16.
[19] Zhang H, Chen G, Zhu Y, et al. Discovery of rare hydrothermal alterations of oligocene dolomite reservoirs in the Yingxi area, Qaidam, West China[J]. Carbonates & Evaporites, 2017(1/2):1-17.
[20] 高紅燦,陳發(fā)亮,劉光蕊,等. 東濮凹陷古近系沙河街組鹽巖成因研究的進展、問題與展望[J]. 古地理學報,2009,11(3):251-264.[Gao Hongcan, Chen Faliang, Liu Guangrui, et al. Advances, problems and prospect in studies of origin of salt rocks of the Paleogene Shahejie Formation in Dongpu sag[J]. Journal of Palaeogeography, 2009, 11(3): 251-264.]
[21] 李春榮,陳開遠. 潛江凹陷鹽湖層序地層巖石地球化學古環(huán)境研究[J]. 海洋石油,2004,24(3):25-29.[Li Chunrong, Chen Kaiyuan. The research of ancient environment of rock geochemistry and sequence stratigraphy on Saline Lake, Qingjiang depression[J]. Offshore Oil, 2004, 24(3): 25-29.]
[22] 王必金. 江漢盆地構造演化與勘探方向[D]. 北京:中國地質大學(北京),2006.[Wang Bijin. The structural envolution and favorable exploration areas in Jianghan Basin[D]. Beijing: China University of Geosciences (Beijing), 2006.]
[23] 王必金,林暢松,陳瑩,等. 江漢盆地幕式構造運動及其演化特征[J]. 石油地球物理勘探,2006,41(2):226-230.[Wang Bijin, Lin Changsong, Chen Ying, et al. Episodic tectonic movement and evolutional character in Jianghan Basin[J]. Oil Geophysical Prospecting, 2006, 41(2): 226-230.]
[24] 康海霞. 潛江凹陷潛江組剝蝕恢復與沉積體系研究[D]. 北京:中國地質大學(北京),2009.[Kang Haixia. Studies of the denudation, resumption and the deposite system of Qianjiang Formation in the Qianjiang depression[D]. Beijing: China University of Geosciences (Beijing), 2009.]
[25] 方志雄. 江漢盆地鹽湖沉積充填模式[M]. 北京:石油工業(yè)出版社,2006:1-231.[Fang Zhixiong. The filling models of Jianghan salt lake basin[M]. Beijing: Petroleum Industry Press, 2006: 1-231.]
[26] 張永生,楊玉卿,漆智先,等. 江漢盆地潛江凹陷古近系潛江組含鹽巖系沉積特征與沉積環(huán)境[J]. 古地理學報,2003,5(1):29-35.[Zhang Yongsheng, Yang Yuqing, Qi Zhixian, et al. Sedimentary characteristics and environments of the salt-bearing series of Qianjiang Formation of the Paleogene in Qianjiang sag of Jianghan Basin[J]. Journal of Palaeogeography, 2003, 5(1): 29-35.]
[27] 余麗玲. 鹽湖盆地沉積體系分析:以江陵凹陷古近系沙市組為例[D]. 荊州:長江大學,2013.[Yu Liling. Analysis of salt Lake basin depositional system: A case study from Paleogene Shashi Group in Jiangling depression[D]. Jingzhou: Yangtze University, 2013.]
[28] 劉安林. 江漢鹽湖盆地下第三系潛江組沉積環(huán)境及其與油氣的關系[J]. 石油勘探與開發(fā),1986(3):10-19.[Liu Anlin. The depositional environment and its relation to the accumulation of oil and gas in the lower Tertiary Qianjiang Formation in Jianghan salt lake basin[J]. Petroleum Exploration and Development, 1986(3): 10-19.]
[29] 江繼綱. 江漢盆地咸水湖相潛江組油、氣的生成[J]. 石油學報,1981,2(4):83-92.[Jiang Jigang. Origin of oil and gas in Qian Jiang Formation of saline lake facies in the Jianghan Basin[J]. Acta Petrolei Sinica, 1981, 2(4): 83-92.]
[30] 江漢油田地質志編寫組. 中國石油地質志(卷九):江漢油田[M]. 北京:石油工業(yè)出版社,1991:185-186.[Editorial Committee of the Jianghan Oilfield. Petroleum geology of China (volume 9): oil-gas field of Jianghan[M]. Beijing: Petroleum Industry Press, 1991: 185-186.]
[31] 劉剛,周東升. 微量元素分析在判別沉積環(huán)境中的應用:以江漢盆地潛江組為例[J]. 石油實驗地質,2007,29(3):307-310,314.[Liu Gang, Zhou Dongsheng. Application of microelements analysis in identifying sedimentary environment: Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(3): 307-310, 314.]
[32] 袁勝元,李長安,邵磊. 江漢盆地ZL鉆孔微量元素含量的粒度效應與環(huán)境意義[J]. 沉積學報,2012,30(2):366-374.[Yuan Shengyuan, Li Chang’an, Shao Lei. Grain-size dependence and environment significance of trace elements from ZL core in the Jianghan Basin[J]. Acta Sedimentologica Sinica, 2012, 30(2): 366-374.]
[33] 方志雄,陳開遠,柳保軍. 潛江鹽湖地球化學特征及其沉積母源探討[J]. 江漢石油學院學報,2003,25(3):20-22.[Fang Zhixiong, Chen Kaiyuan, Liu Baojun. Geochemical characteristics in Qianjiang salt lake and its sedimentary parent source[J]. Journal of Jianghan Petroleum Institute, 2003, 25(3): 20-22.]
[34] 王隨繼,黃杏珍,妥進才,等. 泌陽凹陷核桃園組微量元素演化特征及其古氣候意義[J]. 沉積學報,1997,15(1):65-70.[Wang Suiji, Huang Xingzhen, Tuo Jincai, et al. Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan Formation, Biyang depression[J]. Acta Sedimentologica Sinica, 1997, 15(1): 65-70.]
[35] 趙巖,劉池洋,張東東,等. 寧南盆地古近紀沉積巖地球化學特征對沉積環(huán)境的反映[J]. 地質科技情報,2016,35(5):27-33.[Zhao Yan, Liu Chiyang, Zhang Dongdong, et al. Geochemical characteristics of Paleogene sedimentary rocks in Ningnan Basin and their implications for sedimentary environments[J]. Geological Science and Technology Information, 2016, 35(5): 27-33.]
[36] 陳亮,劉春蓮,莊暢,等. 三水盆地古近系下部湖相沉積的稀土元素地球化學特征及其古氣候意義[J]. 沉積學報,2009,27(6):1155-1162.[Chen Liang, Liu Chunlian, Zhuang Chang, et al. Rare earth element records of the lower Paleogene sediments in the Sanshui Basin and their paleoclimate implications[J]. Acta Sedimentologica Sinica, 2009, 27(6): 1155-1162.]
[37] Prego R, Caetano M, Vale C, et al. Rare earth elements in sediments of the Vigo Ria, NW Iberian Peninsula[J]. Continental Shelf Research, 2009, 29(7): 896-902.
[38] Meng F W, Galamay A R, Ni P, et al. The major composition of a middle-late Eocene salt lake in the Yunying depression of Jianghan Basin of Middle China based on analyses of fluid inclusions in halite[J]. Journal of Asian Earth Sciences, 2014, 85: 97-105.
[39] Jenner G A, Longerich H P, Jackson S E, et al. ICP-MS: a powerful tool for high-precision trace-element analysis in earth sciences: evidence from analysis of selected U.S.G.S. reference samples[J]. Chemical Geology, 1990, 83(1/2): 133-148.
[40] 譚先鋒,田景春,黃建紅,等. 陸相碎屑巖旋回沉積記錄中的物質響應及聚集規(guī)律:以濟陽坳陷王家崗地區(qū)古近系孔店組為例[J]. 石油與天然氣地質,2013,34(3):332-341.[Tan Xianfeng, Tian Jingchun, Huang Jianhong, et al. Material responses and accumulation patterns in cyclic sediment records of continental clastic rocks: Taking the Paleogene Kongdian Formation of Wangjiagang area in Jiyang depression as an example[J]. Oil & Gas Geology, 2013, 34(3): 332-341.]
[41] 李軍,桑樹勛,林會喜,等. 渤海灣盆地石炭二疊系稀土元素特征及其地質意義[J]. 沉積學報,2007,25(4):589-596.[Li Jun, Sang Shuxun, Lin Huixi, et al. REE Characteristics and Its Geological Significance of the Permo-Carboniferous in Bohaiwan Basin[J]. Acta Sedimentologica Sinica, 2007, 25(4): 589-596.]
[42] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
[43] 經(jīng)雅麗,張克信,林啟祥,等. 浙江長興煤山下三疊統(tǒng)和龍山組、南陵湖組沉積地球化學特征與古環(huán)境意義[J]. 地質科技情報,2005,24(1):35-40.[Jing Yali, Zhang Kexin, Lin Qixiang, et al. Sedimentary geochemistry characteristics and paleoenvironmental meaning of Helongshan Formation and Nanlinghu Formation in Meishan, Changxing county, Zhejiang province[J]. Geological Science and Technology Information, 2005, 24(1): 35-40.]
[44] 趙振華. 微量元素地球化學[J]. 地球科學進展,1992,7(5):65-66.[Zhao Zhenhua. geochemistry of trace elements[J]. Advance in Earth Sciences, 1992, 7(5): 65-66.]
[45] 張翔,田景春,陳洪德,等. 鄂爾多斯盆地西部上二疊統(tǒng)石千峰組沉積環(huán)境地球化學表征[J]. 地球科學與環(huán)境學報,2008,30(2):139-143.[Zhang Xiang, Tian Jingchun, Chen Hongde, et al. Geochemistry evidence of sedimentary environment of upper Permian Shiqianfeng Formation, western Ordos Basin[J]. Journal of Earth Sciences and Environment, 2008, 30(2): 139-143.]
[46] 薛傳東,劉星,亓春英,等. 滇池近代沉積物的元素地球化學特征及其環(huán)境意義[J]. 巖石礦物學雜志,2007,26(6):582-590.[Xue Chuandong, Liu Xing, Qi Chunying, et al. Element geochemical characteristics of modern sediments in the Dianchi Lake, Kunming, and their environmental significance[J]. Acta Petrologica et Mineralogica, 2007, 26(6): 582-590.]
[47] 馬寶林,溫常慶. 塔里木沉積巖形成演化與油氣[M]. 北京:科學出版社,1991:36-68.[Ma Baolin, Wen Changqing. Formation, evolution and hydrocarbon of the sedimentary rocks in the Tarim Basin[M]. Beijing: Science Press, 1991: 36-38.]
[48] 劉招君,孟慶濤,柳蓉,等. 撫順盆地始新統(tǒng)計軍屯組油頁巖地球化學特征及其地質意義[J]. 巖石學報,2009,25(10):2340-2350.[Liu Zhaojun, Meng Qingtao, Liu Rong, et al. Geochemical characteristics of oil shale of Eocene Jijuntun Formation and its geological significance, Fushun Basin[J]. Acta Petrologica Sinica, 2009, 25(10): 2340-2350.]
[49] 金強,朱光有. 中國中新生代咸化湖盆烴源巖沉積的問題及相關進展[J]. 高校地質學報,2006,12(4):483-492.[Jin Qiang, Zhu Guangyou. Progress in research of deposition of oil source rocks in saline lakes and their hydrocarbon generation[J]. Geological Journal of China Universities, 2006, 12(4): 483-492.]
[50] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
[51] Scheffler K, Buehmann D, Schwark L. Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies: response to climate evolution and sedimentary environment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 184-203.
[52] Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272(5265): 1155-1158.
[53] Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3/4): 373-391.
[54] 騰格爾,劉文匯,徐永昌,等. 無機地球化學參數(shù)與有效烴源巖發(fā)育環(huán)境的相關研究[J]. 地球科學進展,2005,20(2):193-200.[Tenger, Liu Wenhui, Xu Yongchang, et al. Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment[J]. Advances in Earth Science, 2005, 20(2): 193-200.]
[55] 白順良. 泥盆紀弗拉階—法門階事件的化學—生物地層學研究[J]. 北京大學學報(自然科學版),1998,34(2/3):363-369.[Bai Shunliang. Chemo-biostratigraphic study on the Devonian Frasnian-Famennian event[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1998, 34(2/3): 363-369.]
[56] 吳朝東,楊承運,陳其英. 湘西黑色巖系地球化學特征和成因意義[J]. 巖石礦物學雜志,1999,18(1):26-39.[Wu Chaodong, Yang Chengyun, Chen Qiying. The origin and geochemical characteristics of upper Sinain-lower Cambrian black shales in western Hunan[J]. Acta Petrologica et Mineralogica, 1999, 18(1): 26-39.]
[57] Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296(5854): 214-219.
[58] Cruse A M, Lyons T W. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales[J]. Chemical Geology, 2004, 206(3/4): 319-345.
[59] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
[60] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10):921-924.
[61] 胡曉峰,劉招君,柳蓉,等. 樺甸盆地始新統(tǒng)樺甸組黏土礦物和無機地球化學特征及其古環(huán)境意義[J]. 煤炭學報,2012,37(3):416-423.[Hu Xiaofeng, Liu Zhaojun, Liu Rong, et al. Clay mineral and inorganic geochemical characteristics of Eocene Huadian Formation in Huadian Basin and their paleoenvironment implications[J]. Journal of China Coal Society, 2012, 37(3): 416-423.]
[62] 田景春,張翔. 沉積地球化學[M]. 北京:地質出版社,2016.[Tian Jingchun, Zhang Xiang. Sedimentary geochemistry[M]. Beijing: Geological Publishing House, 2016.]
[63] Abels H A,Dupont-Nivet G, Xiao G Q, et al. Step-wise change of Asian interior climate preceding the Eocene-Oligocene Transition (EOT)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3/4): 399-412.
[64] 張永生,侯獻華,張海清,等. 江漢盆地潛江凹陷上始新統(tǒng)含鹽巖系準原生白云巖的沉積學特征與形成機理[J]. 古地理學報,2006,8(4):441-455.[Zhang Yongsheng, Hou Xianhua, Zhang Haiqing, et al. Sedimentary characteristics and formation mechanism of peneprimary dolostone in the upper Eocene salt-bearing interval in Qianjiang sag, Jianghan Basin[J]. Journal of Palaeogeography, 2006, 8(4): 441-455.]
[65] Warren J K. Evaporitic source rocks: mesohaline responses to cycles of “famine or feast” in layered brines[M]//Kendall C G S C, Alsharhan, Jarvis I, et al. Quaternary carbonate and evaporite sedimentary facies and their ancient analogues: a tribute to Douglas James Shearman. Algiers: International Association of Sedimentologists, 2011: 315-392.
[66] 袁劍英,黃成剛,曹正林,等. 咸化湖盆白云巖碳氧同位素特征及古環(huán)境意義:以柴西地區(qū)始新統(tǒng)下干柴溝組為例[J]. 地球化學,2015,44(3):254-266.[Yuan Jianying, Huang Chenggang, Cao Zhenglin, et al. Carbon and oxygen isotopic composition of saline lacustrine dolomite and its palaeoenvironmental significance: A case study of lower Eocene Ganchaigou Formation in western Qaidam Basin[J]. Geochimica, 2015, 44(3): 254-266.]
[67] 張永生,王國力,楊玉卿,等. 江漢盆地潛江凹陷古近系鹽湖沉積鹽韻律及其古氣候意義[J]. 古地理學報,2005,7(4):461-470.[Zhang Yongsheng, Wang Guoli, Yang Yuqing, et al. Rhythms of saline lake sediments of the Paleogene and their paleoclimatic significance in Qianjiang sag, Jianghan Basin[J]. Journal of Palaeogeography, 2005, 7(4): 461-470.]
[68] Warren J K. Evaporites: sediments, resources and hydrocarbons[M]. Berlin Heidelberg: Springer, 2006: 617-701.
[69] Warren J K. Evaporites: a geological compendium[M]. 2nd ed. Berlin Heidelberg: Springer, 2016: 833-952.