金清 張蕾 蔣秋悅 蘇翠珠 肖明
摘 要: 通過(guò)GenBank數(shù)據(jù)庫(kù)尋找能產(chǎn)生表面活性素、伊枯草菌素或豐原素并在基因組中其合成基因已得到注釋的芽胞桿菌,經(jīng)過(guò)BLAST比對(duì)序列初步確定這三類脂肽類抗菌肽的合成基因簇的位置,再運(yùn)用antiSMASH進(jìn)行其合成基因簇的最終定位.對(duì)表面活性素、伊枯草菌素和豐原素的結(jié)構(gòu)及相關(guān)的合成酶結(jié)構(gòu)域進(jìn)行了預(yù)測(cè)與分析.
關(guān)鍵詞: 生物信息學(xué); Bacillus velezensis S3-1; 表面活性素; 伊枯草菌素; 豐原素
中圖分類號(hào): Q 93 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1000-5137(2018)04-0451-07
Abstract: In this study,the GenBank database was used to search for Bacillus which could produce surfactin,iturin or fengycin and its synthetic genes were annotated in the genome.The location of the synthetic gene clusters of these three lipopeptide antibiotics were determined by BLAST alignment.Then antiSMASH was used to determine the final location of the synthetic gene clusters.Further,we predicted and analyzed the structure and related synthetase domains of the surfactin,iturin and fengycin.
Key words: bioinformatics; Bacillus velezensis S3-1; surfactin; iturin; fengycin
0 引 言
農(nóng)業(yè)生產(chǎn)中農(nóng)藥的使用對(duì)病蟲(chóng)害的防治起到重要的作用,但長(zhǎng)期不合理的施用會(huì)引起土壤污染、農(nóng)作物產(chǎn)量降低等問(wèn)題[1-3].Bacillus velezensis S3-1是一株在植物促生和防病方面效果較為顯著的芽胞桿菌屬菌株[4].B.velezensis S3-1具有廣譜抑菌效果,能夠產(chǎn)生6種表面活性素(surfactin)、3種伊枯草菌素(iturin)和4種豐原素(fengycin),這三類脂肽類化合物能抑制農(nóng)作物病害.而且能夠同時(shí)產(chǎn)生這三類重要脂肽類化合物的芽胞桿菌并不常見(jiàn),這使得B.velezensis S3-1具有廣闊的開(kāi)發(fā)前景[5].
目前,B.velezensis S3-1 全基因組序列已公布.其中部分芽胞桿菌中表面活性素、伊枯草菌素或豐原素合成基因簇已得到注釋,但B.velezensis S3-1的合成基因簇還不明確.本研究以 B.velezensis S3-1基因組數(shù)據(jù)為基礎(chǔ),通過(guò)基因組挖掘技術(shù)對(duì)其基因組數(shù)據(jù)進(jìn)行分析,結(jié)合NCBI、antiSMASH等生物信息學(xué)工具,進(jìn)行B.velezensis S3-1的表面活性素、伊枯草菌素和豐原素的合成基因簇的定位,同時(shí)將基因、基因簇、化合物結(jié)構(gòu)特征、生物合成途徑等功能相互聯(lián)系起來(lái),從而為B.velezensis S3-1 應(yīng)用于土傳病害實(shí)驗(yàn)、土壤改良劑的研制,及為農(nóng)業(yè)生產(chǎn)奠定基礎(chǔ),同時(shí)也為進(jìn)一步挖掘和利用B.velezensis S3-1的生物學(xué)信息提供借鑒.
1 材料與方法
1.1 菌株和基因組
本研究使用的菌株為B.velezensis S3-1,保存于中國(guó)典型培養(yǎng)物保藏中心,保藏號(hào)為CCTCC AB 2014337.該菌株全基因組序列已經(jīng)測(cè)定完畢,登錄號(hào)為CP016371.1.
1.2 使用的數(shù)據(jù)庫(kù)及分析軟件
使用的數(shù)據(jù)庫(kù):GenBank.
使用的分析軟件:BLAST,Glimmer 3,HMMER 3,antiSMASH.
1.3 用于比對(duì)的菌株和基因組
經(jīng)BLAST分析后用于之后進(jìn)行比對(duì)的31株芽胞桿菌,其全基因組序列已經(jīng)測(cè)定完畢并得到注釋,菌株名稱和序列登錄號(hào)見(jiàn)表1.
2 結(jié)果與討論
2.1 表面活性素、伊枯草菌素和豐原素的合成基因簇的探尋
通過(guò)BLAST分析軟件,在GenBank數(shù)據(jù)庫(kù)中找到了31株已明確表面活性素、伊枯草菌素或豐原素合成基因位置的芽胞桿菌,其全基因組序列已經(jīng)測(cè)定完畢并得到注釋,但各菌株基因組中具有的抗菌肽種類不同(表2).
2.2 表面活性素、伊枯草菌素和豐原素的合成基因簇的定位
通過(guò)將上述芽胞桿菌中的表面活性素、伊枯草菌素或豐原素合成基因簇序列與B.velezensis S3-1全基因組序列進(jìn)行比對(duì)分析,確定其合成基因簇的初步位置.通過(guò)antiSMASH分析,確定了B.velezensis S3-1的表面活性素、伊枯草菌素和豐原素的合成基因簇的精確定位(表3,圖1).
srfAA、srfAB、srfAC、srfAD和sfp為編碼表面活性素的合成基因,srfAA、srfAB、srfAC共同構(gòu)成srfA操縱子,sfp基因(長(zhǎng)約4.5 kb)則是參與表面活性素合成的第二調(diào)控元件[6-16].ituC、ituB、ituA 和ituD為編碼伊枯草菌素的合成基因,共同構(gòu)成itu操縱子(長(zhǎng)約38 kb)[17-18].fenE、fenD、fenC、fenB和 fenA為編碼豐原素合成酶的基因,共同構(gòu)成fen操縱子(長(zhǎng)約37 kb)[19-22].
2.3 表面活性素、伊枯草菌素和豐原素的合成酶結(jié)構(gòu)域的預(yù)測(cè)與分析
表面活性素、伊枯草菌素和豐原素是通過(guò)非核糖體肽鏈合成酶(non-ribosomal peptide synthetase,NRPS)合成的次級(jí)代謝產(chǎn)物,由胞內(nèi)游離氨基酸經(jīng)活化后結(jié)合到合成酶系特定的結(jié)構(gòu)域,從而實(shí)現(xiàn)肽鏈的延長(zhǎng)和環(huán)化[23-24].
圖2為B.velezensis S3-1中表面活性素、伊枯草菌素和豐原素的合成酶結(jié)構(gòu)域.其中 A代表腺苷?;Y(jié)構(gòu)域(adenylation domain),負(fù)責(zé)識(shí)別和腺苷?;囟ǖ陌被幔籔CP代表肽酰載體蛋白(peptidyl carrier protein),負(fù)責(zé)運(yùn)載氨基酸;C代表縮合結(jié)構(gòu)域,負(fù)責(zé)肽鍵形成;TE代表硫酯酶結(jié)構(gòu)域(thioesterase domain),負(fù)責(zé)釋放多肽和肽的環(huán)化;E代表差向異構(gòu)酶結(jié)構(gòu)域(epimerization domain),負(fù)責(zé)將被激活的L-氨基酸轉(zhuǎn)化為D-氨基酸.全酶由多個(gè)模塊按特定的空間順序排列而成,模塊的數(shù)量、種類及排列次序決定了氨基酸種類、順序和最終產(chǎn)物肽鏈的長(zhǎng)短[25-27].
圖3為表面活性素的結(jié)構(gòu),圖4為伊枯草菌素和豐原素的結(jié)構(gòu).由于伊枯草菌素和豐原素基因簇距離較近(圖1),故二者結(jié)構(gòu)連接在一起,但二者之間的基因簇從何處進(jìn)行劃分則有待進(jìn)一步研究.表面活性素中氨基酸順序?yàn)椋篏lu-Leu-Leu-Val-Asp-Leu-Leu;伊枯草菌素中氨基酸順序?yàn)椋篏lu-Orn-Tyr-Thr-Glu-Val-Pro-Glu-Tyr-Ile;豐原素中氨基酸順序?yàn)椋篈sn-Tyr-Asn-Pro-Asn-Ser.
3 結(jié) 論
基于GenBank數(shù)據(jù)庫(kù),利用BLAST等軟件分析了B-velezensis S3-1的表面活性素、伊枯草菌素和豐原素的結(jié)構(gòu).進(jìn)一步,可以通過(guò)改變培養(yǎng)基、培養(yǎng)方式和添加誘導(dǎo)物等方式激活這三類脂肽相關(guān)基因的表達(dá),從而分離獲得相應(yīng)的脂肽.另一方面,可以利用基因操作手段激活B-velezensis S3-1這三類脂肽相關(guān)基因的表達(dá),從而獲得化合物.最終為B-velezensis S3-1代謝工程優(yōu)化及結(jié)構(gòu)修飾改造奠定基礎(chǔ),使其能更好地應(yīng)用于農(nóng)業(yè)、醫(yī)藥、食品等領(lǐng)域.
參考文獻(xiàn):
[1] 王文學(xué).淺析果樹(shù)病蟲(chóng)害防治中的農(nóng)藥污染及治理措施 [J].農(nóng)業(yè)工程技術(shù),2017(6):77.
Wang W X.Analysis of pesticide pollution and control measures in pest control of fruit trees [J].Agricultural Engineering Technology,2017(6):77.
[2] 徐潮.化學(xué)農(nóng)藥對(duì)環(huán)境的污染及防控對(duì)策 [J].農(nóng)業(yè)與技術(shù),2016,36(24):251.
Xu C.Environmental pollution caused by chemical pesticides and countermeasures for prevention and control [J].Agriculture and Technology,2016,36(24):251.
[3] 岑天江.生物技術(shù)在?;l(xiāng)水稻病蟲(chóng)害防控中的作用 [J].農(nóng)技服務(wù),2017,34(1):68.
Cen T J.Role of biotechnology in prevention and control of rice diseases and pests in Baoji Township [J].Agricultural Technology Services,2017,34(1):68.
[4] 司方毅.一株高效抗病菌株的篩選和應(yīng)用及其抗病機(jī)制的研究 [D].上海:上海師范大學(xué),2014.
Si F Y.Selection and application of a high-resistance strain with its study of resistance mechanism [D].Shanghai:Shanghai Normal University,2014.
[5] 艾昕燕.解淀粉芽胞桿菌 S3-1 對(duì)番茄的抗病促生作用及其活性成分的分離 [D].上海;上海師范大學(xué),2016.
Ai X Y.Effect of Bacillus amyloliquefaciens S3-1 on diseases control and growth-promotion of tomato and the separation of its active ingredients [D].Shanghai:Shanghai Normal University,2016.
[6] Leclere V,Bechet M,Adam A,et al.Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism′s antagonistic and biocontrol activities [J].Applied and Environmental Microbiology,2005,71(8):4577-4584.
[7] Pratap S S,Seema G,Neetu P,et al.Surfactin:A review on novel microbial surfactant [J].International Journal of Bioassays,2013,2(5):740-745.
[8] Das P,Mukherjee S,Sen R.Genetic regulations of the biosynthesis of microbial surfactants:An overview [J].Biotechnology and Genetic Engineering Reviews,2008,25(1):165-186.
[21] Yaseen Y,Gancel F,Drider D,et al.Influence of promoters on the production of fengycin in Bacillus spp.[J].Research in Microbiology,2016,167(4):272-281.
[22] Samel S A,Wagner B,Marahiel M A,et al.The thioesterase domain of the fengycin biosynthesis cluster:a structural base for the macrocyclization of a non-ribosomal lipopeptide [J].Journal of Molecular Biology,2006,359(4):876-889.
[23] Tapi A,Chollet-Imbert M,Scherens B,et al.New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction [J].Applied Microbiology and Biotechnology,2010,85(5):1521-1531.
[24] Dunlap C A,Bowman M J,Schisler D A.Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3:A biocontrol antagonist of Fusarium head blight [J].Biological Control,2013,64(2):166-175.
[25] Stevens B W,Lilien R H,Georgiev I,et al.Redesigning the PheA domain of gramicidin synthetase leads to a new understanding of the enzyme′s mechanism and selectivity [J].Biochemistry,2006,45(51):15495-15504.
[26] Hur G H,Vickery C R,Burkart M D.Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology [J].Natural Product Reports,2012,29(10):1074-1098.
[27] 金清,肖明.新型抗菌肽——表面活性素、伊枯草菌素和豐原素 [J].微生物與感染,2018,13(1):56-64.
Jin Q,Xiao M.Novel antimicrobial peptides:Surfactin,iturin and fengycin [J].Journal of Microbes and Infections,2018,13(1):56-64.
(責(zé)任編輯:顧浩然)