柴謙益+鄭文斌+潘捷凱+陸紹彬+溫積群
摘 要: 針對智能配電網(wǎng)傳統(tǒng)保護方法整定復(fù)雜、容錯和適應(yīng)性差等問題,基于大數(shù)據(jù)分析,提出并設(shè)計一套智能配電網(wǎng)狀態(tài)監(jiān)測及故障處理方法。該方法先后經(jīng)過數(shù)據(jù)預(yù)處理、數(shù)據(jù)融合、數(shù)據(jù)分析與可視化以及狀態(tài)辨識與處理共4個環(huán)節(jié),將多電氣特征量融合轉(zhuǎn)變成為單個綜合特征量,監(jiān)測配電網(wǎng)運行狀態(tài),并能根據(jù)各個節(jié)點關(guān)聯(lián)情況和局部異常因子大小實現(xiàn)對智能配電網(wǎng)故障區(qū)域的判定和定位。經(jīng)RTDS半實物閉環(huán)測試,故障判定和定位準確性及可靠性較高,具有一定的參考價值。
關(guān)鍵詞: 智能配電網(wǎng); 保護方法; 大數(shù)據(jù)分析; 狀態(tài)監(jiān)測; 故障定位; 故障處理
中圖分類號: TN915?34; TP393 文獻標識碼: A 文章編號: 1004?373X(2018)04?0105?04
Abstract: In allusion to the problems of complex setting, poor fault tolerance and poor adaptability of the traditional smart distribution network protection methods, a condition monitoring and fault processing method of smart distribution network is proposed and designed based on big data analysis. In this method, four procedures of data preprocessing, data fusion, data analysis and visualization, and condition identification and processing are performed to make multi?electrical characteristic quantities fused and transformed into single comprehensive characteristic quantity. The operation state of distribution network is monitored, and the judgment and location of fault area in smart distribution network are realized according to the correlation condition of nodes and the values of local outlier factors. The RTDS semi?object closed?loop test was carried out. The results show that the method has high accuracy and reliability of fault judgment and location, which also has a certain reference value.
Keywords: smart distribution network; protection method; big data analysis; condition monitoring; fault location; fault processing
智能配電網(wǎng)中引入新能源類DG容易在局部區(qū)域產(chǎn)生雙向不定潮流,不僅使網(wǎng)絡(luò)結(jié)構(gòu)復(fù)雜化,改變配電網(wǎng)的眾多故障特性,還給保護控制設(shè)計提出了一定的挑戰(zhàn)[1?2]。而大多數(shù)保護方法的故障判據(jù)均使用小樣本的單一電氣特征量,整定所需計算較為復(fù)雜,且在運行環(huán)境變化時需要重新進行整定,保護可靠性方面也存在著一定的風(fēng)險。在通信或傳感器異常時,也容易產(chǎn)生誤動或拒動保護[3?6]。
在智能配電網(wǎng)中加入大量傳感設(shè)備,采集、上傳并分析運行數(shù)據(jù),形成智能配電網(wǎng)的大數(shù)據(jù)。目前已被用于用電行為分析、負荷預(yù)測等應(yīng)用中,潛力較大且也為配電網(wǎng)保護方法提供了一個新的思路[7?10]。因此,本文基于大數(shù)據(jù)分析設(shè)計了一種智能配電網(wǎng)狀態(tài)監(jiān)測及故障處理方法。該方法將多電氣特征量融合轉(zhuǎn)變成為單個綜合特征量,監(jiān)測配電網(wǎng)運行狀態(tài)。并能根據(jù)各個節(jié)點關(guān)聯(lián)情況和局部異常因子大小對故障區(qū)域進行判定及定位,其準確性與可靠性較高,能為類似基于大數(shù)據(jù)的智能配電網(wǎng)狀態(tài)監(jiān)測及相應(yīng)的故障處理提供技術(shù)支持。
1 狀態(tài)監(jiān)測及相應(yīng)故障處理方案設(shè)計
本文方法的處理流程如圖1所示,其分為數(shù)據(jù)預(yù)處理、數(shù)據(jù)融合、數(shù)據(jù)分析與可視化、狀態(tài)辨識與處理4個環(huán)節(jié)。
2 狀態(tài)監(jiān)測及相應(yīng)故障處理算法設(shè)計
2.1 數(shù)據(jù)預(yù)處理
數(shù)據(jù)預(yù)處理用于對各傳感設(shè)備所上傳的原始數(shù)據(jù)進行初步篩選和預(yù)處理,減少無關(guān)數(shù)據(jù)量并產(chǎn)生所需的初始特征量矩陣。該環(huán)節(jié)主要包括選取特征量、構(gòu)建關(guān)聯(lián)矩陣、處理區(qū)域差分。選取特征量過程中,本文選取的電氣特征量為電流與功率。其中,涵蓋了三相電流、負序電流、及零序電流和相應(yīng)的有(無)功功率。
構(gòu)建關(guān)聯(lián)矩陣,其過程為:首先對配電網(wǎng)中的各終端節(jié)點Ej進行編號,節(jié)點間的區(qū)域Zi同樣也進行編號,最終根據(jù)表1所示的規(guī)則構(gòu)建矩陣。
4) 最后獲得降維后的二維空間表示[M=x1x2]。
離群點檢測過程采用的是局部異常因子的相關(guān)檢測方法(基于密度),檢測對象的LOF數(shù)值與離群點的離群程度成正相關(guān),若數(shù)值約為1則離群點不存在。
2.4 故障判定與處理
由于配電網(wǎng)運行也會發(fā)生由傳感器故障而導(dǎo)致的保護誤判甚至是誤動。因此,本文設(shè)定單一類型觸發(fā)故障條件(傳感器、電力)并進行處理,所需的判據(jù)如下:滿足故障啟動判據(jù),然而廣義節(jié)點處的LOF并未滿足整定閾值。此時判定為傳感器故障,故障節(jié)點即為最大的LOF值所在的節(jié)點,數(shù)據(jù)處理中心向各測控終端發(fā)送告警信息,確保終端的可靠不動作;若是滿足判據(jù)且LOF值也達到甚至超過了整定閾值,此時判定出現(xiàn)電力系統(tǒng)故障,物理節(jié)點所處的公共區(qū)域被定位,數(shù)據(jù)處理中心則對故障發(fā)生節(jié)點發(fā)送動作命令,并進一步執(zhí)行隔離操作。endprint
3 實例分析
為了驗證本文所設(shè)計提出方法的可行性,文中以某含雙DG的10 kV智能配電網(wǎng)為研究對象,如圖2所示,在RTDS中結(jié)合實際參數(shù)搭建相關(guān)模型,如圖3所示。
圖4所示為配電網(wǎng)運行正常狀態(tài)下,多維尺度降維和相應(yīng)的LOF值的可視化分析圖??梢娬_\行狀態(tài)下,并未出現(xiàn)離群點,且各節(jié)點(1~17,17為廣義節(jié)點)由于較為近似,圖4中降維結(jié)果表現(xiàn)為一處于坐標原點的點狀區(qū)域,LOF值均在1附近。根據(jù)判定規(guī)則,此時配電網(wǎng)并無故障發(fā)生。
圖5所示為Z11饋線區(qū)段存在單相接地故障,所對應(yīng)的多維尺度降維和相應(yīng)的LOF值的可視化分析圖。其中,13和14物理節(jié)點、廣義節(jié)點(17)均成為離群點,對應(yīng)的LOF值達到約96。
此時,判定發(fā)生了電力系統(tǒng)的相關(guān)故障,定位故障為節(jié)點13,14所處的Z11區(qū)域。數(shù)據(jù)處理中心及時向故障節(jié)點終端發(fā)送跳閘指令,將Z11區(qū)域隔離。此外,本文也做了節(jié)點4傳感器出現(xiàn)故障而失效、母線節(jié)點Z2區(qū)域出現(xiàn)故障(兩相接地)場景下的測試,監(jiān)測和定位效果良好,能將故障及時有效地反饋和定位出來。
4 結(jié) 語
以大數(shù)據(jù)在智能電網(wǎng)出現(xiàn)運用為背景,本文基于大數(shù)據(jù)技術(shù)設(shè)計并提出了一套智能配電網(wǎng)狀態(tài)監(jiān)測及故障處理方法。狀態(tài)監(jiān)測中將多電氣特征量融合成為單個綜合特征量,保證辨識準確性。再以LOF值替代電氣特征量的判定,避免了繁瑣的整定計算。
經(jīng)實驗測試,該方法能對單一故障條件下發(fā)生的電力系統(tǒng)或傳感器故障進行有效的識別和定位,并具有一定的容錯能力,為類似檢測與故障處理方法的研究提供了參考。
參考文獻
[1] 李曉暉.分布式電源對配電網(wǎng)繼電保護影響的研究[D].北京:華北電力大學(xué),2011.
LI Xiaohui. Research on effect of distributed generation on protection of distribution system [D]. Beijing: North China Electric Power University, 2011.
[2] 雷金勇,李戰(zhàn)鷹,盧澤漢,等.分布式發(fā)電技術(shù)及其對電力系統(tǒng)影響研究綜述[J].南方電網(wǎng)技術(shù),2011,5(4):46?50.
LEI Jinyong, LI Zhanying, LU Zehan, et al. Review on the research of distributed generation technology and its impacts on electric power systems [J]. Southern power system technology, 2011, 5(4): 46?50.
[3] BRAHMA S M, GIRGIS A A. Development of adaptive protection scheme for distribution systems with high penetration of distributed generation [J]. IEEE transactions on power delivery, 2003, 19(1): 56?63.
[4] 尚瑨.含分布式電源的配電網(wǎng)保護與優(yōu)化運行研究[D].上海:上海交通大學(xué),2015.
SHANG Jin. Study on distribution network protection and optimization operation with distributed power [D]. Shanghai: Shanghai Jiao Tong University, 2015.
[5] 馬靜,王希,米超,等.含分布式電源的配電網(wǎng)自適應(yīng)保護新方法[J].電網(wǎng)技術(shù),2011,35(10):204?208.
MA Jing, WANG Xi, MI Chao, et al. A new adaptive protection approach for distribution network containing distributed power supply [J]. Power system technology, 2011, 35(10): 204?208.
[6] 余瓊,余勝,李曉暉.含分布式電源的配網(wǎng)自適應(yīng)保護方案[J].電力系統(tǒng)保護與控制,2012,40(5):110?115.
YU Qiong, YU Sheng, LI Xiaohui. An adaptive protection scheme for meshed distribution system with DG [J]. Power system protection and control, 2012, 40(5): 110?115.
[7] 王偉,楊偉光,高立忠,等.基于智能電網(wǎng)調(diào)度支持的居民用電側(cè)自動需求響應(yīng)系統(tǒng)[J].現(xiàn)代電子技術(shù),2017,40(10):172?174.
WANG Wei, YANG Weiguang, GAO Lizhong, et al. Research on automatic demand response system supported by smart power grid dispatching for residential electricity consumption [J]. Modern electronics technique, 2017, 40(10): 172?174.
[8] 李媛,武巖巖,王思琪.基于混沌時間序列的Elman神經(jīng)網(wǎng)絡(luò)工業(yè)用電預(yù)測[J].沈陽工業(yè)大學(xué)學(xué)報,2016,38(2):196?200.
LI Yuan, WU Yanyan, WANG Siqi. Elman neural network for forecasting industrial electricity consumption based on chaotic time series [J]. Journal of Shenyang University of Technology, 2016, 38(2): 196?200.
[9] 孫強,傅旭華,王林鈺,等.智能配用電系統(tǒng)綜合效益分析模型研究[J].中國電機工程學(xué)報,2015,35(8):1829?1836.
SUN Qiang, FU Xuhua, WANG Linyu, et al. Study on comprehensive benefit analysis model of smart distribution and utilization system [J]. Proceedings of the CSEE, 2015, 35(8): 1829?1836.
[10] 趙騰,張焰,張東霞.智能配電網(wǎng)大數(shù)據(jù)應(yīng)用技術(shù)與前景分析[J].電網(wǎng)技術(shù),2014,38(12):3305?3312.
ZHAO Teng, ZHANG Yan, ZHANG Dongxia. Application technology of big data in smart distribution grid and its prospect analysis [J]. Power system technology, 2014, 38(12): 3305?3312.endprint