張舒珊 綜述 楊延宗 審校
(中山大學(xué)附屬第五醫(yī)院,廣東 珠海 519000; 2.大連醫(yī)科大學(xué)附屬第一醫(yī)院心內(nèi)科,遼寧 大連 116000)
心房顫動(dòng)是心房無(wú)序激動(dòng)和無(wú)效收縮的心律失常疾病,其發(fā)病機(jī)制復(fù)雜,研究表明心房重構(gòu)、神經(jīng)內(nèi)分泌激素、細(xì)胞因子、炎癥及基因等因素共同參與[1]。心房重構(gòu)是心房顫動(dòng)發(fā)生、發(fā)展的核心環(huán)節(jié)[2],心房電重構(gòu)和解剖重構(gòu)是心房顫動(dòng)發(fā)生和維持的基礎(chǔ)。近些年來(lái),越來(lái)越關(guān)注神經(jīng)內(nèi)分泌機(jī)制對(duì)于心房顫動(dòng)上游治療的應(yīng)用,其中腎素-血管緊張素系統(tǒng)對(duì)于心房顫動(dòng)發(fā)作的促進(jìn)作用已經(jīng)得到證實(shí),但鈉尿肽(natriuretic peptides,NPs)家族作為最早發(fā)現(xiàn)起源于心臟循環(huán)的激素,其對(duì)于心房顫動(dòng)影響的機(jī)制尚不明確,以下將從NPs家族對(duì)心房顫動(dòng)的電重構(gòu)、解剖重構(gòu)以及NPs在心房顫動(dòng)領(lǐng)域的應(yīng)用價(jià)值三個(gè)方面作一闡述。
NPs家族是一組具有利尿利鈉、舒張血管降壓、抗細(xì)胞增殖等活性的多肽,主要包括心房鈉尿肽(atrial natriuretic peptide,ANP)、腦鈉尿肽(brain natriuretic peptide,BNP)、 C型鈉尿肽(C-type natriuretic peptide,CNP)和D型鈉尿肽(D-type natriuretic peptide,DNP)。已知在人類(lèi)NPs中均含有一個(gè)特定的由17個(gè)氨基酸組成的環(huán)狀結(jié)構(gòu),由其中2個(gè)半胱氨酸殘基通過(guò)二硫鍵形成的環(huán)狀結(jié)構(gòu),該結(jié)構(gòu)與受體結(jié)合為其活性中心。NPs有3種受體,NPR-A、NPR-B、NPR-C受體。ANP、BNP 與NPR-A相結(jié)合使第二信使環(huán)磷酸鳥(niǎo)苷(cGMP)水平升高,促使cGMP下游信號(hào)分子蛋白激酶G(PKG)、磷酸二酯酶激活,使細(xì)胞膜離子通道的靶點(diǎn)磷酸化,發(fā)揮改變離子通道的作用。此外基因?qū)W研究已經(jīng)證實(shí)了NPs突變與人類(lèi)遺傳性心律失常疾病密切相關(guān)[3]??焖龠B續(xù)不規(guī)則的心房刺激可導(dǎo)致動(dòng)作電位時(shí)程和有效不應(yīng)期的縮短,其中鈣超載是電重構(gòu)的核心,細(xì)胞內(nèi)的鈣超載會(huì)使細(xì)胞開(kāi)啟自我保護(hù)機(jī)制,通過(guò)鈣離子通道失活以及鈣通道蛋白表達(dá)下調(diào)等減少鈣離子內(nèi)流。L型鈣離子通道是NPs調(diào)節(jié)離子通道的主要靶點(diǎn),在體外兔及大鼠的心室肌細(xì)胞中,NPs家族(ANP、BNP、DNP)通過(guò)cGMP-PKG信號(hào)通路降低L型鈣通道電流(ICa-L)[4-5]。在大鼠的心室肌細(xì)胞中,BNP、CNP降低L型鈣離子通道表達(dá),在細(xì)胞內(nèi)鈣循環(huán)、鈣的瞬移等方面起到關(guān)鍵作用[6]。有研究顯示cGMP能激活的肌質(zhì)網(wǎng)Ca2+-ATP酶,導(dǎo)致細(xì)胞內(nèi)Ca2+濃度下降。藥理學(xué)的研究顯示減輕細(xì)胞內(nèi)鈣負(fù)荷可逆轉(zhuǎn)電重構(gòu),鈣離子的不穩(wěn)定和分布異常促進(jìn)心房顫動(dòng)的發(fā)展。雖然NPs導(dǎo)致ICa-L減少使動(dòng)作電位時(shí)程和有效不應(yīng)期縮短,從生理功能分析,細(xì)胞內(nèi)的鈣超載導(dǎo)致鈣循環(huán)的異常、細(xì)胞內(nèi)外的離子紊亂和遲后除極而誘發(fā)心肌電紊亂,NPs減輕細(xì)胞內(nèi)鈣超載更有利于細(xì)胞穩(wěn)態(tài)的保持,避免心肌電紊亂。一些研究也證實(shí)NPs對(duì)其他離子通道電流調(diào)節(jié)的作用,其中包括鈉電流(INa),超極化激活電流(If),鉀電流包括瞬時(shí)外向鉀電流(Ito),延遲整流鉀電流(IKs)和ATP敏感的鉀電流(IK·ATP)。ANP可增加心肌細(xì)胞中的If[7],If是4期主要的去極化電流,If內(nèi)流速度加快使竇房結(jié)自律性的增加,降低心房肌異位搏動(dòng)和降低心律失常的發(fā)生率[2]。Lin等[8]研究得出在體外兔心肌細(xì)胞中,灌注BNP,可增加If、Ito、INa、INa-Ca和ICa-L等。但Hua等[9]的研究中ANP對(duì)于鼠心肌細(xì)胞INa通道無(wú)影響,BNP、CNP可調(diào)節(jié)體外的鼠心室肌細(xì)胞IK·ATP通道[10]。根據(jù)目前現(xiàn)有的研究推測(cè)不同物種、不同的基礎(chǔ)狀態(tài),NPs對(duì)心臟電生理及離子通道的表達(dá)具有雙向調(diào)節(jié)的作用,主要是由于cGMP復(fù)雜的下游信號(hào)級(jí)聯(lián)反應(yīng)所致。一旦NPR-B-GMP-PKG與 NPR-A-GMP-PKG信號(hào)通路被激活,一系列下游的潛在通路被激發(fā)。NPs可以同單一的NPR結(jié)合,也可以同多個(gè)NPR結(jié)合形成多種交互的信號(hào)通道,目前這些通路尚不清楚。綜上,NPs對(duì)于心房顫動(dòng)電重構(gòu)的影響目前仍不清楚。
心房解剖重構(gòu)主要表現(xiàn)為心房收縮力下降、肌細(xì)胞超微結(jié)構(gòu)改變和纖維化;其中纖維化是心律失常結(jié)構(gòu)性重構(gòu)最為突出的改變。ANP、BNP通過(guò)排鈉排尿,舒張血管的作用減輕心臟前后負(fù)荷而抑制心臟重構(gòu)的基礎(chǔ)上,其在心臟局部也起到更為直接抗心肌纖維化的作用。Lin等[11]實(shí)驗(yàn)發(fā)現(xiàn)心肌細(xì)胞、成纖維細(xì)胞均存在NPs受體,心肌細(xì)胞表面主要有NPR-A,心肌成纖維細(xì)胞表面同時(shí)存在NPR-A、NPR-B,在一般情況下,NPs受體在心房表達(dá)水平高于心室[12]。在擴(kuò)張型心肌病的小鼠中,ANP可有效改善心功能、降低死亡率。在ANP基因缺失的小鼠中,其后代更容易獲得心肌肥厚[13]。ANP和BNP通過(guò)調(diào)節(jié)以下關(guān)鍵要素抑制心肌纖維化:(1)調(diào)節(jié)心臟的腎素-血管緊張素-醛固酮系統(tǒng)。ANP、BNP通過(guò)抑制心肌細(xì)胞醛固酮,抑制心臟局部的腎素-血管緊張素-醛固酮系統(tǒng)[14]。Nakagawa等[15]發(fā)現(xiàn)ANP及其下游信號(hào)通路調(diào)節(jié)鹽皮質(zhì)激素受體核轉(zhuǎn)位和轉(zhuǎn)錄活性,抑制醛固酮合成而發(fā)揮抗纖維化、逆轉(zhuǎn)心臟擴(kuò)張及心力衰竭的作用。(2)調(diào)節(jié)轉(zhuǎn)化生長(zhǎng)因子(TGF)-β信號(hào)通路。有研究證實(shí)BNP具有對(duì)抗TGF-β因子介導(dǎo)的纖維化、心肌成纖維細(xì)胞的轉(zhuǎn)化、細(xì)胞增殖及炎癥等作用[16]。一項(xiàng)體外小鼠成纖維細(xì)胞中,ANP抑制TGF-β誘導(dǎo)的心肌成纖維細(xì)胞外基質(zhì)的表達(dá)[17]。(3)調(diào)節(jié)轉(zhuǎn)錄因子GATA4,在缺失NPR-A基因的小鼠中通過(guò)PKC-MAPK-GATA4通路導(dǎo)致心肌纖維化。Glenn等[18]研究的心房NPs抑制心肌成纖維細(xì)胞內(nèi)皮素基因表達(dá)和細(xì)胞增殖,通過(guò)GATA4介導(dǎo)的信號(hào)通道。(4)調(diào)節(jié)細(xì)胞內(nèi)酶和G蛋白偶聯(lián)受體信號(hào)。Tokudome等[19]報(bào)道缺失鳥(niǎo)苷酸環(huán)化酶的小鼠可抑制心肌肥厚。
影響ANP、BNP水平的重要因素是左心房壁的牽拉、跳動(dòng)頻率紊亂、射血分?jǐn)?shù)降低等,上述生理學(xué)變化導(dǎo)致心房膨脹及心房?jī)?nèi)壓急劇升高,促使以ANP為主的NPs家族分泌增加;另外的一些因素包括心動(dòng)過(guò)速、跨壁壓力、甲狀腺激素、糖皮質(zhì)激素、血管活性肽內(nèi)皮素和血管緊張素Ⅱ等。Rossi等[20]發(fā)現(xiàn)心房顫動(dòng)患者ANP的升高不依賴(lài)左心房容量和左心室射血分?jǐn)?shù),認(rèn)為ANP升高是心房顫動(dòng)發(fā)生的獨(dú)立危險(xiǎn)因素。心房顫動(dòng)與竇性心律患者相比,ANP、BNP水平顯著升高[21],有研究顯示高水平ANP可預(yù)測(cè)陣發(fā)性心房顫動(dòng)發(fā)展為充血性心力衰竭或心臟術(shù)后預(yù)后情況[22]。另一項(xiàng)研究顯示高水平ANP與二尖瓣置換及迷宮術(shù)后心房顫動(dòng)發(fā)生率呈正相關(guān)[23]。高水平ANP與心房顫動(dòng)發(fā)作時(shí)心房壓力急性生理反應(yīng)相關(guān),恢復(fù)竇性心律后高水平ANP可能較前下降[24]。然而也有研究指出恢復(fù)竇性心律的持續(xù)性心房顫動(dòng)患者,一個(gè)月后ANP仍處于高水平[25],原因可能與雖然左房壓力較前明顯下降,左心房的機(jī)械性牽拉依然存在。另一些研究顯示低水平的ANP較難維持竇性心律[26],原因可能與長(zhǎng)程持續(xù)性心房顫動(dòng),心房發(fā)生解剖重構(gòu)導(dǎo)致功能細(xì)胞丟失和ANP分泌的降低有關(guān)。在評(píng)估心房顫動(dòng)消融術(shù)后復(fù)發(fā)的研究中血漿BNP、BNP前體(NT-proBNP)水平較高的患者心房顫動(dòng)的復(fù)發(fā)率較高[27]。一項(xiàng)包含十項(xiàng)薈萃分析的研究中高水平BNP與射頻導(dǎo)管消融術(shù)后心房顫動(dòng)風(fēng)險(xiǎn)增加相關(guān),認(rèn)為血漿BNP水平是心房顫動(dòng)患者射頻導(dǎo)管消融術(shù)后復(fù)發(fā)的獨(dú)立觀測(cè)指標(biāo)[28]。心房顫動(dòng)組經(jīng)過(guò)射頻導(dǎo)管消融術(shù)后24 d 血中BNP水平明顯下降,在3個(gè)月的時(shí)間內(nèi)均處于下降趨勢(shì)[29]。BNP和NT-proBNP水平已被證實(shí)可預(yù)測(cè)不同的臨床環(huán)境中發(fā)生心房顫動(dòng)的風(fēng)險(xiǎn)。血漿中高水平NT-proBNP可預(yù)測(cè)行體外循環(huán)冠狀動(dòng)脈旁路移植術(shù)的患者術(shù)后發(fā)生心房顫動(dòng)的情況[30],另一項(xiàng)研究中高水平的BNP可預(yù)測(cè)2型糖尿病人群心房顫動(dòng)的發(fā)生率[31]。故目前認(rèn)為NPs是評(píng)估心房顫動(dòng)病情、選擇最佳治療方案、預(yù)測(cè)消融手術(shù)、電復(fù)律成功率、心房顫動(dòng)相關(guān)并發(fā)癥發(fā)生率及死亡率等的重要指標(biāo)[32]。
在過(guò)去的20年間,NPs家族的臨床應(yīng)用已經(jīng)不僅僅局限于心力衰竭的診斷標(biāo)志物,作為具有保護(hù)作用的心血管起源生物活性肽激素具有逆轉(zhuǎn)心臟重構(gòu)的作用。現(xiàn)有的研究已經(jīng)證實(shí)了NPs家族與心房顫動(dòng)的發(fā)生息息相關(guān),對(duì)于調(diào)節(jié)心臟電生理和心律失常的發(fā)作起到關(guān)鍵的作用。但NPs與心房顫動(dòng)的相關(guān)性仍需進(jìn)一步的基礎(chǔ)研究以及大規(guī)模的前瞻性臨床研究,這對(duì)闡明心房顫動(dòng)的發(fā)病機(jī)制、危險(xiǎn)分層、判定預(yù)后以及治療心房顫動(dòng)的新藥研發(fā)均具有重要意義。
[ 參 考 文 獻(xiàn) ]
[1] Woods CE,Olgin J.Atrial fibrillation therapy now and in the future:drugs,biologicals,and ablation[J].Circ Res,2014,114(9):1532-1546.
[2] Xu Y,Sharma D,Li G,et al.Atrial remodeling:new pathophysiological mechanism of atrial fibrillation[J].Med Hypotheses,2013,80(1):53-56.
[3] Abraham RL,Yang T,Blair M,et al.Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation[J].J Mol Cell Cardiol,2010,48(1):181-190.
[4] Perrin MJ,Gollob MH.The role of atrial natriuretic peptide in modulating cardiac electrophysiology[J].Heart Rhythm,2012,9(4):610-615.
[5] Fares N,Nader L,Saliba Y,et al.B-type natriuretic peptide modulates the action potential and the L-type calcium current in adult rat heart muscle cells[J].J Med Liban,2010,58(4):222-227.
[6] Azer J,Hua R,Krishnaswamy PS,et al.Effects of natriuretic peptides on electrical conduction in the sinoatrial node and atrial myocardium of the heart[J].J Physiol,2014,592(5):1025-1045.
[7] Lonardo G,Cerbai E,Casini S,et al.Atrial natriuretic peptide modulates the hyperpolarization-activated current(If)in human atrial myocytes[J].Cardiovasc Res,2004,63(3):528-536.
[8] Lin YK,Chen YC,Chen YA,et al.B-type natriuretic peptide modulates pulmonary vein arrhythmogenesis:a novel potential contributor to the genesis of atrial tachyarrhythmia in heart failure[J].J Cardiovasc Electrophysiol,2016,27(12):1462-1471.
[9] Hua R,MacLeod SL,Polina I,et al.Effects of wild-type and mutant forms of atrial natriuretic peptide on atrial electrophysiology and arrhythmogenesis[J].Circ Arrhythm Electrophysiol,2015,8(5):1240-1254.
[10] Burley DS,Cox CD,Zhang J,et al.Natriuretic peptides modulate ATP-sensitive K(+)channels in rat ventricular cardiomyocytes[J].Basic Res Cardiol,2014,109(2):402-404.
[11] Lin X,Hanze J,Heese F,et al.Gene expression of natriuretic peptide receptors in myocardial cells[J].Circ Res,1995,77(4):750-758.
[12] Egom EE,Vella K,Hua R,et al.Impaired sinoatrial node function and increased susceptibility to atrial fibrillation in mice lacking natriuretic peptide receptor C[J].J Physiol,2015,593(5):1127-1146.
[13] Armstrong DW,Tse MY,O’Tierney-Ginn PF,et al.Gestational hypertension in atrial natriuretic peptide knockout mice and the developmental origins of salt-sensitivity and cardiac hypertrophy[J].Regul Pept,2013,186:108-115.
[14] Miura S,Nakayama A,Tomita S,et al.Comparison of aldosterone synthesis in adrenal cells,effect of various AT1 receptor blockers with or without atrial natriuretic peptide[J].Clin Exp Hypertens,2015,37(5):353-357.
[15] Nakagawa H,Mizuno Y,Harada E,et al.Brain natriuretic peptide counteracting the renin-angiotensin-aldosterone system in accelerated malignant hypertension[J].Am J Med Sci,2016,352(5):534-539.
[16] Kapoun AM,Liang F,O’Young G,et al.B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts:fibrosis,myofibroblast conversion,proliferation,and inflammation[J].Circ Res,2004,94(4):453-461.
[17] Li P,Wang D,Lucas J,et al.Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts[J].Circ Res,2008,102(2):185-192.
[18] Glenn DJ,Rahmutula D,Nishimoto M,et al.Atrial natriuretic peptide suppresses endothelin gene expression and proliferation in cardiac fibroblasts through a GATA4-dependent mechanism[J].Cardiovasc Res,2009,84(2):209-217.
[19] Tokudome T,Kishimoto I,Horio T,et al.Regulator of G-protein signaling subtype 4 mediates antihypertrophic effect of locally secreted natriuretic peptides in the heart[J].Cardiovasc Res,2009,84(2):209-217.
[20] Rossi A,Enriquez-Sarano M,Burnett JC,et al.Natriuretic peptide levels in atrial fibrillation:a prospective hormonal and Doppler-echocardiographic study[J].J Am Coll Cardiol,2000,35(5):1256-1262.
[21] Xing SY,Wang HL,Dong PS,et al.Clinical significance and levels of blood brain natriuretic peptides in patients with persistent atrial fibrillation before and after catheter ablation[J].Genet Mol Res,2015,14(2):6953-6959.
[22] Yilmaz MB,Erbay AR,Balci M,et al.Atrial natriuretic peptide predicts impaired atrial remodeling and occurrence of late postoperative atrial fibrillation after surgery for symptomatic aortic stenosis[J].Cardiology,2006,105(4):207-212.
[23] Park J,Lee SH,Lee JS,et al.High recurrence of atrial fibrillation in patients with high tissue atrial natriuretic peptide and amyloid levels after concomitant maze and mitral valve surgery[J].J Cardiol,2017,69(1):345-352.
[24] Arakawa M,Miwa H,Noda T,et al.Alternations in atrial natriuretic peptide release after DC cardioversion of non-valvular chronic atrial fibrillation[J].Eur Heart J,1995,16(7):977-985.
[25] Bernard-Brunet A,Saint Etienne C,Piver E,et al.Incomplete recovery of mechanical and endocrine left atrial functions one month after electrical cardioversion for persistent atrial fibrillation:a pilot study[J].J Transl Med,2014,12:51.
[26] Govindan M,Borgulya G,Kiotsekoglou A,et al.Prognostic value of left atrial expansion index and exercise-induced change in atrial natriuretic peptide as long-term predictors of atrial fibrillation recurrence[J].Europace,2012,14(9):1302-1310.
[27] Fan J,Cao H,Su L,et al.NT-proBNP,but not ANP and C-reactive protein,is predictive of paroxysmal atrial fibrillation in patients undergoing pulmonary vein isolation[J].J Interv Card Electrophysiol,2012,33(1):93-100.
[28] Zografos T,Maniotis C,Katsivas A,et al.Relationship between brain natriuretic peptide and recurrence of atrial fibrillation after successful electrical cardioversion:a meta-analysis[J].Pacing Clin Electrophysiol,2014,37(11):1530-1537.
[29] Arana-Rueda E,Pedrote A,García-Riesco L,et al.Clinical value of N-terminal pro-B-type natriuretic peptide measurement in the follow up of pulmonary vein ablation[J].Med Clin(Barc),2015,145(6):248-250.
[30] Lednev PV,Belov YV,Komarov RN,et al.The role of N-terminal pro-brain natriuretic peptide in prediction of postoperative atrial fibrillation[J].Khirurgiia(Mosk),2016,(1):4-14.
[31] Kishimoto I,Makino H,Ohata Y,et al.Impact of B-type natriuretic peptide(BNP)on development of atrial fibrillation in people with type 2 diabetes[J].Diabet Med,2016,33(8):1118-1124.
[32] Hijazi Z,Oldgren J,Siegbahn A.Application of biomarkers for risk stratification in patients with atrial fibrillation[J].Clin Chem,2017,63(1):152-164.