李景海,蔡九茂,翟國亮,劉清霞,張文正
?
基于砂濾層內(nèi)水體積分?jǐn)?shù)瞬態(tài)模擬的反沖洗速度優(yōu)選
李景海1,2,蔡九茂3,翟國亮3※,劉清霞1,張文正3
(1. 安陽工學(xué)院土木與建筑工程學(xué)院,安陽 455000; 2. 安陽市水資源管理委員會(huì)辦公室,安陽 455000; 3. 中國農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所,新鄉(xiāng) 453002)
為了對(duì)石英砂濾層反沖洗過程水的體積分?jǐn)?shù)波動(dòng)規(guī)律進(jìn)行分析,并確定合理的反沖洗速度范圍,該文采用數(shù)值模擬手段對(duì)濾層反沖洗過程水的體積分?jǐn)?shù)進(jìn)行三維動(dòng)態(tài)模擬,采用Gambit軟件建立了石英砂過濾器的幾何模型,并對(duì)幾何模型進(jìn)行了網(wǎng)格劃分,以Mixture模型做為反沖洗過程水的體積分?jǐn)?shù)的數(shù)值模擬模型。以當(dāng)量粒徑分別為1.06、1.2和1.5 mm的3種石英砂濾層為研究對(duì)象進(jìn)行動(dòng)態(tài)模型。為了驗(yàn)證模擬結(jié)果的準(zhǔn)確性,開展了室內(nèi)模型試驗(yàn),并將模擬結(jié)果與試驗(yàn)結(jié)果進(jìn)行對(duì)比,結(jié)果顯示,水的體積分?jǐn)?shù)的最大模擬誤差為5.64%,說明數(shù)值模擬結(jié)果是可信的。在使用模擬數(shù)據(jù)進(jìn)行流場(chǎng)分析時(shí),為了得出更具普遍性的結(jié)論,引入了反沖洗流化倍數(shù)的概念,最小反沖洗流化速度的倍數(shù)稱為反沖洗流化倍數(shù)。在此基礎(chǔ)上,分別分析了反沖洗流化倍數(shù)為1.1、1.3、1.5、1.7和1.9時(shí),濾層高度分別為15、25和35 cm共3個(gè)橫截面上,反沖洗過程水的體積分?jǐn)?shù)隨時(shí)間的變化規(guī)律。計(jì)算了水的體積分?jǐn)?shù)的均值和標(biāo)準(zhǔn)偏差,分析了水的體積分?jǐn)?shù)的均值和標(biāo)準(zhǔn)偏差隨隨反沖洗流化倍數(shù)的變化規(guī)律。在3個(gè)截面上水的體積分?jǐn)?shù)均值基本相同的情況下,根據(jù)標(biāo)準(zhǔn)偏差的大小,判定濾層反沖洗的穩(wěn)定性。由此得出,使反沖洗水的體積分?jǐn)?shù)波動(dòng)保持穩(wěn)定的反沖洗流化倍數(shù)的臨界值為1.7。當(dāng)反沖洗流化倍數(shù)范圍為1~1.7時(shí),標(biāo)準(zhǔn)偏差適中,反沖洗效果理想。結(jié)果表明,對(duì)于均質(zhì)石英砂濾層,反沖洗效果是否理想,決定因素是反沖洗流化倍數(shù)。該文可為砂過濾器的反沖洗運(yùn)行機(jī)理提供參考。
灌溉;模型;計(jì)算機(jī)仿真;石英砂濾層;反沖洗;多相流
微灌技術(shù)是一項(xiàng)重要的節(jié)水灌溉技術(shù)[1-2],發(fā)展微灌技術(shù)是緩解水資源短缺的有效途徑[3]。微灌砂過濾器做為微灌系統(tǒng)的重要組成部分,對(duì)于微灌裝置的正常運(yùn)行起著至關(guān)重要的作用。中國對(duì)微灌石英砂過濾器的研究始于20世紀(jì)90年代[4-7],迄今為止,在砂過濾器的過濾和反沖洗方面都開展了大量的試驗(yàn)研究[8-11]。近幾年,基于計(jì)算流體動(dòng)力學(xué)的數(shù)值模擬方法迅速發(fā)展[12-13],并逐步應(yīng)用于旋流式過濾器[14]和網(wǎng)式過濾器的研究[15-17]。但對(duì)于砂過濾器的數(shù)值模擬較少,僅有個(gè)別文獻(xiàn)進(jìn)行了二維模擬[18]。
數(shù)值模擬的方法可以大幅減少試驗(yàn)量,還可以從微觀結(jié)構(gòu)研究砂過濾器的運(yùn)行機(jī)理,筆者采用分形理論[19-20]、多孔介質(zhì)模型[21]和數(shù)值模擬方法[20,22]開展了一系列前期研究。為了減少模擬計(jì)算量,同時(shí)增加模擬的穩(wěn)定性,并得出更具普遍性的結(jié)論,本文采用Eulerian-Eulerian模型的簡(jiǎn)化形式Mixture兩相流模型,對(duì)石英砂濾層反沖洗過程中水的體積分?jǐn)?shù)隨時(shí)間的變化過程進(jìn)行了三維動(dòng)態(tài)模擬,引入了反沖洗流化倍數(shù)的概念,根據(jù)水的體積分?jǐn)?shù)波動(dòng)特性,確定了保持水的體積分?jǐn)?shù)穩(wěn)定變化的臨界反沖洗流化倍數(shù),為砂過濾器的反沖洗研究提供了技術(shù)支撐,為反沖洗性能參數(shù)的確定提供了參考。
試驗(yàn)在中國農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所進(jìn)行。試驗(yàn)用材料為石英砂濾層,采用粒徑范圍為1.0~1.18、1.18~1.4和1.4~1.7,當(dāng)量粒徑分別為1.06、1.2和1.5 mm的3種濾層。試驗(yàn)用模型裝置如圖1所示,過濾器采用透明有機(jī)玻璃管制作,有機(jī)玻管內(nèi)徑200 mm、高1 200 mm,在其上每隔100 mm高度打孔,設(shè)為測(cè)壓取料孔,有機(jī)玻管下端安裝3個(gè)濾帽。石英砂濾料放置于過濾器內(nèi)部,濾層孔隙率0.44,厚400 mm。試驗(yàn)時(shí),使用水池供水,采用渦輪流量計(jì)(LWGY-25)測(cè)流量,采用U型壓差計(jì)測(cè)量濾層內(nèi)部壓差。
反沖洗試驗(yàn)時(shí),利用水泵將清水從反沖洗進(jìn)水口注入過濾器模型,通過砂過濾器底部濾帽將水流分散并均勻作用于石英砂濾料,試驗(yàn)過程中,記錄下每一個(gè)反沖洗速度對(duì)應(yīng)的濾層膨脹高度,由膨脹高度計(jì)算出濾層水的體積分?jǐn)?shù)。水的體積分?jǐn)?shù)指在水與石英砂的混合物中,水的體積占混合物總體積的占比,計(jì)算如下[23-25]。
式中為水的體積分?jǐn)?shù);為石英砂的凈體積,可以由質(zhì)量與密度的比值得到,m3;為濾層高度,m;為濾層截面面積,m2。
由式(1)得
微灌石英砂濾層的反沖洗過程屬于復(fù)雜的固液多相流系統(tǒng),因此,濾層反沖洗過程模擬需采用多相流模型。Mixture模型是Eulerian-Eulerian模型的簡(jiǎn)化形式[26-28],該模型的收斂性和穩(wěn)定性要優(yōu)于Eulerian-Eulerian模型,且適用于顆粒相分布范圍比較廣泛的情況。而微灌石英砂濾層反沖洗過程與Mixture模型的適用條件十分吻合,因此采用Mixture模型模擬水與石英砂組成的固液兩相流,其中,水為連續(xù)相,石英砂為離散相。Mixture模型連續(xù)性方程為
式中分別代表固相與液相;為模擬時(shí)間,s;v為平均速度,m/s;ρ為混合相密度,m3/s;為相數(shù);α(下同)為第相體積分?jǐn)?shù),無量綱量;v為第相速度,m/s;ρ為第相密度,m3/s。
Mixture模型兩相流的動(dòng)量方程為
其中
式中▽為拉普拉斯算子;為壓力,Pa;為體積力,Pa;μ為混合黏度,Pa·s;v,i為相的漂移速度,m/s。
固相與液相的相對(duì)速度v為
Manninen等[29]給出了馳豫時(shí)間τ的表達(dá)式
Schiller等[30]提出了曳力函數(shù)drag的表達(dá)式
式中為雷諾數(shù)。
固相的體積分?jǐn)?shù)方程為
采用Gambit軟件建立幾何模型,過濾器幾何模型與細(xì)部結(jié)構(gòu)見圖2。
圖2 過濾器幾何模型
采用時(shí)間的二階隱式控制方程和瞬態(tài)求解器計(jì)算。采用Mixture多相流模擬模型,采用PC-SIMPLE算法求解壓力速度耦合方程,采用基于Green-Gauss的梯度方程進(jìn)行空間離散化,動(dòng)量、湍動(dòng)能、湍流耗散率和體積分?jǐn)?shù)方程均采用一階迎風(fēng)格式,進(jìn)口邊界設(shè)為速度進(jìn)口,出口邊界設(shè)為壓力出口,并以速度進(jìn)口對(duì)流場(chǎng)進(jìn)行初始化。采用模擬軟件Fluent14.5進(jìn)行數(shù)值計(jì)算,參數(shù)設(shè)置如表1。
表1 數(shù)值模擬參數(shù)
根據(jù)入口的反沖洗流速,由CFD軟件計(jì)算出濾層水的體積分?jǐn)?shù),繪出水的體積分?jǐn)?shù)隨反沖洗速度的變化關(guān)系圖并與試驗(yàn)值進(jìn)行對(duì)比,如圖3所示。由圖3可知,當(dāng)濾層當(dāng)量粒徑為1.06 mm時(shí),濾層水的體積分?jǐn)?shù)的最大誤差為4.62%;當(dāng)濾層當(dāng)量粒徑為1.2 mm時(shí),濾層水的體積分?jǐn)?shù)的最大誤差為5.38%;當(dāng)濾層當(dāng)量粒徑為1.5 mm時(shí),濾層水的體積分?jǐn)?shù)的最大誤差為5.64%。對(duì)比結(jié)果說明,濾層水的體積分?jǐn)?shù)的試驗(yàn)值與模擬值能夠較好地吻合,模擬結(jié)果準(zhǔn)確可信。
圖3 濾層水的體積分?jǐn)?shù)模擬值與試驗(yàn)值對(duì)比
以v表示濾層最小反沖洗流化速度,最小反沖洗流化速度的倍數(shù)稱為反沖洗流化倍數(shù)。對(duì)于當(dāng)量粒徑為1.06、1.2和1.5 mm的濾層,選取1.1v、1.3v、1.5v、1.7v、1.9v5個(gè)反沖洗速度對(duì)濾層水的體積分?jǐn)?shù)的變化規(guī)律進(jìn)行分析。
在濾層中由低到高依次選取高度為15、25和35 cm的3個(gè)橫截面,繪制3種濾層,5個(gè)反沖洗速度對(duì)應(yīng)的水的體積分?jǐn)?shù)隨時(shí)間的變化關(guān)系曲線,如圖4~圖6所示。
注:最小反沖洗流化速度的倍數(shù)稱為反沖洗流化倍數(shù)。
圖5 不同濾層高度水的體積分?jǐn)?shù)隨時(shí)間變化關(guān)系曲線(當(dāng)量粒徑為1.2 mm)
由圖4-圖6可知,在反沖洗的初始階段,水流剛進(jìn)入濾層,水的體積分?jǐn)?shù)在濾層的自然堆積狀態(tài)做短暫停留,然后由自然堆積狀態(tài)迅速提高到最高點(diǎn),之后又在極短時(shí)間內(nèi)下降,經(jīng)過幾個(gè)周期的波動(dòng)逐漸穩(wěn)定至某一固定值,并圍繞這一固定值上下波動(dòng)。造成這種現(xiàn)象的原因是,在反沖洗的初期,石英砂濾層處于自然堆積狀態(tài),水的體積分?jǐn)?shù)相應(yīng)較小,水流通過濾層時(shí),遇到較大阻力,水流的沖擊導(dǎo)致濾層迅速膨脹,從而水的體積分?jǐn)?shù)迅速增大,由于水流空隙的增加,水流速度則隨之減小,水流對(duì)石英砂顆粒的攜帶作用隨之減小,石英砂由上升迅速回落,濾層水的體積分?jǐn)?shù)又達(dá)到最小值。經(jīng)過這個(gè)短暫的突變過程后,濾層水的體積分?jǐn)?shù)與水流速度逐漸相適應(yīng)并穩(wěn)定下來。
圖6 不同濾層高度水的體積分?jǐn)?shù)隨時(shí)間變化關(guān)系曲線(當(dāng)量粒徑為1.5 mm)
為了對(duì)濾層水的體積分?jǐn)?shù)波動(dòng)規(guī)律進(jìn)行深入分析,計(jì)算每種濾層每個(gè)截面水的體積分?jǐn)?shù)的平均值,繪出水的體積分?jǐn)?shù)均值隨反沖洗速度的變化關(guān)系圖(圖7)。由圖7可知,隨著反沖洗速度的增加,水的體積分?jǐn)?shù)均值呈增加趨勢(shì)。但對(duì)于同一反沖洗速度,不同的濾層高度上水的體積分?jǐn)?shù)均值基本相同,這說明,單純從均值看,水的體積分?jǐn)?shù)在整個(gè)濾層內(nèi)分布比較均勻。
計(jì)算每種濾層每個(gè)截面水的體積分?jǐn)?shù)的標(biāo)準(zhǔn)偏差,繪出水的體積分?jǐn)?shù)的標(biāo)準(zhǔn)偏差隨反沖洗速度的變化關(guān)系圖(圖8)。由圖8可知,隨著反沖洗速度的增加,水的體積分?jǐn)?shù)的標(biāo)準(zhǔn)偏差呈增加趨勢(shì),說明在均值穩(wěn)定的情況下,水的體積分?jǐn)?shù)的波動(dòng)幅度呈增加趨勢(shì)。當(dāng)濾層反沖洗流化倍數(shù)達(dá)到1.7時(shí),標(biāo)準(zhǔn)偏差急劇變大,說明濾層開始變得不穩(wěn)定。
由此可知,石英砂濾層臨界反沖洗流化倍數(shù)為1.7。當(dāng)反沖洗流化倍數(shù)大于1.7時(shí),水的體積分?jǐn)?shù)的均值雖然仍然穩(wěn)定,但由于標(biāo)準(zhǔn)偏差增大,水的體積分?jǐn)?shù)出現(xiàn)極大值和極小值的情形增多,水的體積分?jǐn)?shù)的極小值出現(xiàn)表明石英砂濾層出現(xiàn)局部堆積,對(duì)于反沖洗是不利的。當(dāng)反沖洗流化倍數(shù)范圍為1~1.7時(shí),反沖洗效果是理想的。
圖7 不同濾層高度水的體積分?jǐn)?shù)均值隨反沖洗流化倍數(shù)的變化關(guān)系曲線
圖8 不同濾層高度水的體積分?jǐn)?shù)標(biāo)準(zhǔn)偏差隨反沖洗流化倍數(shù)的變化關(guān)系曲線
1)采用Mixture模型作為反沖洗模擬模型,建立了以水為液相、以石英砂為固相的Mixture兩相流模型的控制方程、馳豫時(shí)間方程和曳力函數(shù)。
2)對(duì)濾層反沖洗過程水的體積分?jǐn)?shù)的變化進(jìn)行了瞬態(tài)模擬,并且通過室內(nèi)試驗(yàn)對(duì)模擬結(jié)果進(jìn)行了驗(yàn)證,水的體積分?jǐn)?shù)的最大模擬誤差為5.64%,表明數(shù)值模擬結(jié)果準(zhǔn)確可信。
3)分析了反沖洗過程水的體積分?jǐn)?shù)的變化規(guī)律,通過對(duì)水的體積分?jǐn)?shù)均值和標(biāo)準(zhǔn)偏差的分析,確定了使水的體積分?jǐn)?shù)波動(dòng)保持穩(wěn)定的臨界反沖洗流化倍數(shù)。結(jié)果表明,石英砂濾層臨界反沖洗流化倍數(shù)為1.7,當(dāng)反沖洗流化倍數(shù)范圍為1~1.7時(shí),反沖洗效果是理想的。反沖洗流化倍數(shù)與濾層粒徑無關(guān),反沖洗效果是否理想,決定因素是臨界反沖洗流化倍數(shù)。
多相流動(dòng)態(tài)數(shù)值模擬對(duì)于計(jì)算工具的要求非常高,為了將模擬計(jì)算的工作量控制在一定范圍,筆者在對(duì)石英砂濾層反沖洗過程進(jìn)行模擬時(shí),設(shè)定的時(shí)間步長為0.01 s,每步迭代次數(shù)為10次,保證了計(jì)算過程能夠收斂,并能反映出濾層反沖洗的大致規(guī)律,但模擬結(jié)果精度較低。下一步的研究中,應(yīng)采用計(jì)算速度更快的計(jì)算工具,設(shè)定小于0.001 s的時(shí)間步長,每步迭代次數(shù)不少于20次,從而增加模擬精度,得出水的體積分?jǐn)?shù)更準(zhǔn)確的波動(dòng)規(guī)律、動(dòng)態(tài)云圖和臨界反沖洗速度等模擬結(jié)果。
[1] 黃修橋,高峰,王景雷,等. 節(jié)水灌溉發(fā)展研究[M]. 北京:科學(xué)出版社,2014:5-7.
[2] 謝新民,張海慶,尹明萬,等. 水資源評(píng)價(jià)及可持續(xù)利用規(guī)劃理論與實(shí)踐[M]. 鄭州:黃河水利出版社,2003:231-234.
[3] 李久生,王迪,栗巖峰. 現(xiàn)代灌溉水肥管理原理與應(yīng)用[M].鄭州:黃河水利出版社,2008:161-165.
[4] 董文楚. 微灌用砂過濾器的過濾與反沖洗[J]. 中國農(nóng)村水利水電,1996(12):15-20.
Dong Wenchu. On filtering and inverse washing of sandy filter in micro-irrigation[J]. China Rural Water and Hydropower, 1996(12): 15-20. (in Chinese w ith English abstract)
[5] 董文楚. 微灌用過濾砂料選擇與參數(shù)測(cè)定[J]. 噴灌技術(shù),1995(2):42-46.
Dong Wenchu. The material selection and parameter determination of sand filter in micro irrigation[J]. Sprinkler Irrigation Technology, 1995(2): 42-46. (in Chinese w ith English abstract)
[6] 翟國亮,陳剛,趙武,等. 微灌用石英砂濾料的過濾與反沖洗試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(12):46-50.
Zhai Guoliang, Chen Gang, Zhao Wu, et al. Experimental study on filtrating and backwashing of quartz sand media in micro-irrigation filter [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(12): 46-50. (in Chinese w ith English abstract)
[7] 翟國亮,馮俊杰,鄧忠,等. 微灌用砂石過濾器反沖洗參數(shù)試驗(yàn)[J]. 水資源與水工程學(xué)報(bào),2007,18(1):24-28.
Zhai Guoliang, Feng Junjie, Deng Zhong, et al. Parameters experiment of backwashing on sandy filter in micro- irrigation[J]. Journal of Water Resources & Water Engineering, 2007, 18(1): 24-28. (in Chinese w ith English abstract)
[8] 馮俊杰,翟國亮,鄧忠,等. 微灌過濾器用水壓驅(qū)動(dòng)反沖洗閥啟閉機(jī)構(gòu)的力學(xué)計(jì)算[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(12):212-214.
Feng Junjie, Zhai Guoliang, Deng Zhong, et al. Mechanical calculation of opening and closing mechanism of back flushing valve driven by hydraulic pressure[J]. Transactions of the Chinese Society of Agricultural Machinery, 2007, 38(12): 212-214. (in Chinese w ith English abstract)
[9] 鄧忠,翟國亮,仵峰,等. 微灌過濾器石英砂濾料過濾與反沖洗研究[J]. 水資源與水工程學(xué)報(bào),2008,19(2):34-37.
Deng Zhong, Zhai Guoliang, Wu Feng, et al. Study on the filtration and backwashing for the quartz filter in micro- irrigation[J]. Journal of Water Resources & Water Engineering, 2008, 19(2): 34-37. (in Chinese w ith English abstract)
[10] 趙紅書. 微灌用石英砂濾料的過濾與反沖洗性能研究[D].北京:中國農(nóng)業(yè)科學(xué)院,2010.
Zhao Hongshu. Performance of Filtration and Flushing of Quartz Sand Media for Micro-irragation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese with English abstract)
[11] 張文正. 微灌砂濾層氣水反沖洗與過濾的試驗(yàn)研究[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2013:1-5.
ZhangWenzheng. Experiment Research of Air Water Backwashing and Filtration of Sand Layer in Micro- irrigation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013: 1-5. (in Chinese with English abstract)
[12] ANSYS Inc. ANSYS FLUENT User’s Guide[M]. Pittsburgh: ANSYS Inc, 2011: 301-309.
[13] ANSYS Inc. ANSYS FLUENT Theory Guide[M]. Pittsburgh: ANSYS Inc, 2011: 486-192.
[14] 宋輝智,塔娜,王全喜,等. 溢流管插入深度及圓柱段高度對(duì)旋流式過濾器沉沙效果的影響[D]. 內(nèi)蒙古:內(nèi)蒙古農(nóng)業(yè)大學(xué),2012:3-7.
Song Huizhi, Ta Na, Wang Quanxi, et al. Overflow Pipe Insertion Depth and the Cylindrical Section Height of Cyclone Filter Settling Effect[D]. Inner Mongolia: Inner Mongolia Agricultural University, 2012: 3-7. (in Chinese with English abstract)
[15] 王新坤,高世凱,夏立平,等. 微灌用網(wǎng)式過濾器數(shù)值模擬與結(jié)構(gòu)優(yōu)化[J]. 排灌機(jī)械工程學(xué)報(bào),2013,31(8):719-723.
Wang Xinkun, Gao Shikai, Xia Liping, et al. Numerical simulation and structure optimization of screen filter in micro-irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(8): 719-723. (in Chinese with English abstract)
[16] 王棟蕾,宗全利,劉建軍,等. 微灌用自清洗網(wǎng)式過濾器自清洗結(jié)構(gòu)流場(chǎng)分析與優(yōu)化研究[J]. 節(jié)水灌溉,2011,12:5-8.
Wang Donglei, Zong Quanli, Liu Jianjun, et al. Flow analysis and structure optimization of Self cleaning nets filter for micro-irrigation[J]. Water Saving Irrigation, 2011, 12: 5-8. (in Chinese with English abstract)
[17] 宗全利,鄭鐵剛,劉煥芳,等. 滴灌自清洗網(wǎng)式過濾器全流場(chǎng)數(shù)值模擬與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(16):57-65.
Zong Quanli, Zheng Tiegang, Liu Huanfang, et al. Numerical simulation and analysis on whole flow field for drip self-cleaning screen filter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(16): 57-65. (in Chinese with English abstract)
[18] 劉文娟. 石英砂過濾器過濾及反沖洗特性的實(shí)驗(yàn)研究與數(shù)值模擬[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2014:35-38.
Liu Wenjuan. Experimental Study and Numerical Simulation of Filtration and Backwashing Characteristics of Quartz Sand Filter[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014: 35-38. (in Chinese with English abstract)
[19] 李景海,劉清霞,黃修橋,等. 微灌石英砂濾層流態(tài)特性與分形阻力模型參數(shù)確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(13):113-119.
Li Jinghai, Liu Qingxia, Huang Xiuqiao, et al. Flow state characteristics and fractal model parameters determination of quartz sand filter layer used in micro-irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 113-119. (in Chinese with English abstract)
[20] 李景海. 微灌石英砂濾層清潔壓降分形阻力模型與反沖洗數(shù)值模擬[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2016:70-81.
Li Jinghai. Fractal resistance Model of Clean Pressure Drop and Numerical Simulation of Backwashing Process of Quartz Sand Filter Layer in Micro-irrigation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016: 70-81. (in Chinese with English abstract).
[21] 李景海,劉清霞,黃修橋,等. 微灌石英砂濾層清潔壓降計(jì)算參數(shù)確定與分析[J]. 灌溉排水學(xué)報(bào),2016,35(11):24-28.
Li Jinghai, Liu Qingxia, Huang Xiuqiao, et al. Determination and analysis of the calculation parameters for the cleaning pressure drop of quartz sand filter layer used in Micro-Irrigation[J]. Journal of Irrigation and Drainage, 2016, 35(11): 24-28. (in Chinese with English abstract)
[22] 李景海,翟國亮,黃修橋,等. 微灌石英砂過濾器反沖洗數(shù)值模擬與流場(chǎng)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):74-82.
Li Jinghai, Zhai Guoliang, Huang Xiuqiao, et al. Numerical simulation and flow field analysis of backwashing of quartz sand filter in micro irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 74-82. (in Chinese with English abstract).
[23] 董文楚. 微灌用砂過濾器水力性能研究[J]. 噴灌技術(shù),1996(1):7-14.
Dong Wenchu. Study on the hydraulic performance of sand filter in micro irrigation[J]. Sprinkler Irrigation Technology, 1996(1):7-14. (in Chinese with English abstract)
[24] 董文楚. 微灌用砂過濾器堵塞與反沖洗效果研究[J]. 武漢水利電力大學(xué)學(xué)報(bào),1996,29(6):30-34.
Dong Wenchu. Study on the clogging and backflushing coefficieng of the sand filters for micro-irrigation[J]. J. Wuhan Univ. of Hydr. & Elec.Eng., 1996, 29(6): 30-34. (in Chinese with English abstract)
[25] 馬俊. 球床多孔介質(zhì)通道高速區(qū)流動(dòng)特性研究[D]. 黑龍江:哈爾濱工程大學(xué),2010:19-20.
Ma Jun. Research on the High Speed Fluid Flow in Pebble-Bed Porous Channel[D]. Heilongjiang: Harbin Engineering University, 2010: 19-20. (in Chinese with English abstract)
[26] 賀靖峰. 基于歐拉-歐拉模型的空氣重介質(zhì)流化床多相流體動(dòng)力學(xué)的數(shù)值模擬[D]. 北京:中國礦業(yè)大學(xué),2012:25-26.
He Jingfeng. Numerical Simulation of Multiphase Fluid Dynamic in Air Dense Medium Fluidized Bed Based on Euler-Euler Model[D]. Beijing: China University of Mining and Technology, 2012:25-26. (in Chinese with English abstract)
[27] 賀靖峰,趙躍民,何亞群,等. 基于Euler-Euler模型的空氣重介質(zhì)流化床密度分布特性[J]. 煤炭學(xué)報(bào),2013,38(7):1277-1282.
He Jingfeng, Zhao Yuemin, He Yaqun, et al. Distribution characteristic of bed density in air dense medium fluidized bed based on the Euler-Euler model[J]. Journal of Coal Science & Engineering,2013, 38(7): 1277-1282. (in Chinese with English abstract)
[28] He Jingfeng, He Yaqun, Zhao Yuemin, et al. Numerical simulation of the pulsing air separation field based on CFD[J]. International Journal of Mining Science and Technology, 2012, 22(2): 201-207.
[29] Manninen M, Taivassalo V, Kallio S. On the Mixture Model for Multiphase Flow[M]. VTT publications 288:Technical Research Centre of Finland,1996: 52-60.
[30] Schiller L, Naumann Z. A drag coefficient correlation[J]. Z.Ver.Deutsch Ing.. 1935, 77: 318-320.
Optimization of backwashing speed based on transient simulation of water volume fraction in sand filter layer
Li Jinghai1,2, Cai Jiumao3, Zhai Guoliang3※, Liu Qingxia1, Zhang Wenzheng3
(1.,455000,; 2.455000; 3.,,453002)
The volume fraction of water is an important parameter which affects the backwashing effect of quartz sand filter layer. In order to analyze flow field of the volume fraction of water and to determine the reasonable range of backwashing speed in the backwashing process of quartz sand filter layer, numerical simulation method was used in this paper to simulate the dynamic process of the volume fraction of water in the filter layer. For this, the geometric model of quartz sand filter was established and the mesh division of the geometric model was carried out through Gambit software. Because the backwashing process of quartz sand filter layer is a solid-liquid multiphase flow system composed of water and quartz sand, we can conclude that the mixture model is suitable for the numerical simulation of the volume fraction of water by comparing the applicability of the current multiphase flow numerical simulation models such as Eulerian model, mixture model and VOF (volume of fluid ) model. At the same time, because the backwashing process of quartz sand filter layer is both a dynamic and a stable process, the transient simulation solver was adopted. The simulation objects were 3 kinds of quartz sand filter layers whose thickness was all 400 mm, and the equivalent particle diameter was 1.06, 1.2 and 1.5 mm respectively. In order to verify the reliability of simulation results, laboratory experiments of backwashing were conducted with the 3 different quartz sand filter layers in Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, which is located in Xinxiang City, Henan Province, China. The parameters such as the backwashing speed and the total height of the filter layers were measured during the experiments. And the simulation results were compared with the experimental results. Comparison results showed that the maximum simulation error of the volume fraction of water was 5.64%. It was proved that the numerical simulation results were reliable. When the flow field of the volume fraction of water was analyzed with the simulation data, in order to draw a more general conclusion, the concept of fluidization ratio of backwashing was introduced. On this basis, 3 cross-sections, whose heights were 15, 25 and 35 cm respectively, were selected in each filter layer and the fluctuation rule of the volume fraction of water on the sections with time was analyzed when the fluidization ratio of backwashing was 1.1, 1.3, 1.5, 1.7 and 1.9 respectively. Then the mean and the standard deviation of the volume fraction of water were calculated. And their variation trend with the backwashing speed of quartz sand filter layer was analyzed. In the condition that the volume fraction of water in the 3 cross-sections is basically the same, the stability of filter layer can be determined according to the standard deviation. Therefore, it was concluded that the critical value of the fluidization ratio of backwashing was 1.7 for these 3 filter layers. It is said that the standard deviation is modest and the backwashing effect is ideal when the range of the fluidization ratio of backwashing is 1-1.7. The results showed that the fluidization ratio of backwashing decided whether the backwashing effect was ideal. The research results above provide not only a theoretical basis but also a technical support for the operation of the sand filter in the process of backwashing.
irrigation; models; computersimulation; quartz sand filter layer; backwashing; multiphase flow
10.11975/j.issn.1002-6819.2018.02.011
S275.6
A
1002-6819(2018)-02-0083-07
2017-08-14
2017-11-04
“十三五”國家重點(diǎn)研發(fā)計(jì)劃(2016YFC0400202)
李景海,博士,高級(jí)工程師,主要從事微灌過濾器及水資源配置研究。Email:649923670@qq.com
翟國亮,研究員,博導(dǎo),主要從事節(jié)水灌溉設(shè)備研究。 Email:275580557@qq.com
李景海,蔡九茂,翟國亮,劉清霞,張文正. 基于砂濾層內(nèi)水體積分?jǐn)?shù)瞬態(tài)模擬的反沖洗速度優(yōu)選[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):83-89. doi:10.11975/j.issn.1002-6819.2018.02.011 http://www.tcsae.org
Li Jinghai, Cai Jiumao, Zhai Guoliang, Liu Qingxia, Zhang Wenzheng. Optimization of backwashing speed based on transient simulation of water volume fraction in sand filter layer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 83-89. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.02.011 http://www.tcsae.org