張慧珍,黃世平,楊瑞瑞,曾幼玲
(新疆大學(xué)生命科學(xué)與技術(shù)學(xué)院/新疆生物資源基因工程重點(diǎn)實(shí)驗(yàn)室,烏魯木齊 830046)
【研究意義】鹽脅迫影響植物生長和作物的產(chǎn)量。在應(yīng)對(duì)鹽脅迫過程中,植物通常會(huì)采用不同的機(jī)制來避免鹽離子過度累積造成的損傷[1]。在這錯(cuò)綜復(fù)雜的分子調(diào)控網(wǎng)絡(luò)中,miRNA對(duì)靶基因的調(diào)控就是其中的一種?!厩叭搜芯窟M(jìn)展】miRNA是一類長度約為21 nt的非編碼小RNA。它們能夠直接對(duì)mRNA進(jìn)行切割或者阻止其翻譯,在轉(zhuǎn)錄后水平調(diào)控編碼基因的表達(dá)[2, 3]。鑒定miRNA與靶基因間的靶向關(guān)系,一方面,通過生物信息學(xué)獲得miRNA預(yù)測(cè)的靶基因,另一方面設(shè)計(jì)試驗(yàn)進(jìn)一步鑒定miRNA與這些潛在靶基因的關(guān)系。研究方法主要包括:(1) 利用qRT-PCR驗(yàn)證miRNA與靶基因的負(fù)相關(guān)性,即在靶基因與miRNA的轉(zhuǎn)錄水平看兩者的表達(dá)是否存在調(diào)控關(guān)系[4];(2) 5′ RLM-RACE分析miRNA與靶基因的靶向切割位點(diǎn),能直接證明miRNA對(duì)靶基因的靶向切割關(guān)系[5, 6];(3) 將靶基因與GFP或GUS等報(bào)告基因融合,通過煙草瞬時(shí)表達(dá)體系,直觀地驗(yàn)證miRNA與靶基因的互作關(guān)系[7, 8]。miRNA在植物中具有高度保守性、時(shí)序性和組織特異性,在各種生物學(xué)進(jìn)程中都扮演著重要角色,miR167是作用于生長素信號(hào)通路上的一類miRNA,它通過靶向ARFs來調(diào)控下游生長素響應(yīng)基因的轉(zhuǎn)錄。有文獻(xiàn)報(bào)道,miR167主要靶向的是ARF6和ARF8兩個(gè)成員[9, 10]。最近的研究表明,在植物的生長發(fā)育中,ARF6和ARF8參與雌蕊群和雄蕊群的發(fā)育,其過表達(dá)會(huì)促進(jìn)雌、雄蕊的發(fā)育或?qū)е轮参镌缡靃9-12]。牽牛(Ipomoea.nil)開花時(shí)期miR167表達(dá)量最低,ARF8的表達(dá)量卻是最高的,二者的表達(dá)模式呈現(xiàn)負(fù)相關(guān)性。大豆miR167c在根部表達(dá)上調(diào),通過靶向GmARF8a和GmARF8b直接調(diào)控根瘤的數(shù)目[13]。Jodder等[14]探究不同脅迫條件下番茄miR167a的表達(dá)調(diào)控機(jī)制,發(fā)現(xiàn)真菌或病毒感染及冷脅迫提高了miR167a的表達(dá)水平,而鹽、旱和熱處理導(dǎo)致其下調(diào)表達(dá),表明不同的脅迫可能激活了番茄miR167a不同的調(diào)控途徑。鹽脅迫下,miR167在擬南芥[15]和中間錦雞兒(Caraganaintermedia)[16]中都呈現(xiàn)上調(diào)表達(dá),這可能是通過調(diào)節(jié)ARF的表達(dá),影響植物生長素響應(yīng)相關(guān)基因的轉(zhuǎn)錄,減緩了植物的生長和發(fā)育,并且通過這種方式提高植物的脅迫耐受性[17]。【本研究切入點(diǎn)】鹽穗木(Halostachyscaspica)隸屬藜科(Chenopodiaceae)鹽穗木屬(Halostachys),對(duì)鹽分適應(yīng)性極強(qiáng),能夠高度富集Na+和Cl-[18-21]。研究是基于課題組前期構(gòu)建的高鹽脅迫下鹽穗木根的小RNA文庫數(shù)據(jù)[22],依據(jù)測(cè)序拷貝數(shù)篩選受鹽誘導(dǎo)表達(dá)顯著下調(diào)的miR167d及利用鹽穗木轉(zhuǎn)錄組數(shù)據(jù)預(yù)測(cè)到的靶基因ARF8為研究對(duì)象。【擬解決的關(guān)鍵問題】探討鹽脅迫下鹽穗木miR167d及預(yù)測(cè)靶基因ARF8在高鹽(600 mmol/L NaCl)脅迫下的表達(dá)模式和相關(guān)性;同源克隆方法結(jié)合RACE技術(shù),克隆獲得鹽穗木ARF8全長序列并進(jìn)行生物信息學(xué)分析。該文為進(jìn)一步研究鹽穗木miR167d和預(yù)測(cè)靶基因ARF8的耐鹽生物學(xué)功能和調(diào)控機(jī)制奠定基礎(chǔ)。
鹽穗木種子采自新疆古爾班通古特沙漠邊緣,培養(yǎng)基質(zhì)按1∶1∶1 (花土∶珍珠巖∶蛭石)的比例配置。置于溫室中生長(25℃,光照時(shí)間16 h/d,相對(duì)濕度40%),植株生長大約90 d實(shí)施鹽脅迫處理。600 mmol/L NaCl處理鹽穗木0、3、12、24、48、72 h (自來水澆灌的鹽穗木作為對(duì)照),取其同化枝為試驗(yàn)材料,液氮速凍并保存于-80℃冰箱用于后續(xù)的基因表達(dá)熒光定量試驗(yàn)。
煙草種子播種于花盆中,培養(yǎng)基質(zhì)按2∶1∶1(花土∶珍珠巖∶蛭石)配制,置于溫室中生長(25℃,光照時(shí)間16 h/d,相對(duì)濕度40%),每周澆一次自來水。
1.2.1 RNA提取
RNA的提取步驟參照北京天根Plant Total RNA提取試劑盒的操作說明。
1.2.2 鹽穗木miR167d與ARF8的反轉(zhuǎn)錄及熒光定量PCR
利用polyA加尾法對(duì)total RNA進(jìn)行反轉(zhuǎn)錄合成cDNA。按照TaKaRa公司SYBR?PrimeScriptTMmiRNA RT-PCR Kit進(jìn)行miRNA的熒光定量實(shí)驗(yàn)。
按照M-MLV Reverse Transcriptase試劑盒(TaKaRa)和Oligo(dT)18 primer等反轉(zhuǎn)錄試劑合成cDNA用于定量分析。按照SYBR?Select Master Mix(Applied Biosystems)操作說明進(jìn)行靶基因的熒光定量試驗(yàn)。ABI 7500熒光定量PCR儀進(jìn)行熒光定量實(shí)驗(yàn),用2-△△Ct方法計(jì)算miRNA和靶基因的相對(duì)表達(dá)量,Prism5.0分析并作圖。
按照SMARTerTM RACE cDNA (Clontech)擴(kuò)增試劑盒,以RNA為模板反轉(zhuǎn)錄合成5'-RACE-Ready-cDNA和3'-RACE-Ready-cDNA,用于靶基因RACE實(shí)驗(yàn)。
1.2.3 鹽穗木預(yù)測(cè)靶基因ARF8的克隆、理化性質(zhì)及同源分析
分別以5'-RACE-Ready-cDNA和3'-RACE-Ready-cDNA為模板進(jìn)行PCR擴(kuò)增。PCR產(chǎn)物回收后,經(jīng)連接、轉(zhuǎn)化,測(cè)序鑒定正確后,通過拼接,獲得全長序列,進(jìn)而設(shè)計(jì)引物(HcARF8-P1;HcARF8-P2 ),擴(kuò)增HcARF8的全長序列(引物序列信息見表1)。NCBI Conserved Domain Search(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)在線預(yù)測(cè)其保守性,分析鹽穗木ARF8蛋白質(zhì)的保守結(jié)構(gòu)域。表1
1.2.4 農(nóng)桿菌注射法轉(zhuǎn)化煙草葉片
利用鹽穗木轉(zhuǎn)錄組數(shù)據(jù)未找到其miR167d前體。通過鹽穗木和擬南芥的miR167d成熟體比對(duì)分析發(fā)現(xiàn)僅存一個(gè)堿基的差異,推測(cè)擬南芥miR167d的成熟體可能對(duì)鹽穗木miR167d預(yù)測(cè)的靶基因同樣存在靶向切割,故分別構(gòu)建可能包含有擬南芥miR167d剪切位點(diǎn)的pCAMBIA1301-HcARF8-GFP和pCAMBIA2300-AtmiR167d相關(guān)的植物表達(dá)載體,轉(zhuǎn)化農(nóng)桿菌EHA105,鑒定正確后,擬通過煙草瞬時(shí)表達(dá)實(shí)驗(yàn)鑒定擬南芥miR167d對(duì)鹽穗木ARF8是否具有靶向作用。
將鑒定正確的農(nóng)桿菌EHA105單菌液培養(yǎng)至OD600為0.8~1.0,12 000 r/min離心1 min,收集菌細(xì)胞,用重懸液[10 mmol/L MES-KOH,10 mmol/L MgCl2,0.1 mmol/L乙酰丁香酮(acetosyringone )]重懸,單菌液OD600調(diào)為0.5,混合菌液OD600調(diào)為1.0,室溫靜置4 h;用去掉針頭的1 mL注射器吸取菌液,用注射器針頭在葉片上輕輕劃出小孔,用裝有菌液的注射器壓住小孔,慢慢用力,將菌液分別或共轉(zhuǎn)入生長狀態(tài)良好、健壯的煙草葉片(避開葉脈)中;3~5 d后撕取葉片下表皮,于Nikon ECLIPSE Ti熒光顯微鏡下觀察。
表1 試驗(yàn)所用引物序列
Table 1 Primer sequences used in the experiments
名稱Name引物Primer 引物序列 (5’-3’)Primer sequences (5’-3’)qRT-PCRRmiR167dTGAAGCTGCCAGCATGATCTGRHcARF8-P1/P2TGGTCCTTGGGAGGCATTCTTG/CTTGAAGAGGGTATGCGGGGATHc5S rRNA-P1/P2ACCCGATCCCATTCCGAC/TGTCTCCCGAACAATCTCAGTACHcβ-actin-P1/P2AAGATCTGGCACCACACCTTC/CACACCATCACCAGAATCGAHcARF8HcARF8-P1/P2ATGAAGCTTTCAACATCAGGATTG/GTACGTCTCAGTCCCTTGCTTCCHcARF8 5'RACE-OuterGACCATCTCCAAGGAGAAGTACATCATTCHcARF8 5'RACE-InnerCTCCCTGTCGACAAATACAAGCTGCCAGHcARF8 3'RACE-OuterGTTGGGGAAGCAAGGGACTGAGACGTACHcARF8 3'RACE-InnerAGACCATATCCCCGCATACCCTCTTCUPM (Long)CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGTUPM (Short)CTAATACGACTCACTATAGGGCNUPAAGCAGTGGTATCAACGCAGAGT煙草瞬時(shí)實(shí)驗(yàn)pCAMBIA2300-AtmiR167d-P1 (SacI)GAGCTCTGTTGGTTTTTAGAAGCTGAAGCpCAMBIA2300-AtmiR167d-P2 (BamHI)CTGCAGTGTTGGTGATTTAGTGACTGAAGpCAMBIA1301-HcARF8-GFP-P1 (SacI)GAGCTCATGTCCCGGTTCAGCAGCTATCATGpCAMBIA1301-HcARF8-GFP-P2 (PstI)GGATCCGTACGTCTCAGTCCCTTGCTTCC
根據(jù)靶向關(guān)系的基本原則[23, 24],利用高鹽脅迫下鹽穗木根的小RNA文庫和轉(zhuǎn)錄組數(shù)據(jù)信息分析,鹽穗木miR167d預(yù)測(cè)的靶基因?yàn)辂}穗木ARF8,其作用的靶位點(diǎn)靠近編碼區(qū)3'端位置。鹽穗木miR167d成熟體與擬南芥miR167各成員的成熟體比對(duì)有1~4個(gè)堿基的差異。圖1
圖1 鹽穗木miR167d的靶基因預(yù)測(cè)(A)以及與擬南芥miR167各成員成熟體的比對(duì)(B)
Fig.1 Predicting target gene ofHalostachyscaspicamiR167d (A) and alignmenting with AtmiR167 family members (B)
qRT-PCR檢測(cè)到鹽穗木miR167d和ARF8都受到600 mmol/L NaCl高鹽脅迫的誘導(dǎo)。高鹽脅迫處理48 h,鹽穗木同化枝miR167d顯著上調(diào)表達(dá)并與HcARF8呈現(xiàn)顯著的負(fù)相關(guān)性。HcARF8的表達(dá)隨著鹽脅迫時(shí)間的延長呈現(xiàn)先上升后下降的趨勢(shì)。同時(shí),結(jié)合生物統(tǒng)計(jì)學(xué)軟件(IBM SPSS Statistics V19)對(duì)鹽穗木miR167d及其靶基因ARF8進(jìn)行了相關(guān)系數(shù)分析。圖2,表2
注:差異極顯著***/**(P<0.01);差異顯著*(P<0.05)
Note:P<0.01 was extremely significant (***/**) andP<0.05 was significant (*)
圖2 600 mmol/L NaCl處理鹽穗木同化枝miR167d (A)及其預(yù)測(cè)靶基因HcARF8 (B)的相對(duì)表達(dá)模式 (C)
Fig.2 The relative expression of miR167d (A) and its predictive target geneARF8 (B) at the treatment of 600 mmol/L NaCl in theHalostachyscaspicabranches (C)
表2 高鹽脅迫處理鹽穗木同化枝miR167d與預(yù)測(cè)靶基因ARF8的相關(guān)性分析
Table 2 Correlation analysis on miR167d and its target geneARF8 at the treatment of 600 mmol/L NaCl in theHalostachyscaspicabranches
處理TreatmentR2P值P value 顯著水平Significant3 h (600 mmol/L NaCl )0.7230.1045ns48 h (600 mmol/L NaCl)-0.94570.0043**600 mmol/L NaCl-0.80440.0292*
注:差異極顯著**(P<0.01);差異顯著*(P<0.05)
Note:P<0.01 was extremely significant (**) andP<0.05 was significant (*)
選取包含miR167d靶位點(diǎn)的鹽穗木ARF8片段(252 bp)和AtmiR167d(377 bp)分別構(gòu)建到植物表達(dá)載體pCAMBIA1301-GFP和pCAMBIA2300上,轉(zhuǎn)化農(nóng)桿菌EHA105,單獨(dú)及同時(shí)注射煙草葉片,用熒光顯微鏡觀察瞬時(shí)轉(zhuǎn)化后煙草表皮中GFP融合蛋白的表達(dá)情況。轉(zhuǎn)化了pCAMBIA1301-HcARF8-GFP后,在激發(fā)光的作用下,煙草細(xì)胞中有綠色熒光,位于保衛(wèi)細(xì)胞氣孔周圍(圖3A, B);而將pCAMBIA1301-HcARF8-GFP與pCAMBIA2300-AtmiR167d同時(shí)轉(zhuǎn)入煙草葉片后,表皮細(xì)胞中無綠色熒光(圖3C, D),這些都以野生型為對(duì)照(在明場(chǎng)、熒光場(chǎng)中均無熒光)(圖3E, F)。圖3
注:A, B分別為轉(zhuǎn)化pCAMBIA1301-HcARF8-GFP的明場(chǎng)及熒光場(chǎng)下的煙草表皮細(xì)胞;C, D分別為轉(zhuǎn)化pCAMBIA1301-HcARF8-GFP與pCAMBIA2300-AtmiR167d的明場(chǎng)及熒光場(chǎng)下煙草表皮細(xì)胞;E, F分別為野生型煙草明場(chǎng)及熒光場(chǎng)下的表皮細(xì)胞
Note: The tobacco epidermal cells were detected under the bright field and the fluorescent field by the observation of fluorescence microscope, which were transformedHcARF8-GFP fused gene with the plant expression vector pCAMBIA1301byagrobacteriummediated method (A, B),HcARF8-GFP andAtmiR167d with the vector pCAMBIA1301and pCAMBIA2300 by the same method (C, D) and those of wild type ( E, F), respectively
圖3 煙草瞬時(shí)轉(zhuǎn)化體系鑒定擬南芥miR167d與鹽穗木生長素響應(yīng)因子ARF8的靶向作用
Fig.3 Targeting verification ofArabidopsismiR167d andHalostachyscaspicaauxin response factorARF8 using tobacco transient expression system
利用RACE方法克隆獲得了鹽穗木miR167d預(yù)測(cè)的靶基因ARF8序列,全長為2 861 bp,ORF 2 442 bp,編碼813個(gè)氨基酸。鹽穗木ARF8推測(cè)的氨基酸序列與同科植物甜菜(Betavulgaris)ARF8的同源性最高,達(dá)到87%。
NCBI Conserved Domain Search (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)對(duì)其保守性進(jìn)行預(yù)測(cè),含有能與B3 DNA綁定元件、生長素響應(yīng)元件,生長素誘導(dǎo)轉(zhuǎn)錄IAA超家族的元件結(jié)合的結(jié)構(gòu)域,表明該蛋白是生長素響應(yīng)因子。圖4
圖4 鹽穗木ARF8全長基因的克隆(A)及編碼蛋白結(jié)構(gòu)域的預(yù)測(cè)(B)
Fig.4 Cloning ofHalostachyscaspicaARF8 full length gene (A) and predictive structure domain of this speciesARF8 (B)
鹽穗木是一種荒漠極端耐鹽植物,其莖葉已高度肉質(zhì)化[25]。很多研究報(bào)道m(xù)iR167調(diào)控生長素信號(hào)通路中的ARF基因,它作為一個(gè)調(diào)節(jié)子參與信號(hào)通路的調(diào)控,不僅調(diào)節(jié)植物的生長發(fā)育,還調(diào)控植物應(yīng)對(duì)各種環(huán)境脅迫[9, 10, 13, 17]。實(shí)驗(yàn)主要開展了高鹽脅迫下鹽穗木同化枝miR167d及其靶基因ARF8的表達(dá)模式以及相關(guān)性研究。
該文從前期獲得的高鹽脅迫下鹽穗木根的小RNA文庫和轉(zhuǎn)錄組數(shù)據(jù)中生物信息學(xué)分析miR167d與預(yù)測(cè)的靶基因具有一定的靶向性。NaCl高鹽脅迫real-time PCR的檢測(cè)結(jié)果顯示了鹽穗木同化枝miR167d表達(dá)顯著上調(diào),Liu等[15]和Zhu等[16]在擬南芥和中間錦雞兒中也發(fā)現(xiàn)類似的miR167上調(diào)表達(dá)的情況。對(duì)高鹽濃度不同時(shí)間點(diǎn)脅迫處理的鹽穗木,其同化枝中miR167d與其靶基因的表達(dá)呈現(xiàn)極顯著的負(fù)相關(guān)性 (表2和圖2)[4]。擬南芥miR167d與鹽穗木miR167d成熟體僅存在一個(gè)堿基的差異,煙草瞬時(shí)表達(dá)實(shí)驗(yàn)的結(jié)果顯示擬南芥miR167d對(duì)鹽穗木ARF8起到了剪切作用,這個(gè)結(jié)果間接地能推斷鹽穗木miR167d對(duì)其預(yù)測(cè)的靶基因HcARF8存在靶向切割,這與之前相關(guān)文獻(xiàn)中的報(bào)道[7, 8, 26]相一致。
根據(jù)前期課題組獲得的miR167d的靶基因ARF8轉(zhuǎn)錄組的序列信息,通過RACE的方法,獲得了HcARF8基因的全長序列(2 861 bp),NCBI在線BLAST發(fā)現(xiàn)HcARF8編碼的氨基酸序列與同科植物甜菜的同源性達(dá)到87%,鹽穗木ARF8存在能與生長素相關(guān)的元件(B3 DNA綁定元件、生長素響應(yīng)元件,生長素誘導(dǎo)轉(zhuǎn)錄IAA超家族的元件)結(jié)合的結(jié)構(gòu)域,這也進(jìn)一步證實(shí)了該序列就是HcARF8。這些結(jié)果為進(jìn)一步研究鹽穗木miR167d和靶基因HcARF8之間的調(diào)控和生物學(xué)功能奠定基礎(chǔ)。
以高鹽(600 mmol/L NaCl)處理48 h鹽穗木根的小RNA文庫中篩選到差異表達(dá)的miR167d和從轉(zhuǎn)錄組數(shù)據(jù)中預(yù)測(cè)到其靶基因HcARF8作為研究對(duì)象。熒光定量PCR試驗(yàn)證明高鹽脅迫下鹽穗木同化枝中miR167d和預(yù)測(cè)靶基因均響應(yīng)高鹽脅迫,且脅迫48 h時(shí),二者的表達(dá)量呈現(xiàn)顯著的負(fù)相關(guān)性,結(jié)合煙草瞬時(shí)表達(dá)試驗(yàn)的結(jié)果可以推斷鹽穗木miR167d與鹽穗木ARF8存在靶向關(guān)系;進(jìn)而利用同源克隆方法結(jié)合RACE技術(shù)獲得了鹽穗木miR167d的靶基因HcARF8的全長序列(2 861 bp),生物信息學(xué)分析與同科植物種甜菜ARF8同源性達(dá)到87%,都具有與生長素相關(guān)元件結(jié)合的功能域。
參考文獻(xiàn)(References)
[1] Munns, R. (2005). Genes and salt tolerance: bringing them together.NewPhytologist, 167(3): 645-663.
[2]Zhang, B. , Pan, X. , Cobb, G. P. , & Anderson, T. A. (2006). Plant microrna: a small regulatory molecule with big impact.DevelopmentalBiology, 289(1): 3-16.
[3] Jones-Rhoades, M. W. , Bartel, D. P. , & Bartel, B. (2006). Micrornas and their regulatory roles in plants.AnnualReviewOfPlantBiology, 57(1): 19-53.
[4] Chai, J. , Feng, R. , Shi, H. , Ren, M. , Zhang, Y. , & Wang, J. (2015). Bioinformatic identification and expression analysis of banana micrornas and their targets.PLOSONE, 10(4): e0123083.
[5] Suzuki, Y. , & Sugano, S. . (2003). Construction of a full-length enriched and a 5'-end enriched cdna library using the oligo-capping method.MethodsMolBiol, (221): 73-91.
[6]Ding, Q. , Zeng, J. , & He, X. Q. (2014). Deep sequencing on a genome-wide scale reveals diverse stage-specific micrornas in cambium during dormancy-release induced by chilling in poplar.BMCPlantBiology, 14(1): 267-279.
[7]Gao, P. , Bai, X. , Yang, L. , Lv, D. , Li, Y. , & Cai, H. , et al. (2010). Over-expression of osa-mir396c decreases salt and alkali stress tolerance.Planta, 231(5): 991-1,001.
[8]Feng, H. , Wang, X. , Zhang, Q. , Fu, Y. , & Kang, Z. (2013). Monodehydroascorbate reductase gene, regulated by the wheat pn-2013 mirna, contributes to adult wheat plant resistance to stripe rust through ros metabolism.BiochimicaetBiophysicaActa(BBA) -GeneRegulatoryMechanisms. 1839(1):1-12.
[9]Wu, Y. F. , Reed, G. W. , & Tian, C. Q. (2006). Arabidopsis microrna167 controls patterns of arf6 and arf8 expression, and regulates both female and male reproduction.Development,133(21): 4,211-4,218.
[10]Glazińska, Paulina, Wojciechowski, W. , Wilmowicz, E. , Zienkiewicz, A. , Frankowski, K. , & Kopcewicz, J. (2014). The involvement of inmir167 in the regulation of expression of its target gene inarf8, and their participation in the vegetative and generative development of ipomoea nil plants.JournalofPlantPhysiology, 171(3-4): 225-234.
[11]Ru, P. , Xu, L. , Ma, H. , & Huang, H. . (2006). Plant fertility defects induced by the enhanced expression of microrna167.CellResearch, 16(5):457-465.
[12]Liu, N. , Wu, S. , Van Houten, J. , Wang, Y. , Ding, B. , & Fei, Z. , et al. (2014). Down-regulation of auxin response factors 6 and 8 by microrna 167 leads to floral development defects and female sterility in tomato.JournalofExperimentalBotany,65(9): 2,507-2,520.
[13]Wang, Y. , Li, K. , Chen, L. , Zou, Y. , & Li, X. (2015). Microrna167-directed regulation of the auxin response factors gmarf8a and gmarf8b is required for soybean nodulation and lateral root development.Plantphysiology, 168(3): 984-999.
[14] Jodder, J. , Das, R. , Sarkar, D. , Bhattacharjee, P. , & Kundu, P. (2017). Distinct transcriptional and processing regulations control mir167a level in tomato during stress.RNABiology, 15(1):130-143.
[15]Liu, H. H. , Tian, X. , Li, Y. J. , Wu, C. A. , & Zheng, C. C. (2008). Microarray-based analysis of stress-regulated micrornas in arabidopsis thaliana.RNA, 14(5): 836-843.
[16]Zhu, J. , Li, W. , Yang, W. , Qi, L. , & Han, S. (2013). Identification of micrornas incaragana intermediaby high-throughput sequencing and expression analysis of 12 micrornas and their targets under salt stress.PlantCellReports,32(9):1,339-1,349.
[17]Kumar, R. (2014). Role of micrornas in biotic and abiotic stress responses in crop plants.AppliedBiochemistry&Biotechnology, 174(1):93-115.
[18]Khan, M. A. , & Duke, N. C. (2001). Halophytes - a resource for the future.WetlandsEcologyandManagement, 9(6): 455-456.
[19]Zhao, K. F. , Fan, H. , Song, J. , Sun, M. X. , Wang, B. Z. , & Zhang, S. Q. , et al. (2005). Two na+ and cl? hyperaccumulators of the chenopodiaceae.JournalOfIntegrativePlantBiology, 47(3): 311-318.
[20]Song, J. , Feng, G. , & Zhang, F. (2006). Salinity and temperature effects on germination for three salt-resistant euhalophytes,halostachys caspica,kalidium foliatumandhalocnemum strobilaceum.PlantandSoil, 279(1-2): 201-207.
[21]Zeng, Y. , Li, L. , Yang, R. , Yi, X. , & Zhang, B. (2015). Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in halostachys caspica response to salt stress.ScientificReports, 5(1): 13,639.
[22]Yang, R. , Zeng, Y. , Yi, X. , Zhao, L. , & Zhang, Y. (2015). Small rna deep sequencing reveals the important role of micrornas in the halophyter,halostachyscaspica.PlantBiotechnologyJournal, 13(3): 395-408.
[23]Allen, E. , Xie, Z. , Gustafson, A. M. , & Carrington, J. C. (2005). Microrna-directed phasing during trans-acting sirna biogenesis in plants.Cell, 121(2): 207-221.
[24]Schwab, R. , Palatnik, J. F. , Riester, M. , Schommer, C. , Schmid, M. , & Weigel, D. (2005). Specific effects of micrornas on the plant transcriptome.DevelopmentalCell, 8(4):517-524.
[25]楊瑞瑞, 曾幼玲. 鹽生植物鹽爪爪的耐鹽生理特性探討[J]. 廣西植物, 2015,35(3):366-372.
YANG Rui-rui, ZENG You-ling. (2015). Physiological characteristics of the halophytic plantKalidiumfoliatumto salt stress [J].Guihaia, 35(3):366-372. (in Chinese)
[26] Nagpal, P. , Ellis, C. M. , Weber, H. , Ploense, S. E. , & Barkawi, L. S. (2005). Auxin response factors arf6 and arf8 promote jasmonic acid production and flower maturation.Development, 132(18): 4,107-4,118.