国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

果蔬中多酚類化合物雙向調(diào)控Nrf2/Keap1信號(hào)通路的研究進(jìn)展

2018-03-20 03:30:14賴燈妮趙玲艷鄧放明
食品科學(xué) 2018年5期
關(guān)鍵詞:草素木犀兒茶素

賴燈妮,覃 思,趙玲艷,鄧放明*

(湖南農(nóng)業(yè)大學(xué)食品科學(xué)技術(shù)學(xué)院,湖南 長(zhǎng)沙 410128)

Nrf2(NF-E2-related factor2)是調(diào)控細(xì)胞抵抗外來異物和氧化損傷、維持細(xì)胞內(nèi)氧化還原平衡的關(guān)鍵轉(zhuǎn)錄因子。Nrf2的缺失或激活障礙導(dǎo)致氧化應(yīng)激源的細(xì)胞毒性增強(qiáng),引起細(xì)胞功能障礙、凋亡甚至死亡,從而與許多疾病的發(fā)生有著密切聯(lián)系[1-3]。因此,激活Nrf2信號(hào)通路有利于人體健康和疾病的預(yù)防。但是隨著研究的深入,有研究者發(fā)現(xiàn)Nrf2的激活可能阻礙癌癥的治療,如在某些癌癥的化療和放療中,Nrf2的激活增強(qiáng)了癌細(xì)胞的抗藥性[4-7],所以如何在癌細(xì)胞中抑制Nrf2的活性也是目前的研究熱點(diǎn)之一。

果蔬中含有豐富的多酚化合物,其酚羥基中鄰位酚羥基極易被氧化,且有較強(qiáng)捕捉活性氧等自由基的能力,因此能夠清除自由基和淬滅活性氧[8]。目前有近1 000 種果蔬多酚化合物被證明利于人體健康和預(yù)防疾病(如癌癥、糖尿病、神經(jīng)性疾病等)[9]。果蔬多酚化合物能顯著調(diào)控Nrf2/Keap1(Kelch-like ECH-associated protein 1)信號(hào)通路,然而其作用的分子機(jī)制尚未闡明。本文系統(tǒng)介紹了Nrf2/Keap1信號(hào)通路及其調(diào)節(jié)方式,討論了Nrf2化學(xué)預(yù)防腫瘤和促進(jìn)癌癥發(fā)生的雙重作用,詳細(xì)總結(jié)和分析了關(guān)于果蔬中多酚類物質(zhì)對(duì)Nrf2/Keap1的激活或抑制作用的研究進(jìn)展和基本規(guī)律。

1 Nrf2信號(hào)通路及其調(diào)節(jié)

1.1 Nrf2/Keap1信號(hào)通路及其調(diào)節(jié)

Nrf2是細(xì)胞調(diào)節(jié)氧化應(yīng)激反應(yīng)的重要轉(zhuǎn)錄因子,屬于CNC(cap’-n’-collar)轉(zhuǎn)錄因子家族成員[10]。Nrf2含有7 個(gè)不同的功能區(qū)(圖1),分別命名為Neh1到Neh7(Nrf2-ECH homology)。Neh1區(qū)中CNC-bZIP(leucime zipper bZIP)亮氨酸拉鏈結(jié)構(gòu),bZIP與Maf蛋白(包括MafG、MafK、MafF)形成異二聚體。此二聚體是Nrf2識(shí)別抗氧化反應(yīng)元件(antioxidant response element,ARE)上DNA基序(GCTGAGTCA)并與之結(jié)合、啟動(dòng)下游抗氧化基因轉(zhuǎn)錄的重要物質(zhì)。Neh2區(qū)上的DLG和ETGE基序是Nrf2與胞漿蛋白Keap1結(jié)合區(qū),DLG和ETGE缺失或突變影響Nrf2與Keap1結(jié)合,負(fù)調(diào)控Nrf2信號(hào)通路。在Neh1與Neh2之間,存在Neh4、Neh5、Neh7和Neh6,Neh3在靠近Neh1的末端且結(jié)構(gòu)復(fù)雜。Neh4和Neh5與共激活因子CREB結(jié)合蛋白(cyclic AMP-response elememt binding protein (CREB) binding protein,CBP),促使CBP協(xié)同參與激活Nrf2的轉(zhuǎn)錄活性并增強(qiáng)下游抗氧化基因的表達(dá)。Neh6存在著綁定F-box蛋白家族β-TrCP(β-transducing repeats-containing proteins)的區(qū)域和DSGIS目的區(qū)域,合成糖原酶激酶(glycogen synthase kinase 3,GSK3)β和磷酸化Nrf2上的兩個(gè)位點(diǎn),Ser335和Ser338,形成與β-TrCP連接泛素酶的結(jié)構(gòu),獨(dú)立于Keap1起負(fù)調(diào)控作用。Neh7存在著一個(gè)視黃受體(retinoic X receptor α,RXRα)的一個(gè)綁定區(qū)域,與RXRα相互作用[11]。

目前認(rèn)為Nrf2/Keap1信號(hào)通路由3 個(gè)部分組成:Keap1、Nrf2、ARE[12-16]。Keap1是Keap1-Cullin 3(Cul3)-Ring box1(Rbx1)E3泛素連接酶的底層調(diào)節(jié)蛋白,與Nrf2結(jié)合并且抑制其活性。ARE是機(jī)體內(nèi)重要的保護(hù)性順式應(yīng)答元件,其核心序列是5’-TA/CANNA/GTGAC/TNNNGCAG-3’,存在于大部分細(xì)胞保護(hù)基因的近端啟動(dòng)子區(qū)域,是抗氧化蛋白和Ⅱ相脫毒酶基因上游的一段轉(zhuǎn)錄調(diào)控片段[17]。

圖1 Nrf2結(jié)構(gòu)功能示意圖Fig.1 Functional structure of Nrf2

在一般正常生理狀態(tài)下,細(xì)胞質(zhì)中Nrf2中Neh2片段上的ETGE和DLG位點(diǎn)與Keap1結(jié)合。Keap1和Cul-Rbx-E3泛素連接酶偶聯(lián)Neh2賴氨酸殘基從而使Nrf2被泛素化標(biāo)記,最后被引導(dǎo)進(jìn)入蛋白酶體進(jìn)行降解。因此,正常情況下細(xì)胞質(zhì)中Nrf2蛋白含量較低[12,18]。在氧化應(yīng)激和親電反應(yīng)中,Keap1中半胱氨酸殘基的結(jié)構(gòu)改變從而不能與Neh2偶聯(lián),因此不能泛素化降解掉Nrf2。這樣會(huì)導(dǎo)致細(xì)胞質(zhì)中Nrf2大量積累并轉(zhuǎn)移到細(xì)胞核中,然后在分子伴侶Maf的協(xié)助下與ARE結(jié)合形成二聚體,啟動(dòng)Ⅱ相脫毒酶和抗氧化蛋白相關(guān)基因的表達(dá)和蛋白的合成,從而提高細(xì)胞抗氧化應(yīng)激能力[19]。當(dāng)半胱氨酸殘基的結(jié)構(gòu)恢復(fù)到穩(wěn)定狀態(tài)時(shí),Keap1又能與Nrf2形成泛素化體系,從而酶解掉Nrf2以恢復(fù)其正常水平[20-21]。

目前調(diào)節(jié)Nrf2/Keap1信號(hào)通路主要有兩種假說:鉸鏈和門閂模式和Cul3-Keap1解偶聯(lián)模式(圖2)。

圖2 Nrf2/Keap1信號(hào)調(diào)節(jié)模型Fig.2 Regulatory model of Nrf2/Keap1 signaling pathway

1.1.1 鉸鏈和門閂模式

在鉸鏈和門閂模式中,Keap1連接Nrf2中高親和性ETGE位點(diǎn)形成二聚體,稱為“打開”結(jié)構(gòu)。隨后Keap1與Nrf2中DLG位點(diǎn)結(jié)合形成“關(guān)閉”結(jié)構(gòu)。在生理狀態(tài)下,Nrf2/Keap1關(guān)閉結(jié)構(gòu)使得Nrf2在細(xì)胞質(zhì)中被泛素化標(biāo)記從而被蛋白酶降解,解鏈的Keap1則進(jìn)入下一個(gè)與Nrf2結(jié)合的循環(huán)。但在氧化應(yīng)激狀態(tài)下,活性氧自由基和電子修飾Keap1中IVR區(qū)半胱氨酸殘基結(jié)合從而使其結(jié)構(gòu)變化。雖然結(jié)構(gòu)變化的Keap1依舊能連接Nrf2的ETGE和DLG位點(diǎn),但是與E2泛素結(jié)合酶卻不能在一條直線上連接,因此Nrf2不被降解并得到積累[22-24]。

1.1.2 Cul3-Keap1解偶聯(lián)模式

Cul3-Keap1解偶聯(lián)模式中,一些誘導(dǎo)劑(如叔丁基對(duì)苯二酚或二十五烯酸影響Cul3和Keap1結(jié)合。Keap1中BTB區(qū)的C151是這個(gè)模式中的關(guān)鍵位點(diǎn),它結(jié)構(gòu)的改變使Cul3不能與之偶聯(lián)從而Nrf2不被泛素化。在兩種模式中Nrf2是否泛素化是其積累和核轉(zhuǎn)運(yùn)的關(guān)鍵[25-27]。

1.2 獨(dú)立于Keap1的Nrf2調(diào)節(jié)通路

雖然Keap1是調(diào)節(jié)Nrf2-ARE通路的重要因素,但其他因素也影響Nrf2通路,主要包括蛋白激酶、轉(zhuǎn)錄因子以及表觀遺傳調(diào)節(jié)。

1.2.1 蛋白激酶

蛋白激酶是依賴一類胞內(nèi)信使,且在蛋白質(zhì)磷酸化過程中起中介和放大作用并協(xié)助完成信號(hào)傳遞的酶。磷酸化是影響Nrf2信號(hào)通路的重要因素,其中主要的蛋白激酶包括PKC蛋白激酶C、PI3K磷脂酰肌醇激酶、MAPKs絲裂酶原激活蛋白酶(細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)/c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)/p38)[28]。研究發(fā)現(xiàn)果蔬多酚化合物的木犀草素、花色苷、表兒茶素能夠磷酸化ERK;原花青素B2、表兒茶素能夠磷酸化p38;蘇木查爾醇能夠磷酸化JNK;阿魏酸、表兒茶素以及黑茶茶多酚能夠磷酸化PI3K通路并激活Nrf2通路。早期研究發(fā)現(xiàn)Nrf2中Ser40、Ser568位點(diǎn)磷酸化使Nrf2表達(dá)增強(qiáng),但Ser215、Ser408、Ser577位點(diǎn)磷酸化卻抑制著Nrf2通路的激活[29-31]。PKC磷酸化Nrf2中Ser40位點(diǎn),使Nrf2與Keap1分離,誘導(dǎo)其轉(zhuǎn)入胞核[32]。目前針對(duì)MAPKs調(diào)控Nrf2的研究結(jié)果充滿爭(zhēng)議,有研究結(jié)果表明MAPKs對(duì)Nrf2有正向調(diào)控作用,Nrf2誘導(dǎo)劑叔丁基對(duì)苯二酚和萊菔硫烷抑制MAPKs的ERK和p38活性,降低ARE相關(guān)基因的表達(dá)[33]。而有些報(bào)道則發(fā)現(xiàn)MAPKs對(duì)Nrf2有負(fù)向調(diào)控作用,在A549細(xì)胞中ERK抑制劑抑制Nrf2的Ser40磷酸化從而阻止其核轉(zhuǎn)錄,p38抑制劑SB203580促進(jìn)Nrf2與Keap1解偶聯(lián)從而使其泛素化,在HepG2細(xì)胞中,發(fā)現(xiàn)p38負(fù)調(diào)控Nrf2[34-36]。PI3K激酶控制Nrf2的激活,PI3K激酶的抑制劑阻止Nrf2的核轉(zhuǎn)移和氧化應(yīng)激蛋白的誘導(dǎo)[37]。從上述文獻(xiàn)可以看出:部分蛋白激酶的磷酸化是多酚調(diào)控Nrf2信號(hào)通路的前提和必要條件;其中,果蔬多酚化合物磷酸化PKC蛋白激酶從而激活Nrf2-ARE信號(hào)通路,而磷酸化MAPKs激酶的果蔬多酚化合物對(duì)Nrf2信號(hào)通路的調(diào)節(jié)目前尚未有一致的報(bào)道,磷酸化PI3K激酶的果蔬多酚則激活Nrf2信號(hào)通路。

1.2.2 轉(zhuǎn)錄因子

轉(zhuǎn)錄因子是指能夠結(jié)合在某基因上游特異核苷酸序列上的蛋白質(zhì),這些蛋白質(zhì)能調(diào)控其基因的轉(zhuǎn)錄。這些轉(zhuǎn)錄因子一般由DNA結(jié)合域、轉(zhuǎn)錄調(diào)控域(包括激活域或抑制域)、寡聚化位點(diǎn)以及核定位信號(hào)等4 個(gè)功能區(qū)域組成。轉(zhuǎn)錄因子功能差異主要由激活域和抑制域決定,其中包括激活因子和抑制因子[38]。

Nrf2的轉(zhuǎn)錄因子調(diào)控機(jī)制非常復(fù)雜,它們是獨(dú)立于Keap1調(diào)控Nrf2通路的因子。例如Maf蛋白通過改變Nrf2亮氨酸拉鏈結(jié)構(gòu)以及同源延伸區(qū)從而影響其二聚化,敲掉Maf蛋白會(huì)影響Nrf2的激活以及抗氧化蛋白的誘導(dǎo)[39]。另外,核內(nèi)共同激活因子3(amplified in breast 1,AIB1)通過增強(qiáng)轉(zhuǎn)錄活性影響Nrf2的激活[40]。其中Nrf2激活因子包括重組人Jun二聚化蛋白2(Jun dimerization protein 2,JDP2)、Jun、CBP、BRG1、p21[41-44]。而Nrf2抑制因子包括cFos、p53、p65、Fra1、Bach1、C/EBPα、ATF1、ATF3 ER、SFERRβ、PPAR-Y、RAR-α[45-48]。

1.2.3 表觀遺傳學(xué)調(diào)控

表觀遺傳學(xué)是在細(xì)胞核內(nèi)DNA序列沒有改變的情況下基因功能可逆的可遺傳改變[49]。正常細(xì)胞CpG島處于非甲基化或低甲基化。研究表明在人體和小鼠中Nrf2啟動(dòng)子上CpG甲基化抑制Nrf2的表達(dá)[50-51]。在BEAS-2B細(xì)胞中,Keap1啟動(dòng)子的CpG甲基化負(fù)調(diào)節(jié)Keap1的表達(dá)[52]。組蛋白乙酰化由組蛋白乙?;D(zhuǎn)移酶和組蛋白去乙?;福╤istonedeacetylases,HDACs)兩個(gè)家族的酶調(diào)控。HDACs對(duì)于Nrf2的調(diào)控首先發(fā)現(xiàn)于炎癥模型中。研究發(fā)現(xiàn)脂多糖(lipopolysaccharides,LPS)通過刺激HDACs降低組蛋白H3和H4的乙?;瘜?dǎo)致Nrf2通路失活,然而通過HDACs抑制劑此過程可逆[53]。在BEAS-2B細(xì)胞中或者在HDAC2敲除的細(xì)胞中,HDACs抑制劑可使得Nrf2通路失活,這說明HDACs調(diào)節(jié)Nrf2是一個(gè)復(fù)雜的過程[50]。

由于Nrf2在生理學(xué)上的重要作用,Nrf2的調(diào)控機(jī)制的研究已成為腫瘤學(xué)和藥物學(xué)研究的熱點(diǎn)。Nrf2不僅受Keap1調(diào)控,而且受獨(dú)立于Keap1的蛋白激酶、轉(zhuǎn)錄因子以及表觀遺傳學(xué)等因素的調(diào)控。在某些情況下,Nrf2獨(dú)立于Keap1的調(diào)控機(jī)制在慢性疾病中起著至關(guān)重要的作用。因此,研究多重調(diào)控Nrf2的機(jī)制在治療慢性疾病中有著深遠(yuǎn)的意義。

2 Nrf2/Keap1信號(hào)通路的雙重功效:癌癥的化學(xué)預(yù)防和促進(jìn)作用

Nrf2對(duì)癌癥有化學(xué)預(yù)防和促進(jìn)癌癥進(jìn)程的雙重作用:一方面,Nrf2對(duì)健康機(jī)體癌變的化學(xué)預(yù)防有著至關(guān)重要的作用[54];另一方面,Nrf2異常表達(dá)和持續(xù)性活躍能促進(jìn)癌變進(jìn)程,或者減弱針對(duì)癌癥的化療和放療效果[55]。因此尋求一種在正常機(jī)體激活Nrf2信號(hào)通路且在腫瘤中抑制Nrf2信號(hào)通路的多酚化合物是目前研究的熱點(diǎn)。

2.1 Nrf2/Keap1對(duì)癌癥的化學(xué)預(yù)防作用

目前認(rèn)為Nrf2/Keap1的激活是細(xì)胞抗氧化還原反應(yīng)和抑制腫瘤的關(guān)鍵步驟。在敲除基因Nrf2-/-小鼠體內(nèi)實(shí)驗(yàn)中,利用化學(xué)毒素刺激小鼠,發(fā)現(xiàn)肺部、肝臟和腎臟中出現(xiàn)嚴(yán)重?fù)p傷。乙酰氨基酚刺激Nrf2-/-小鼠從而引起急性肝臟毒性[56];丁羥甲苯或氧過多誘導(dǎo)Nrf2-/-小鼠導(dǎo)致其肺部損害[57-58]。另外,Nrf2-/-小鼠更易得氧化相關(guān)的疾病和癌癥[59]。研究發(fā)現(xiàn)人體Nrf2的啟動(dòng)子的單核苷酸多態(tài)性使得Nrf2的表達(dá)下降,從而使肺癌患病幾率提高,具體地來說,Nrf2基因的上游啟動(dòng)子區(qū)域(rs6721961)的變異削弱了Nrf2與ARE結(jié)合力從而使得肺癌患病率顯著上升[60]。因此激活Nrf2被認(rèn)為是癌癥化學(xué)預(yù)防的有效途徑。大量的研究表明Nrf2-ARE的激活劑通過誘導(dǎo)Nrf2/Keap1的表達(dá)和提高抗氧化水平從而達(dá)到抵御相關(guān)疾病的目的[61-62]。

2.2 Nrf2/Keap1促進(jìn)癌癥的作用

2.2.1 Nrf2/Keap1促進(jìn)癌癥發(fā)展

以往對(duì)Nrf2/Keap1的研究都集中于它對(duì)細(xì)胞的抗氧化性和解毒功能,認(rèn)為其在癌癥預(yù)防中發(fā)揮著至關(guān)重要的作用。然而最新研究發(fā)現(xiàn)Nrf2持續(xù)異常激活將促進(jìn)癌癥發(fā)生同時(shí)阻礙癌癥治療,如化療和放療作用[63]。在肝、肺、乳腺、膀胱、卵巢、胰腺、子宮癌的研究中發(fā)現(xiàn)Nrf2的表達(dá)增強(qiáng)[64-66]。Nrf2/Keap1的激活受到不同因素影響,如磷脂酰肌醇激酶(PI3K/Akt)、抗細(xì)胞凋亡蛋白(B淋巴細(xì)胞瘤-2(B-cell lymphoma-2,Bcl-2))、自噬通路、炎癥因子(核轉(zhuǎn)錄因子κB(nuclear factor kappa B,NF-κB))以及致癌基因(kRas和bRaf)[64,67]。

Nrf2/Keap1上調(diào)節(jié)下游抗氧化、解毒酶的表達(dá)以及抑制細(xì)胞凋亡的功能對(duì)癌細(xì)胞起到保護(hù)和增殖作用[68]。如癌細(xì)胞中Nrf2通過PI3K/Akt通路、表皮生長(zhǎng)因子促進(jìn)癌細(xì)胞的增殖和新陳代謝[69]。此外,Nrf2/Keap1直接誘導(dǎo)抗凋亡基因Bcl-2、Bcl-xL干擾癌細(xì)胞的凋亡[70]。肝癌細(xì)胞中發(fā)現(xiàn)Nrf2持續(xù)異常激活與腫瘤的新陳代謝密切相關(guān)[66],然而敲除Nrf2的癌細(xì)胞能夠減緩細(xì)胞的轉(zhuǎn)移及腫瘤的新陳代謝[67]。

2.2.2 Nrf2/Keap1抗化療和放療的作用

治療癌癥過程中,化療和放療起著非常重要的作用。在腫瘤細(xì)胞中Nrf2/Keap1的異常激活阻礙著化療和放療的作用[71]。RNA干擾技術(shù)使Nrf2表達(dá)沉默或者Keap1過量表達(dá)導(dǎo)致癌細(xì)胞對(duì)藥物或者化療放療的敏感性[4]。目前研究者對(duì)腫瘤細(xì)胞Nrf2的異常激活從而阻礙化療和放療的現(xiàn)象提出了多種假設(shè):1)Nrf2下游抗氧化蛋白和解毒酶如HO-1和GST阻礙細(xì)胞的死亡從而起到抗化療和放療的作用[72];2)Nrf2誘導(dǎo)抗藥物蛋白(MRPs)削弱藥物對(duì)癌細(xì)胞的作用[73];3)Nrf2與細(xì)胞凋亡之間的交互作用[32];4)Nrf2誘導(dǎo)癌細(xì)胞中的蛋白酶,從而達(dá)到保護(hù)癌細(xì)胞的目的[74];5)一些抗癌藥物通過與Keap1的Cys151位點(diǎn)結(jié)合,激活Nrf2抑制某些蛋白酶從而達(dá)到抗化療的作用[75]。

目前Nrf2作為預(yù)測(cè)和評(píng)價(jià)治療癌癥是否有效的生物指標(biāo),Nrf2/Keap1是否高水平表達(dá)已經(jīng)成為臨床治療中藥物有效與否的評(píng)判標(biāo)準(zhǔn),因此對(duì)Nrf2的研究在臨床診斷和治療中發(fā)揮著至關(guān)重要的作用。

3 果蔬中多酚化合物調(diào)節(jié)Nrf2/Keap1通路

表1 果蔬中幾種典型多酚對(duì)Nrf2/Keap1通路的影響Table1 Regulatory effect of typical dietary polyphenols on Nrf2/Keap1 signaling

多酚化合物廣泛存在于水果、蔬菜等植物性食物中,具有抗炎癥、腫瘤、氧化以及治療心血管疾病和骨質(zhì)疏松等多種生物活性。多酚類植物化合物中能激活或者促進(jìn)Nrf2的表達(dá)的,稱為激活劑;而抑制或者削弱Nrf2的表達(dá)的稱為抑制劑[76]。但是隨著研究的深入,我們發(fā)現(xiàn)不同劑量的果蔬多酚在不同細(xì)胞或動(dòng)物模型中,調(diào)控Nrf2信號(hào)通路效果復(fù)雜多變。在體外實(shí)驗(yàn)中多酚化合物調(diào)控Nrf2信號(hào)通路的劑量效應(yīng)基本呈現(xiàn)倒U型曲線,即低劑量時(shí)多酚類化合物能夠激活Nrf2信號(hào)通路,當(dāng)劑量超過閾值則抑制Nrf2信號(hào)通路(表1)。

3.1 木犀草素

木犀草素是一種天然3,4,5,7-四羥基黃酮類化合物,廣泛存在于蔬菜和水果中,如芹菜、胡椒、青椒、蘋果皮和洋蔥的葉子等。在肺癌細(xì)胞A549中,木犀草素通過獨(dú)立于Keap1信號(hào)通路降低Nrf2的mRNA和蛋白質(zhì)的表達(dá)從而下調(diào)Nrf2-ARE信號(hào)通路。研究發(fā)現(xiàn)1 μmol/L的木犀草素刺激A549細(xì)胞30 min后Nrf2的mRNA水平降低了34%,且提高了A549對(duì)藥物的敏感性。然而利用RNA干擾技術(shù)使Nrf2基因在細(xì)胞中表達(dá)沉默后,木犀草素誘導(dǎo)的細(xì)胞對(duì)藥物的敏感性消失[77]。在結(jié)腸癌細(xì)胞HCT116和SW620中,木犀草素通過降低NQO1/HO-1/GSTα1/GSTα2的表達(dá)從而抑制Nrf2通路[78]。在體內(nèi)實(shí)驗(yàn)中發(fā)現(xiàn)通過木犀草素治療的小鼠的Nrf2蛋白含量降低,肝臟和腸的腫瘤變小[78]。這說明在肺癌細(xì)胞A549、結(jié)腸癌細(xì)胞HCT116和SW620以及在小鼠模型中,木犀草素作為Nrf2的抑制劑通過使Nrf2表達(dá)下降從而達(dá)到提高抗癌藥物敏感性的作用。在神經(jīng)性細(xì)胞PC12中,木犀草素通過獨(dú)立于Keap1的磷酸化通路ERK增強(qiáng)Nrf2-ARE信號(hào)通路以及下游HO-1的mRNA的表達(dá)[79]。在肝癌細(xì)胞HepG2中,木犀草素通過獨(dú)立于Keap1的磷酸化通路PI3K增強(qiáng)Nrf2的表達(dá)[80]。用1.2 mg/(kg·d)木犀草素喂養(yǎng)氧化偶氮甲烷誘導(dǎo)的小鼠腸癌模型中發(fā)現(xiàn)Nrf2表達(dá)增加從而達(dá)到治療腫瘤的目的[81]。這說明木犀草素作為Nrf2的激活劑,促進(jìn)Nrf2在細(xì)胞中的表達(dá)。

在體外實(shí)驗(yàn)中,可以發(fā)現(xiàn)1~10 μmol/L的木犀草素刺激癌細(xì)胞A549、HCT116和SW620后,降低了細(xì)胞中Nrf2蛋白的表達(dá)[75,78]。但是1.56~6.25 μmol/L的木犀草素刺激癌細(xì)胞HepG2后,發(fā)現(xiàn)其Nrf2蛋白的表達(dá)增強(qiáng)了[80]。在體內(nèi)實(shí)驗(yàn)中:用40 mg/kg的木犀草素喂養(yǎng)小鼠,發(fā)現(xiàn)抑制了Nrf2蛋白的表達(dá)[78];而用1.2 mg/kg的木犀草素喂養(yǎng)小鼠后,發(fā)現(xiàn)激活了Nrf2蛋白的表達(dá)[81]。但是0~20 μmol/L的木犀草素刺激正常細(xì)胞PC12,激活了Nrf2蛋白的表達(dá)[79](表1)。從以上數(shù)據(jù)可以看出,高劑量的木犀草素在癌細(xì)胞和體外實(shí)驗(yàn)中都是Nrf2的抑制劑,而低劑量的木犀草素則是Nrf2的激活劑。然而,木犀草素在正常細(xì)胞中對(duì)Nrf2的影響則沒有以上規(guī)律。在腸道中木犀草素以糖苷或硫酸鹽形式被吸收,雖然木犀草素在血漿中的含量較低且持續(xù)時(shí)間較短,但依舊表現(xiàn)出較強(qiáng)的生物活性。

3.2 芹黃素

芹黃素是一種天然的4,5,7-三羥基黃酮類化合物,廣泛存在于芹菜等果蔬中。大量文獻(xiàn)報(bào)道芹黃素的作用機(jī)理是通過PI3K/Akt通路抑制Nrf2[80-82]。芹黃素在肝癌細(xì)胞BEL-7402中通過負(fù)調(diào)控PI3K/Akt通路降低Nrf2的mRNA和蛋白表達(dá)從而提高其對(duì)抗腫瘤藥物敏感性[82]。芹黃素刺激胚胎成纖維細(xì)胞通過下調(diào)PI3K/PKC/p38/ERK通路使Nrf2以及下游蛋白HO-1表達(dá)下降[83]。在體內(nèi)實(shí)驗(yàn)中,通過芹黃素治療肝癌小鼠發(fā)現(xiàn)其腫瘤變小[82]。研究發(fā)現(xiàn)芹黃素刺激肝癌細(xì)胞HepG2通過PI3K通路增強(qiáng)Nrf2蛋白表達(dá)[80]。芹黃素通過CpG去甲基化削弱DNA的甲基化和組蛋白脫乙?;?,從而激活皮膚表皮JB6P+細(xì)胞Nrf2的表達(dá)[84]。芹黃素刺激肝細(xì)胞通過增強(qiáng)細(xì)胞核內(nèi)Nrf2與ARE的綁定與磷酸化ERK2從而提高GSH蛋白的表達(dá)[85]。

在體外實(shí)驗(yàn)中,10~20 μmol/L芹黃素刺激肝癌細(xì)胞BEL-7402發(fā)現(xiàn)抑制Nrf2表達(dá)[82],但是1.56~6.25 μmol/L芹黃素刺激肝癌細(xì)胞H e p G 2激活N r f 2表達(dá)[80]。5~40 μmol/L芹黃素刺激胚胎成纖維細(xì)胞發(fā)現(xiàn)抑制Nrf2信號(hào)通路[83]。0.00~6.25 μmol/L芹黃素刺激上皮細(xì)胞JB6P+、5~25 μmol/L芹黃素刺激肝細(xì)胞Hepatocyte發(fā)現(xiàn)都激活Nrf2的表達(dá)[84-85](表1)。從以上數(shù)據(jù)可以發(fā)現(xiàn):無論是在癌細(xì)胞還是正常細(xì)胞中芹黃素激活Nrf2的劑量都低于抑制Nrf2的劑量;芹黃素作為Nrf2的激活劑,刺激癌細(xì)胞的劑量比正常細(xì)胞的低。

木犀草素和芹黃素是日常飲食中微量的小分子物質(zhì)。分子結(jié)構(gòu)上木犀草素比芹黃素多一個(gè)羥基,因此木犀草素的抗氧化能力較強(qiáng)。大鼠口服單一劑量菊花提取物(200 mg/kg),其中木犀草素和芹黃素含量分別為5.2%和7.6%。芹黃素和木犀草素吸收達(dá)到最高值分別為237.6、23.03 μg·h/mL且均小于4 h(芹黃素3.9 h,木犀草素1.1 h)。這兩種多酚類化合物72 h后在糞便和尿液中總回收率低于Ⅱ相代謝產(chǎn)物50%。芹黃素和木犀草素的分布體積、腎清除率以及消除半衰期分別為13.78 L/kg、0.856 9 L/(kg/h)、3.4 h和65.12 L/kg、8.473 L/(kg/h)、2.7 h,且在濃度1.56~6.25 μmol/L范圍內(nèi),木犀草素顯示出更強(qiáng)激活Nrf2的能力[80]。

3.3 表兒茶素

表兒茶素主要存在于茶葉、蓮子皮、葡萄等果蔬中,主要通過抑制活性氧簇和丙二醛的產(chǎn)生和提高GSH-Px活性從而達(dá)到抗氧化和抗腫瘤的作用。高濃度的表兒茶素在肺癌細(xì)胞A549中通過抑制Nrf2-ARE的綁定和下游蛋白HO-1蛋白的表達(dá)從而誘導(dǎo)細(xì)胞凋亡[86]。從肉桂中提取的表兒茶素通過下調(diào)Nrf2調(diào)節(jié)酶從而抑制肺癌細(xì)胞A549中Nrf2的過量表達(dá),且提高細(xì)胞對(duì)阿霉素和依托泊苷藥物的敏感性和細(xì)胞內(nèi)的藥物累積[87]。這些結(jié)果表明表兒茶素通過降低Nrf2的過量表達(dá)從而有效降低肺癌細(xì)胞對(duì)抗癌藥物的耐藥性。目前發(fā)現(xiàn)抑制Nrf2的過量表達(dá)是協(xié)助治療肺癌的一種新方法。

通過表兒茶素誘導(dǎo)內(nèi)皮細(xì)胞發(fā)現(xiàn)GST和NQO1蛋白表達(dá)增強(qiáng),這暗示著Nrf2表達(dá)上調(diào)[88]。在狗腎細(xì)胞MDCK中,表兒茶素通過誘導(dǎo)細(xì)胞質(zhì)以及細(xì)胞核中Nrf2的表達(dá)增強(qiáng)使得抗氧化酶活性增加,利用干擾siRNA技術(shù)敲除基因Nrf2從而表兒茶素的作用消失[89]。在宮頸癌細(xì)胞HeLa中,表兒茶素增強(qiáng)Nrf2信號(hào)通路以及下游蛋白HO-1的表達(dá)以提高對(duì)藥物順鉑的敏感性[90]。表兒茶素刺激HUVEC增強(qiáng)Nrf2和HO-1的表達(dá)[91]。這些結(jié)果表明表兒茶素作為Nrf2的激活劑,可以起到抗氧化和輔助治療癌癥的作用。

在體外實(shí)驗(yàn)中,高劑量的表兒茶素(大于200 μmol/L)處理A549細(xì)胞,能夠抑制其Nrf2的表達(dá)[86],而低劑量的表兒茶素處理細(xì)胞則能夠激活Nrf2的表達(dá)[87]。如表1所示,以25~50 μmol/L的表兒茶素刺激內(nèi)皮細(xì)胞,25 μmol/L表兒茶素刺激MDCK和宮頸癌細(xì)胞,以及50~200 μmol/L的表兒茶素刺激HUVEC,這些低劑量的表兒茶素均能激活細(xì)胞中Nrf2的表達(dá)[88,90-91]。

3.4 花色苷

自然狀態(tài)下,花色素常與各種糖原結(jié)合形成糖苷的形式,稱為花色苷。目前已知近百種花色素,較為常見的花色素有6 種,即矢車菊素、飛燕草素、天竺葵素、牽牛色素、芍藥色素和錦葵色素。目前研究認(rèn)為花色苷作為Nrf2的激活劑,還沒有相關(guān)抑制Nrf2的活性的報(bào)道。紫色馬鈴薯中提取的花色苷誘導(dǎo)DMN處理的HepG2細(xì)胞,通過激活Nrf2途徑從而上調(diào)HO-1、GST和NAD(P)H表達(dá)[92]。Shih等[93]發(fā)現(xiàn)矢車菊素、飛燕草色素、錦葵色素不僅可以激活Nrf2作用于ARE,誘導(dǎo)Ⅱ相抗氧化蛋白谷胱甘肽還原酶、GSH-Px、NQO1等的表達(dá),從而抑制半胱天冬酶-3的活性,而且能抑制LPS、IFN-γ誘導(dǎo)的NF-κB活化,通過作用于PI3K和MAPKs途徑,抑制前列腺素E2和一氧化氮的產(chǎn)生。花色苷在人體上皮細(xì)胞中通過ERK1/2通路激活Nrf2從而達(dá)到抗氧化作用[94](表1)。

3.5 阿魏酸

阿魏酸含有不飽和雙鍵和羥基的酚酸結(jié)構(gòu),是蘋果、咖啡等果蔬中主要的多酚化合物。它主要的功效為抗氧化和清除自由基、抑制血栓形成、抗血小板凝聚等。在巨噬細(xì)胞Raw264.7中,阿魏酸主要通過降低Nrf2的表達(dá)從而下調(diào)NF-κB的核轉(zhuǎn)錄,且通過IKK/NF-κB的信號(hào)通路達(dá)到抗炎癥的作用[95]。研究表明HUVEC中通過阿魏酸激活PI3K和ERK信號(hào)通路使得Nrf2從細(xì)胞質(zhì)轉(zhuǎn)移到細(xì)胞核,且增強(qiáng)下游蛋白GSH和NAD(P)H表達(dá)[96]。在淋巴球細(xì)胞中阿魏酸顯著上調(diào)HO-1的mRNA以及蛋白水平,誘導(dǎo)Nrf2的核轉(zhuǎn)運(yùn)[97]。

0.2 ~5.0 μmol/L阿魏酸刺激HUVEC、0.001~0.100 μmol/L刺激淋巴細(xì)胞都是激活Nrf2的表達(dá)[96-97],但是100 μmol/L阿魏酸刺激巨噬細(xì)胞則是抑制Nrf2的表達(dá)[95](表1)。根據(jù)以上數(shù)據(jù),發(fā)現(xiàn)體外實(shí)驗(yàn)低劑量的阿魏酸在正常的細(xì)胞中是Nrf2的激活劑,高劑量的阿魏酸則為其抑制劑。

目前發(fā)現(xiàn)果蔬中的多酚化合物大部分雙向調(diào)節(jié)Nrf2,在體外實(shí)驗(yàn)中,同種多酚化合物作為Nrf2抑制劑濃度普遍比激活劑濃度高。推測(cè)果蔬多酚化合物雙向調(diào)節(jié)Nrf2劑量呈倒U型曲線,即當(dāng)濃度低于閾值對(duì)于Nrf2起到激活作用,但超過閾值則起抑制作用。體內(nèi)實(shí)驗(yàn)發(fā)現(xiàn)當(dāng)攝入50 mg多酚化合物糖苷配基時(shí),總代謝物在血漿中的濃度為0~4 μmol/L,尿排泄為攝入劑量的0.3%~43.0%,且不同的多酚化合物的代謝濃度不同:其中吸收最好的多酚是沒食子酸和異黃酮,其次是兒茶素、黃烷酮和槲皮素糖苷,但具有不同的動(dòng)力學(xué);吸收最少的多酚是原花色素、沒食子?;膬翰杷睾突ㄇ嗨豙98]。體內(nèi)實(shí)驗(yàn)中多酚類物質(zhì)被動(dòng)物或人體吸收后的血清濃度與大部分體外實(shí)驗(yàn)細(xì)胞模型起作用的濃度相差較大,這可能是目前制約多酚在人體臨床上應(yīng)用的最大原因。

4 結(jié) 語

果蔬多酚化合物不僅雙向調(diào)控Nrf2/Keap1信號(hào)通路,并且調(diào)控炎癥通路、細(xì)胞凋亡和自噬,Nrf2/Keap1和其他通路之間的交互作用的機(jī)制研究能夠給預(yù)防和治療慢性疾病帶來新方法。所以Nrf2/Keap1與炎癥通路、細(xì)胞凋亡和自噬之間的交互作用也是目前研究的熱點(diǎn)。NF-κB和Nrf2之間的相互作用影響細(xì)胞黏附分子和谷胱甘肽的體內(nèi)平衡[99]。NF-κB的異常激活與炎癥和疾病的產(chǎn)生有著密不可分的聯(lián)系[100]。Nrf2是重要的轉(zhuǎn)錄和免疫調(diào)節(jié)因子,它通常能抑制或者抵消NF-κB信號(hào)。例如敲除Nrf2的小鼠引起炎癥的幾率更大[101]。最新研究發(fā)現(xiàn)NF-κB能夠直接抑制Nrf2的轉(zhuǎn)錄水平,NF-κB與Nrf2位點(diǎn)存在CBP競(jìng)爭(zhēng)從而影響Nrf2信號(hào)通路的表達(dá)[102]。

一系列研究發(fā)現(xiàn)Nrf2通過誘導(dǎo)Ⅱ相酶表達(dá)來調(diào)節(jié)細(xì)胞凋亡與自噬。由于Keap1是Nrf2信號(hào)通路泛素化的必要元件,任何影響Keap1的因素都影響Nrf2-ARE通路。Keap1與細(xì)胞凋亡密切相關(guān)的PGAM5(phosphoglycerate mutase 5)、ProTα、FAC1(fetal Alz-50 clone1)、P62(SQSTM1)蛋白結(jié)合,勢(shì)必會(huì)引起Nrf2信號(hào)通路與細(xì)胞凋亡之間的交互作用[103]。另外,有研究發(fā)現(xiàn)Nrf2阻礙LPS誘導(dǎo)的PC12細(xì)胞自噬[104]。

應(yīng)用Nrf2調(diào)節(jié)體內(nèi)氧化平衡,已經(jīng)成為疾病預(yù)防以及靶位點(diǎn)治療的新策略。隨著研究的深入,發(fā)現(xiàn)Nrf2在癌癥治療上有雙重作用,Nrf2的抑制劑和激活劑在預(yù)防和治療癌癥上具有重要的意義。多酚化合物作為日常飲食果蔬中富含的成分,對(duì)于誘導(dǎo)抗氧化蛋白和Ⅱ相代謝酶的表達(dá)、減輕氧化應(yīng)激損傷起著積極有效的作用。大量的研究表明果蔬多酚化合物作用于Nrf2轉(zhuǎn)錄、翻譯、降解以及細(xì)胞核運(yùn)輸階段(圖3),但是其具體的分子機(jī)制以及劑量效應(yīng)仍需要更加深入的闡明。這對(duì)拓展果蔬多酚化合物最新的研究領(lǐng)域和范圍具有重要意義。

圖3 Nrf2轉(zhuǎn)錄、翻譯、表達(dá)機(jī)理Fig.3 Mechanisms of Nrf2 transcription, translation and expression

[1] ITOH K, ISHII T, WAKABAYASHI N, et al. Regulatory mechanisms of cellular response to oxidative stress[J]. Free Radical Research,1999, 31(4): 319-324. DOI:10.1080/10715769900300881.

[2] MIMURA J, ITOH K. Role of Nrf2 in the pathogenesis of atherosclerosis[J]. Free Radical Biology & Medicine, 2015, 88: 221-232. DOI:10.1016/j.freeradbiomed.2015.06.019.

[3] TAO S, PARK S L, MR D L V, et al. Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2[J]. Free Radical Biology & Medicine,2015, 89: 690-700. DOI:10.1016/j.freeradbiomed.2015.08.028.

[4] CHO J M, MANANDHAR S, LEE H R, et al. Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin:implication to cancer cell resistance[J]. Cancer Letters, 2008, 260(1/2):96-108. DOI:10.1016/j.canlet.2007.10.022.

[5] KIM W D, KIM Y W, CHO I J, et al. E-cadherin inhibits nuclear accumulation of Nrf2: implications for chemoresistance of cancer cells[J]. Journal of Cell Science, 2012, 125(5): 1284-1295.DOI:10.1242/jcs.095422.

[6] ZHANG P, SINGH A, YEGNASUBRAMANIIAN S, et al. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth[J]. Molecular Cancer Therapeutics, 2010, 9(2): 336-346.DOI:10.1158/1535-7163.MCT-09-0589.

[7] SUKUMARIRAMESH S, PRASSAD N, ALLEYNE C H, et al.Overexpression of Nrf2 attenuates carmustine-induced cytotoxicity in U87MG human glioma cells[J]. BMC Cancer, 2015, 15(1): 1-10.DOI:10.1186/s12885-015-1134-z.

[8] FRAGA C G. Plant polyphenols: how to translate their in vitro antioxidant actions to in vivo conditions[J]. IUBMB Life, 2007,59(4/5): 308-315. DOI:10.1080/15216540701230529.

[9] FRASER G E. Vegetarian diets: what do we know of their effects on common chronic diseases?[J]. American Journal of Clinical Nutrition,2009, 89(5): 1607S-1612S. DOI:10.3945/ajcn.116.146357.

[10] 何金蓮. 五味子經(jīng)Nrf2信號(hào)通路調(diào)節(jié)肝臟藥物代謝酶及轉(zhuǎn)運(yùn)體的研究[D]. 廣州: 廣州中醫(yī)藥大學(xué), 2014: 1-12.

[11] BAIRD L, SWIFT S, LLèRES D, et al. Monitoring Keap1-Nrf2 interactions in single live cells[J]. Biotechnology Advances, 2014,32(6): 1133-1144. DOI:10.1016/j.biotechadv.2014.03.004.

[12] ZHANG D D, LO S C, CROSS J V, et al. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex[J]. Molecular & Cellular Biology, 2004, 24(24): 10941-10953. DOI:10.1128/MCB.24.24.10941-10953.2004.

[13] KOBAYASHI A, KANG M I, OKAWA H, et al. Oxidative stress sensor keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2[J]. Molecular & Cellular Biology, 2004, 24(16): 7130-7139. DOI:10.1128/MCB.24.16.7130-7139.2004.

[14] CULLINAN S B, GORDAN J D, JIN J, et al. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase[J]. Molecular & Cellular Biology, 2004, 24(19): 8477-8486. DOI:10.1128/MCB.24.19.8477-8486.2004.

[15] FURUKAWA M, YUE X. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase[J]. Molecular & Cellular Biology, 2005, 25(1): 162-171.DOI:10.1128/MCB.25.1.162-171.2005.

[16] CANNING P, SORRELL F J, BULLOCK A N. Structural basis of Keap1 interactions with Nrf2[J]. Free Radical Biology & Medicine,2015, 88: 101-107. DOI:10.1016/j.freeradbiomed.2015.05.034.

[17] 宋亞頎, 王漢東. 轉(zhuǎn)錄因子NF-E2相關(guān)因子2-抗氧化轉(zhuǎn)錄元件信號(hào)路徑細(xì)胞保護(hù)作用的研究進(jìn)展[J]. 醫(yī)學(xué)研究生學(xué)報(bào), 2009, 22(4):431-433; 437. DOI:10.3969/j.issn.1008-8199.2009.04.026.

[18] ITOCH K, WAKABAYASHI N, KATOH Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain[J]. Genes & Development,1999, 13(1): 76-86. DOI:10.1101/gad.13.17.2328.

[19] ZHANG D D, HANNINK M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemo preventive agents and oxidative stress[J]. Molecular & Cellular Biology, 2003, 23(22): 8137-8151.DOI:10.1128/MCB.23.22.8137-8151.2003.

[20] SUN Zheng, WU Tongde, ZHAO Fei, et al. KPNA6 (importin α7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response[J]. Molecular & Cellular Biology, 2011, 31(9):1800-1811. DOI:10.1128/MCB.05036-11.

[21] SUN Z, ZHANG S, CHAN J Y, et al. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2[J]. Molecular & Cellular Biology, 2007, 27(18):6334-6349. DOI:10.1128/MCB.00630-07.

[22] BAIRD L, LLERES D, SWIFT S, et al. Regulatory fl exibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex[J]. Proceedings of the National Academy of Sciences, 2013, 110(38): 15259-15264. DOI:10.1073/pnas.1305687110.

[23] HARDER B, JIANG T, WU T D, et al. Molecular mechanisms of Nrf2 regulation and how these inf l uence chemical modulation for disease intervention[J]. Biochemical Society Transactions, 2015, 43(4):680-686. DOI:10.1042/BST20150020.

[24] DINKOVAI-KOSTOVA A T, ABRAMOV A Y. The emerging role of Nrf2 in mitochondrial function[J]. Free Radical Biology & Medicine,2015, 88: 179-188. DOI:10.1016/j.freeradbiomed.

[25] RACHAKONDA G, XIONG Y, SEKHAR K R, et al. Covalent modif i cation at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3[J]. Chemical Research in Toxicology, 2008,21(3): 705-710. DOI:10.1021/tx700302s.

[26] GAO L, WANG J K, SEKHAR K R, et al. Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3[J]. Journal of Biological Chemistry, 2007,282(4): 2529-2537. DOI:10.1074/jbc.M607622200.

[27] SUZUKI T, YAMAMOTO M. Molecular basis of the Keap1-Nrf2 system[J]. Free Radical Biology & Medicine, 2015, 88: 93-100.DOI:10.1016/j.freeradbiomed.2015.06.006.

[28] NGUYEN T, SHERRATT P J, HUANG H C, et al. Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. degradation of Nrf2 by the 26 Sproteasome[J]. Journal of Biological Chemistry, 2003, 278(7):4536-4541. DOI:10.1074/jbc.M207293200.

[29] JAIN A K, JAISWAL A K. Phosphorylation of tyrosine 568 controls nuclear export of Nrf2[J]. Journal of Biological Chemistry, 2006,281(17): 12132-12142. DOI:10.1074/jbc.M511198200.

[30] HUANG H C, NGUYEN T, PICKETT C B. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response elementmediated transcription[J]. Journal of Biological Chemistry, 2002,277(45): 42769-42774. DOI:10.1074/jbc.M206911200.

[31] LI B J, WANG X Y, RASHEED N, et al. Distinct roles of c-Abl and Atm in oxidative stress response are mediated by protein kinase C delta[J]. Genes & Development, 2004, 18(15): 1824-1837.DOI:10.1101/gad.1223504.

[32] ZHU J Y, WANG H H, CHEN F, et al. An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy[J]. Free Radical Biology & Medicine,2016, 99: 544-556. DOI:10.1016/j.freeradbiomed.2016.09.010.

[33] NUMAZAWA S, ISHIKAWA M, YOSHID A, et al. Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress[J]. American Journal of Physiology-Cell Physiology,2003, 285(2): 334-342. DOI:10.1152/ajpcell.00043.2003.

[34] ALAM J, WICKS C, STEWART D, et al. Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. role of p38 kinase and Nrf2 transcription factor[J].Journal of biological Chemistry, 2000, 275(36): 27694-27702.DOI:10.1074/jbc.m004729200.

[35] TIAN H, ZHANG D, GAO Z, et al. MDA-7/IL-24 inhibits Nrf2-mediated antioxidant response through activation of p38 pathway and inhibition of ERK pathway involved in cancer cell apoptosis[J].Cancer Gene Therapy, 2014, 21(10): 416-426. DOI:10.1038/cgt.2014.45.

[36] YU R, CHEN C, MO Y Y, et al. Activation of mitogen-activated protein kinase pathways induces antioxidant response elementmediated gene expression via a Nrf2-dependent mechanism[J]. Journal of Biological Chemistry, 2000, 275(51): 39907-39913. DOI:10.1074/jbc.m004037200.

[37] NAKASO K, YANO H, FUKUHARA Y, et al. PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells[J]. Febs Letters, 2003, 546(2): 181-184.DOI:10.1016/s0014-5793(03)00517-9.

[38] MARTIN C, PAZ-ARES J. MYB transcription factors in plants[J]. Trends in Genetics, 1997, 13(2): 67-73. DOI:10.1016/S0168-9525(96)10049-4.

[39] BAIRD L, DINKOVAINK-KOSTOVA A T. The cytoprotective role of the Keap1-Nrf2 pathway[J]. Archives of Toxicology, 2011, 85(4):241-272. DOI:10.1007/s00204-011-0674-5.

[40] KIM J H, YU S W, CHEN J D, et al. The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains[J]. Oncogene, 2012, 32(4): 514-527.DOI:10.1038/onc.2012.59.

[41] HAYES J D, MCMAHON M, CHOWDHRY S, et al. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway[J]. Antioxidants & Redox Signaling, 2010, 13(11): 1713-1748. DOI:10.1089/ars.2010.3221.

[42] TANIGAWA S, LEE C H, LIN C S, et al. Jun dimerization protein 2 is a critical component of the Nrf2/Maf K complex regulating the response to ROS homeostasis[J]. Cell Death & Disease, 2013, 4(11):175-177. DOI:10.1038/cddis.2013.448.

[43] TSUJI Y. JunD activates transcription of the human ferritin H gene through an antioxidant response element during oxidative stress[J].Oncogene, 2005, 24(51): 7567-7578. DOI:10.1038/sj.onc.1208901.

[44] CHEN W M, SUN Z, WANG X J, et al. Direct interaction between Nrf2 and p21Cip1/WAF1upregulates the Nrf2-mediated antioxidant response[J]. Molecular Cell, 2009, 34(6): 663-673. DOI:10.1016/j.molcel.2009.04.029.

[45] FARAONIO R, VERGARA P, MARZO D D, et al. p53 suppresses the Nrf2-dependent transcription of antioxidant response genes[J]. Journal of Biological Chemistry, 2006, 281(52): 39776-39784. DOI:10.1074/jbc.M605707200.

[46] YU M, LI H, LIU Q M, et al. Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway[J]. Cellular Signalling, 2011, 23(5):883-892. DOI:10.1016/j.cellsig.2011.01.014.

[47] ZHANG Q, KLEEBERGER S R, REDDY S P. DEP-induced fra-1 expression correlates with a distinct activation of AP-1-dependent gene transcription in the lung[J]. Ajp Lung Cellular & Molecular Physiology, 2004, 286(2): 427-436. DOI:10.1152/ajplung.00221.2003.

[48] IWASAKI K, HAILEMARIAM K, TSUJI A Y. PIAS3 interacts with ATF1 and regulates the human ferritin H gene through an antioxidantresponsive element[J]. Journal of Biological Chemistry, 2007, 282(31):22335-22343. DOI:10.1074/jbc.M701477200.

[49] OOI S K, BESTOR T H. The colorful history of active DNA demethylation[J]. Cell, 2008, 133(7): 1145-1148. DOI:10.1016/j.cell.2008.06.009.

[50] KHOR T O, FUENTES F, SHU L, et al. Epigenetic DNA methylation of antioxidative stress regulator NRF2 in human prostate cancer[J]. Cancer Prevention Research, 2014, 7(12): 1186-1197.DOI:10.1158/1940-6207.CAPR-14-0127.

[51] GUO Y, YU S W, ZHANG C Y, et al. Epigenetic regulation of Keap1-Nrf2 signaling[J]. Free Radical Biology & Medicine, 2015, 88: 337-349.DOI:10.1016/j.freeradbiomed.2015.06.013.

[52] SHANKAR S, KUMAR D, SRIVASTAVA R K. Epigenetic modif i cations by dietary phytochemicals: implications for personalized nutrition[J]. Pharmacology & Therapeutics, 2013, 138(1): 1-17.DOI:10.1016/j.pharmthera.2012.11.002.

[53] LIU G H, QU J, SHEN X. NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK[J]. Biochimica et Biophysica Acta, 2008, 1783(5):713-727. DOI:10.1016/j.bbamcr.2008.01.002.

[54] LAU A, ZHENG Y, TAO S S, et al. Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner[J]. Molecular & Cellular Biology, 2013, 33(12): 2436-2446.DOI:10.1128/MCB.01748-12.

[55] HU X F, YAO J, GAO S G, et al. Nrf2 overexpression predicts prognosis and 5-FU resistance in gastric cancer[J]. Asian Pacific Journal of Cancer Prevention Apjcp, 2013, 14(9): 5231-5235.DOI:10.7314/APJCP.2013.14.9.5231.

[56] ENOMOTO A, ITOH K, NAGAYOSHI E, et al. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes[J]. Toxicological Sciences, 2001, 59(1): 169-177. DOI:10.1093/toxsci/59.1.169.

[57] CHAN K M, KAN Y W. Nrf2 is essential for protection against acute pulmonary injury in mice[J]. Proceedings of the National Academy of Sciences, 1999, 96(22): 12731-12736. DOI:10.1073/pnas.96.22.12731.

[58] CHO H Y, JEDLICKAA A E, REDDY S P M, et al. Role of NRF2 in protection against hyperoxic lung injury in mice[J]. American Journal of Respiratory Cell & Molecular Biology, 2012, 26(2): 175-182.DOI:10.1165/ajrcmb.26.2.4501.

[59] XUE P, HOU Y Y, CHEN Y Y, et al. Adipose def i ciency of Nrf2 in ob/ob mice results in severe metabolic syndrome[J]. Diabetes, 2013,62(3): 845-854. DOI:10.2337/db12-0584.

[60] SUZUKI T, SHIBATAA T, TAKAYA K, et al. Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels[J]. Molecular & Cellular Biology, 2013, 33(12): 2402-2412.DOI:10.1128/MCB.00065-13.

[61] LEE S, SURHY J. Nrf2 as a novel molecular target for chemoprevention[J]. Cancer Letters, 2005, 224(2): 171-184. DOI:10.1016/j.canlet.2004.09.042.

[62] HAYES J D, MCMAHON M, CHOWDHRY S, et al. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway[J]. Antioxidants & Redox Signaling, 2010, 13(11): 1713-1748. DOI:10.1089/ars.2010.3221.

[63] MOON E J, GIACCIA A. Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment[J]. Free Radical Biology & Medicine, 2015, 79: 292-299.DOI:j.freeradbiomed.2014.11.009.

[64] HAYES A J, SKOURAS C, HAUGK B, et al. Keap1-Nrf2 signalling in pancreatic cancer[J]. International Journal of Biochemistry & Cell Biology, 2015, 65: 288-299. DOI:10.1016/j.biocel.2015.06.017.

[65] SINGH A, BOLDINADAMSKY S, THIMMULAPA R K, et al.RNAi-mediated silencing of nuclear factor erythroid-2: related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy[J]. Cancer Research, 2008,68(19): 7975-7984. DOI:10.1158/0008-5472.

[66] DECALF J, DA SILVA R B, WERNEKE S, et al. Comment on“NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis”[J]. Science Translational Medicine, 2016, 8: 334-351.DOI:10.1126/scitranslmed.aad6095.

[67] KANSANEN E, KUOSMANEN S M, LEINONEN H, et al. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer[J]. Redox Biology, 2013, 1(1): 45-49. DOI:10.1016/j.redox.2012.10.001.

[68] GANAN-GOMEZ I, WEI Y, YANG H, et al. Oncogenic functions of the transcription factor Nrf2[J]. Free Radical Biology & Medicine,2013, 65: 750-764. DOI:j.freeradbiomed.2013.06.041.

[69] YAMADORI T, ISHII Y, HOMMA S, et al. Molecular mechanisms for the regulation of Nrf2-mediated cell proliferation in non-small-cell lung cancers[J]. Oncogene, 2012, 31(45): 4768-4777. DOI:10.1038/onc.2011.628.

[70] JIA Y, CHEN J, ZHU H, et al. Aberrantly elevated redox sensing factor Nrf2 promotes cancer stem cell survival via enhanced transcriptional regulation of ABCG2 and Bcl-2/Bmi-1 genes[J]. Oncology Reports,2015, 34(5): 2296-2304. DOI:10.3892/or.2015.4214.

[71] JI X J, WANG H D, ZHU J H, et al. Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1α[J]. International Journal of Cancer, 2014, 135(3): 574-584.DOI:10.1002/ijc.28699.

[72] FURFARO A L, PIRAS S, PASSALACQUA M, et al. HO-1 up-regulation: a key point in high-risk neuroblastoma resistance to bortezomib[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2014, 1842(4): 613-622. DOI:10.1016/j.bbadis.2013.12.008.

[73] YANG B, MA Y F, LIU Y. Elevated expression of Nrf-2 and ABCG2 involved in multi-drug resistance of lung cancer SP cells[J]. Drug Research, 2014, 65(10): 526-531. DOI:10.1055/s-0034-1390458.

[74] ARLT A, BAUERR I, SCHAFMAYER C, et al. Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2(Nrf2)[J]. Oncogene, 2009, 28(45): 3983-3996. DOI:10.1038/onc.2009.264.

[75] WANG X J, LI Y Y, LUO L, et al. Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs[J]. Free Radical Biology & Medicine, 2014, 70(3):68-77. DOI:10.1016/j.freeradbiomed.2014.02.010.

[76] SURH Y J. Cancer chemoprevention with dietary phytochemicals[J].Nature Reviews Cancer, 2003, 3(10): 768-780. DOI:10.1038/nrc1189.

[77] TANG X W, WANG H Y, FAN L F, et al. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs[J]. Free Radical Biology & Medicine, 2011, 50(11): 1599-1609.DOI:10.1016/j.freeradbiomed.2011.03.008.

[78] CHIAN S, LI Y Y, WANG X J, et al. Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway[J]. Asian Pacific Journal of Cancer Prevention Apjcp, 2014, 15(6): 2911-2916. DOI:10.7314/APJCP.2014.15.6.2911.

[79] LIN C W, WU M J, LIU I Y C, et al. Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression[J]. Journal of Agricultural and Food Chemistry, 2010, 58(7): 4477-4486. DOI:10.1021/jf904061x.

[80] PAREDES-GONZALEZ X, FUENTES F, JEFFERY S, et al.Induction of Nrf2-mediated gene expression by dietary phytochemical flavones apigenin and luteolin[J]. Biopharmaceutics & Drug Disposition, 2015, 36(7): 440-451. DOI:10.1002/bdd.1956.

[81] PANDURANGAN A K, ANANDA SADAGOPAN S K,DHAMALINGAMP, et al. Luteolin, a bioflavonoid inhibits azoxymethane-induced colorectal cancer through activation of Nrf2 signaling[J]. Toxicology Mechanisms & Methods, 2014, 24(1): 13-20.DOI:10.3109/15376516.2013.843111.

[82] GAO A M, ZHANG X Y, KE Z P, et al. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway[J].Carcinogenesis, 2013, 32(8): 241-247. DOI:10.1093/carcin/bgt108.

[83] ABATE A, YANG G, WONGR J, et al. Apigenin decreases heminmediated heme oxygenase-1 induction[J]. Free Radical Biology &Medicine, 2005, 39(6): 711-718. DOI:10.1002/bdd.1956.

[84] PAREDES-GONZALEZX, FUENTES F, SU Z Y, et al. Apigenin reactivates Nrf2 anti-oxidative stress signaling in mouse skin epidermal JB6P+ cells through epigenetics modifications[J]. The AAPS Journal,2014, 16(4): 727-735. DOI:10.1208/s12248-014-9613-8.

[85] HUANG C S, LII C K, LIN A H, et al. Protection by chrysin, apigenin,and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes[J]. Archives of Toxicology, 2013, 87(1): 167-178. DOI:10.1007/s00204-008-0332-8.

[86] KWEON M H, ADHAMI V M, LEE J S, et al. Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate[J]. Journal of Biological Chemistry, 2006, 281(44): 33761-33772. DOI:10.1074/jbc.M604748200.

[87] SAHIN K, TUZCU M, GENCOGLU H, et al. Epigallocatechin-3-gallate activates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats[J]. Life Sciences, 2010, 87(7/8): 240-245.DOI:10.1016/j.lfs.2010.06.014.

[88] HAN S G, HAN S S, TOBOREK M, et al. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes[J]. Toxicology &Applied Pharmacology, 2012, 261(2): 181-188. DOI:10.1016/j.taap.2012.03.024.

[89] KANLAYA R, KHAMCHUN S, KAPINCHARANON C, et al.Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition(EMT) of renal tubular cells[J]. Scientific Reports, 2016, 6: 1-13.DOI:10.1038/srep30233.

[90] KILIC U, SAHIN K, TUZCU M, et al. Enhancement of cisplatin sensitivity in human cervical cancer: epigallocatechin-3-gallate[J].Frontiers in Nutrition, 2014, 1: 28-37. DOI:10.3389/fnut.2014.00028.

[91] YANG G Z, WANG Z J, BAI F, et al. Epigallocatechin-3-gallate protects HUVECs from PM2.5-induced oxidative stress injury by activating critical antioxidant pathways[J]. Molecules, 2015, 20(4):6626-6639. DOI:10.3390/molecules20046626.

[92] HWANG Y P, CHIO J H, YUN H J, et al. Anthocyanins from purple sweet potato attenuate dimethylnitrosamine-induced liver injury in rats by inducing Nrf2-mediated antioxidant enzymes and reducing COX-2 and iNOS expression[J]. Food & Chemical Toxicology, 2011, 49(1):93-99. DOI:10.1016/j.fct.2010.10.002.

[93] SHIH P H, YEH C T, YENG C. Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis[J]. Journal of Agricultural and Food Chemistry, 2007, 55(23): 9427-9435. DOI:10.1021/jf071933i.

[94] CIMINO F, SPECIALE A, ANWAR S, et al. Anthocyanins protect human endothelial cells from mild hyperoxia damage through modulation of Nrf2 pathway[J]. Genes & Nutrition, 2013, 8(4): 391-399. DOI:10.1007/s12263-012-0324-4.

[95] MA Z C, HONG Q, WANG Y G, et al. Ferulic acid protects human umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways[J]. Biological & Pharmaceutical Bulletin, 2009,33(1): 29-34. DOI:10.1248/bpb.33.29.

[96] MA Z C, HONG Q, WANG Y G, et al. Ferulic acid induces heme oxygenase-1 via activation of ERK and Nrf2[J]. Drug Discoveries &Therapeutics, 2011, 5(6): 299-305. DOI:10.5582/ddt.2011.v5.6.299.

[97] LAMPIASI N, MONTANA G. The molecular events behind ferulic acid mediated modulation of IL-6 expression in LPS-activated Raw264.7 cells[J]. Immunobiology, 2015, 221(3): 486-493.DOI:10.1016/j.imbio.2015.11.001.

[98] MANACH C, WILLIAMSON G C, SCALBERT A, et al.Bioavailability and bioeff i cacy of polyphenols in humans I. review of 97 bioavailability studies[J]. American Journal of Clinical Nutrition,2005, 81(Suppl 1): 230S-242S. DOI:10.1021/jo070579k.

[99] YANG H, MAGILNICK N, LEE C, et al. Nrf1 and Nrf2 regulate rat glutamate-cysteine ligase catalytic subunit transcription indirectly via NF-κB and AP-1[J]. Molecular & Cellular Biology, 2005, 25(14):5933-5946. DOI:10.1128/MCB.25.14.5933-5946.2005.

[100] YAMAMOTO Y, GAYNORA R B. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inf l ammation and cancer[J].Journal of Clinical Investigation, 2001, 107(2): 135-142. DOI:10.1172/JCI11914.

[101] ITOH K, MOCHIZUKI M, ISHII Y, et al. Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxydelta(12,14)-prostaglandin j(2)[J]. Molecular & Cellular Biology,2004, 24(1): 36-45. DOI:10.1128/MCB.24.1.36-45.2004.

[102] WU T Y, KHOR T O, SU Z Y, et al. Epigenetic Modif i cations of Nrf2 by 3,3’-diindolylmethane in vitro in TRAMP C1 cell line and in vivo TRAMP prostate tumors[J]. The AAPS Journal, 2013, 15(3): 864-874.DOI:10.1208/s12248-013-9493-3.

[103] STEPKOWSKI T M,KRUSZESKI M K. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis[J]. Free Radical Biology & Medicine, 2011, 50(9):1186-1195. DOI:10.1016/j.freeradbiomed.2011.01.033.

[104] KHODAGHOLI F, TUSI S K. Stabilization of Nrf2 by tBHQ prevents LPS-induced apoptosis in differentiated PC12 cells[J]. Molecular and Cellular Biochemistry, 2011, 354(1): 97-112. DOI:10.1007/s11010-011-0809-2.

猜你喜歡
草素木犀兒茶素
超高效液相色譜法測(cè)定茶葉中的兒茶素
木犀草素通過上調(diào)microRNA-34a-5p誘導(dǎo)肺癌細(xì)胞株H460凋亡的研究
響應(yīng)面法優(yōu)化鳳尾草中木犀草素的酶法提取工藝
中成藥(2017年12期)2018-01-19 02:06:56
英雄降獸木犀舞
西江月(2017年4期)2017-11-22 07:24:09
YT星球的少年
木犀草素抑制酪氨酸酶活性的分子機(jī)制
全甲基化沒食子兒茶素沒食子酸酯的制備
兒茶素酶促制備茶黃素的研究進(jìn)展
茶葉通訊(2014年2期)2014-02-27 07:55:38
大孔吸附樹脂富集酯型兒茶素
木犀草素-Al3+配合物的光譜分析
伊宁县| 全椒县| 山丹县| 辽阳市| 二连浩特市| 眉山市| 额济纳旗| 图片| 邛崃市| 平江县| 壶关县| 金阳县| 牡丹江市| 沧源| 永修县| 从江县| 资阳市| 托里县| 山西省| 扎赉特旗| 安福县| 巴彦县| 土默特左旗| 松溪县| 平舆县| 庆元县| 新巴尔虎右旗| 沂南县| 黄山市| 故城县| 德钦县| 商水县| 萝北县| 普格县| 普兰店市| 冕宁县| 枣强县| 凌海市| 延寿县| 安庆市| 来凤县|