王 穎,韓秀萍
甘草酸苷(Glycyrrhizin,GL)又稱甘草酸、甘草皂苷或甘草甜素,是甘草的主要活性成分,具有保護(hù)肝細(xì)胞、抗炎、抗病毒、免疫調(diào)節(jié)以及抗腫瘤等多種藥理作用和生物學(xué)功能。甘草酸苷的療效雖已在臨床應(yīng)用中得到廣泛認(rèn)可,但其作用機(jī)制仍不完全清楚,現(xiàn)就近年來(lái)甘草酸苷作用機(jī)制的研究進(jìn)展做一簡(jiǎn)要綜述。
甘草酸苷是從甘草根部提取的三萜苷(圖1)[1],占甘草總提取物的3.63%~13.06%,是甘草的主要活性成分。甘草酸苷可被腸內(nèi) β-D-葡萄糖醛酸糖苷酶水解為一分子18β-甘草次酸和兩分子葡萄糖醛酸[2-3]。18β-甘草次酸具有類皮質(zhì)醇樣結(jié)構(gòu)[4],可通過(guò)抑制11β-羥基固醇脫氫酶的活性模擬皮質(zhì)醇的作用[5-6]。
圖1 甘草酸苷的化學(xué)結(jié)構(gòu)
2.1 抗炎作用 目前已知的甘草酸苷抗炎作用機(jī)制主要有2種,一種為通過(guò)抑制花生四烯酸的代謝水平,抑制細(xì)胞色素C(CytC)的釋放,從而抑制磷脂酶A2(PLA2)的活性,抑制補(bǔ)體激活;一種為非特異性的抗炎及保護(hù)細(xì)胞膜的作用,抑制熱休克蛋白90(HSP-90)的表達(dá),從而降低糖皮質(zhì)激素受體與配體的親和力[7-10]。
2.1.1 肝細(xì)胞保護(hù)作用 肝臟是機(jī)體最大的代謝器官和重要的免疫器官,其解毒和吞噬功能對(duì)機(jī)體有重要保護(hù)作用。各種致病因子作用于肝組織后,可直接導(dǎo)致肝細(xì)胞不同程度的損傷,還可通過(guò)自分泌和旁分泌作用引起細(xì)胞因子網(wǎng)絡(luò)的激活,引起肝細(xì)胞的損傷、肝纖維化等,晚期則發(fā)展為肝硬化和肝癌。甘草酸苷被廣泛應(yīng)用于治療肝細(xì)胞損傷和慢性肝炎[11-13]。
肝臟發(fā)生炎癥時(shí),會(huì)伴有環(huán)氧化酶-2(COX-2)、腫瘤壞死因子-α(TNF-α)、白介素-6(IL-6)以及誘生型一氧化氮合酶(iNOS)水平的升高,進(jìn)而引起肝細(xì)胞炎癥和凋亡。甘草酸苷可降低這些炎癥因子的表達(dá),抑制核因子-κB(NF-κB)的活性,減輕TNF-α-MAPK-NF-κB 途徑所致的肝細(xì)胞損傷和凋亡[14-16]。另有研究發(fā)現(xiàn),長(zhǎng)時(shí)間腸外營(yíng)養(yǎng)可引起嚴(yán)重的肝臟疾病,預(yù)防性的甘草酸苷治療,可下調(diào)內(nèi)質(zhì)網(wǎng)應(yīng)激因子,如c-Jun氨基末端激酶(JNK)、p38絲裂原活化蛋白激酶(p38 MAPK) 和C/EBP環(huán)磷酸腺苷反應(yīng)元件結(jié)合轉(zhuǎn)錄因子同源蛋白(CHOP)的水平,減輕肝損傷[17]。動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),在代謝綜合征中存在肝功能異常,包括丙氨酸氨基轉(zhuǎn)移酶(ALT)、天冬氨酸氨基轉(zhuǎn)移酶(AST)和谷氨酰轉(zhuǎn)肽酶(GGT)的水平升高,給予甘草酸苷后,這些指標(biāo)可恢復(fù)正常。對(duì)肝臟組織檢查發(fā)現(xiàn),用藥后肝細(xì)胞線粒體中活性氧簇(ROS)減少,說(shuō)明甘草酸苷可以改善線粒體的氧化性應(yīng)激[18]。這種保護(hù)機(jī)制同樣發(fā)生于丙型肝炎病毒感染的肝臟組織[19]。
2.1.2 其他抗炎作用 近年來(lái),甘草酸苷作為高遷移率族蛋白-1(HMGB1)的天然抑制劑,其抗炎作用越來(lái)越受到關(guān)注。HMGB1是核內(nèi)高度保守的非組蛋白染色體蛋白,主要穩(wěn)定核小體的結(jié)構(gòu)并調(diào)節(jié)基因轉(zhuǎn)錄。HMGBl可以主動(dòng)或被動(dòng)從細(xì)胞中釋放,作為細(xì)胞因子和內(nèi)源性信號(hào)分子與多種細(xì)胞表面不同的受體如高級(jí)糖化終產(chǎn)物(RAGE)[20],Toll樣受體2(TLR2)[21]、TLR4[22]結(jié)合,活化下游信號(hào),如p38MAPK[23-24]、pJNK[25]和NF-κB,進(jìn)而上調(diào)半胱天冬酶-3(Caspase-3)[26-27]、TNF-α、IL-1、IL-6的水平,引起炎癥反應(yīng),加劇細(xì)胞損傷和凋亡。甘草酸苷可直接與HMGBl結(jié)合,抑制其細(xì)胞因子的活性[28],在感染、燒傷、組織器官缺血性損傷、胰腺炎和潰瘍性結(jié)腸炎等炎性疾病中發(fā)揮治療作用。
另有研究發(fā)現(xiàn),甘草酸苷可以降低細(xì)胞膜脂質(zhì)筏膽固醇含量,并活化ATP結(jié)合盒轉(zhuǎn)運(yùn)體A-1(ABCA1)降低細(xì)胞膜脂質(zhì)筏的膽固醇外流,從而干擾TLR4向脂質(zhì)筏轉(zhuǎn)移,最終減少NF-κB和干擾素調(diào)節(jié)因子-3(IRF3)表達(dá),下調(diào)炎性因子的水平,減輕炎癥反應(yīng)[29-30]。甘草酸苷還可以使單核細(xì)胞趨化蛋白-1(MCP-1)、巨噬細(xì)胞炎性蛋白-2(MIP-2)和中性粒細(xì)胞趨化因子-2(CINC-2)表達(dá)下降,減輕炎性細(xì)胞浸潤(rùn),改善預(yù)后[31-32]。
2.2 抗病毒作用 早在1979年,Pompei等[33]發(fā)現(xiàn)甘草酸有抗病毒活性,能抑制很多不同的DNA、RNA病毒的生長(zhǎng),并且不影響正常細(xì)胞的活性,還可以不可逆鈍化單純性皰疹病毒顆粒。另有研究通過(guò)免疫熒光和電子顯微鏡觀察發(fā)現(xiàn),甘草酸苷作用于感染丙型肝炎病毒(HCV)的Huh7細(xì)胞后,細(xì)胞外病毒量下降而細(xì)胞內(nèi)的病毒量上升(HCV核心抗原和電子致密顆粒在內(nèi)質(zhì)網(wǎng)聚集),說(shuō)明甘草酸苷雖然不能阻斷HCV的入侵,但是可以抑制受感染的細(xì)胞釋放病毒顆粒[34],并且在一定程度上可以抑制HCV的復(fù)制[35]。甘草酸苷雖然沒(méi)有清除病毒的作用,但是可以通過(guò)阻斷NF-κB抑制劑IκBκ的降解,下調(diào)炎性因子TNF-α、IL-1β和IL-6的水平,明顯改善柯薩奇病毒B3(CVB3)所致的病毒性心肌炎[36],還可通過(guò)減少趨化相關(guān)因子CXCL10、CCL5[37]、CXCL2和CCL2的表達(dá),減輕炎癥反應(yīng)和細(xì)胞凋亡[38-39]。
2.3 免疫調(diào)節(jié)作用 甘草酸苷具有非特異性免疫調(diào)節(jié)作用,可以通過(guò)對(duì)T細(xì)胞亞群的調(diào)節(jié),促進(jìn)胸腺外T淋巴細(xì)胞分化[40],活化NK細(xì)胞[41],誘導(dǎo)干擾素-γ(IFN-γ)及調(diào)節(jié)細(xì)胞因子水平等發(fā)揮作用。
甘草酸苷可以劑量依賴性地下調(diào)過(guò)敏性鼻炎小鼠模型IgE、IL-4、IL-5、IL-6、NO、TNF-α和P物質(zhì)的水平,上調(diào)IL-2、IL-12的分泌,增強(qiáng)乙酰膽堿酯酶(AchE)的活性,改善過(guò)敏反應(yīng)[42-43]。Bordbar等[44]和Hua等[45]研究了甘草酸苷對(duì)小鼠不同來(lái)源樹(shù)突狀細(xì)胞成熟及功能的影響,發(fā)現(xiàn)甘草酸苷作用后,樹(shù)突狀細(xì)胞表達(dá)CD40、CD86和MHC-Ⅱ增加,分泌IL-10和IL-12增多,分泌TNF-α減少,說(shuō)明甘草酸苷對(duì)樹(shù)突狀細(xì)胞有正向的促成熟作用。這種樹(shù)突狀細(xì)胞與同源的T細(xì)胞共培養(yǎng)后,T細(xì)胞分泌IFN-γ、IL-10水平增加,而分泌IL-4的水平下降,說(shuō)明甘草酸苷可以增強(qiáng)1型輔助性T細(xì)胞(Th1)為主的免疫反應(yīng)。在刀豆球蛋白A(Con.A)誘導(dǎo)的肝纖維化小鼠模型中,甘草酸苷通過(guò)調(diào)節(jié)Th1/Th2和調(diào)節(jié)性T細(xì)胞(Treg)/Th17的平衡,使免疫反應(yīng)向Th1及 Treg細(xì)胞偏斜,顯著上調(diào)IFN-γ和IL-10的水平。進(jìn)一步的研究發(fā)現(xiàn),這種作用可能是通過(guò)抑制JNK、細(xì)胞外調(diào)節(jié)蛋白激酶(ERK)和磷脂酰肌醇3-激酶/蛋白激酶B(PI3K/AKT)的磷酸化實(shí)現(xiàn)的[46]。
2.4 抗腫瘤作用 甘草酸苷抗炎、抗氧化應(yīng)激及免疫調(diào)節(jié)等作用,使其可以用于預(yù)防和治療各種慢性炎癥所誘發(fā)的癌變。1項(xiàng)10年的甘草酸苷治療丙型肝炎的臨床研究顯示,甘草酸苷不僅可以改善患者肝功能,還能夠降低肝癌的發(fā)生率。進(jìn)一步研究顯示,甘草酸苷可上調(diào)抑癌基因jun-B的表達(dá),減輕慢性肝損傷[47],促進(jìn)肝癌細(xì)胞線粒體膜去極化,上調(diào)p53、CytC、B淋巴細(xì)胞瘤-2基因(Bcl-2)相關(guān)X蛋白(Bax)的表達(dá),促進(jìn)肝癌細(xì)胞凋亡[48-49]。肺腺癌細(xì)胞系A(chǔ)549和NCI-H23高表達(dá)血栓素合酶,甘草酸苷可抑制其表達(dá)和活性,從而抑制肺腺癌細(xì)胞的生長(zhǎng)[50]。動(dòng)物實(shí)驗(yàn)證實(shí),甘草酸苷通過(guò)下調(diào)由幽門(mén)螺桿菌及高鹽飲食導(dǎo)致的COX-2、iNOS、血管內(nèi)皮生長(zhǎng)因子(VEGF)和IL-8水平升高,減輕慢性萎縮性胃炎癥狀,降低胃癌的發(fā)生率[51]。甘草次酸可增加細(xì)胞間質(zhì)中酪氨酸mRNA的水平,通過(guò)激活轉(zhuǎn)錄機(jī)制誘導(dǎo)黑色素細(xì)胞B16中黑色素生成,加速腫瘤細(xì)胞老化,起到抗黑色素瘤作用[52]。另有研究顯示,甘草酸苷可使人宮頸癌HeLa細(xì)胞核中對(duì)硫氧還蛋白(Trx)表達(dá)下降,降低腫瘤細(xì)胞的耐藥性[53]。
癌細(xì)胞在抗癌藥物的作用下,在發(fā)生壞死的同時(shí)釋放HMGB1。HMGB1作為前炎癥因子,可以促進(jìn)血管內(nèi)皮細(xì)胞增生和癌細(xì)胞遷移,上調(diào)TNF-α水平,造成對(duì)正常組織和細(xì)胞的損傷,甘草酸苷與HMGB1特異性地結(jié)合,抑制其細(xì)胞因子活性,可改善由抗癌藥物引起的炎癥反應(yīng)[54]。
2.5 不良反應(yīng) 眾所周知,假性醛固酮增多癥,主要表現(xiàn)為鈉潴留、低鉀血癥和高血壓等,是甘草酸苷的主要不良反應(yīng)。Stewart等[55]研究表明,此現(xiàn)象是由18β-甘草次酸引起的,后者可抑制11β-羥基固醇脫氫酶在腎臟的代謝。11β-羥基固醇脫氫酶有2種亞型,腎型11β-脫氫酶和肝型11β-氧還原酶。腎型11β-脫氫酶可將皮質(zhì)醇轉(zhuǎn)化為腎上腺激素,肝型11β-氧還原酶則催化相反的反應(yīng)。18β-甘草次酸抑制腎型11β-脫氫酶的代謝,導(dǎo)致腎臟皮質(zhì)醇水平增加。又由于皮質(zhì)醇和醛固酮與鹽皮質(zhì)激素受體有相同的親和力,必然導(dǎo)致高鹽皮質(zhì)激素效應(yīng),進(jìn)而抑制腎素-血管緊張素-醛固酮系統(tǒng)(RAAS),引起腎素血管緊張素Ⅰ和醛固酮水平下降、鈉潴留及尿鉀增多。
然而,一項(xiàng)甘草酸苷應(yīng)用于對(duì)干擾素聯(lián)合利巴韋林治療無(wú)效的丙型肝炎患者的有效性及安全性的Ⅲ期臨床研究顯示,經(jīng)靜脈給藥200 mg/d,共10周后,患者ALT明顯下降,肝細(xì)胞壞死及肝臟纖維化明顯減輕,同時(shí),有5.5%的患者出現(xiàn)不同程度的不良反應(yīng),主要為高血壓和/或低鉀血癥[56]。另一項(xiàng)應(yīng)用甘草酸苷治療急性發(fā)作性自身免疫性肝炎的研究發(fā)現(xiàn),甘草酸苷經(jīng)靜脈給藥100 mg/d,在發(fā)病早期即可控制轉(zhuǎn)氨酶的水平,并且與甘草酸苷聯(lián)合皮質(zhì)醇治療組相比有更好的預(yù)后,而使用該劑量共4周的患者未出現(xiàn)明顯的不良反應(yīng)[57]??梢?jiàn),甘草酸苷的不良反應(yīng)是劑量和時(shí)間依賴性的,合理和適當(dāng)?shù)貞?yīng)用是比較安全和可耐受的。
甘草因其和百藥解百毒,在中藥處方中最為常用。甘草酸苷是從甘草根部提取的主要活性成分。多年來(lái),甘草酸苷制劑,如:復(fù)方甘草酸苷片、復(fù)方甘草酸苷注射劑等,在臨床上廣泛用于治療各種急、慢性炎癥和免疫性疾病,如病毒性肝炎、自身免疫性肝炎、肝硬化、濕疹、慢性蕁麻疹、銀屑病、斑禿、潰瘍性結(jié)腸炎等,其療效已經(jīng)得到肯定。隨著對(duì)其臨床應(yīng)用和作用機(jī)制的不斷深入研究,人們對(duì)甘草酸苷的認(rèn)識(shí)和使用將更為科學(xué)、有效和多樣。
[1] Wang L,YangR,YuanB,et al.The antiviral and antimicrobial activities of licorice,a widely-used Chinese herb[J].Acta Pharm Sin B,2015,5(4):310-315.
[2] Hattori M,Sakamoto T,Yamagishi T,et al.Metabolism of glycyrrhizin by human intestinal flora.II.Isolation and characterization of human intestinal bacteria capable of metabolizing glycyrrhizin and related compounds[J].Chem Pharm Bull (Tokyo),1985,33(1):210-217.
[3] Akao T,Akao T,Hattori M,et al.Hydrolysis of glycyrrhizin to 18 beta-glycyrrhetyl monoglucuronide by lysosomal beta-D-glucuronidase of animal livers[J].Biochem Pharmacol,1991,41(6-7):1025-1029.
[4] Tamaya T,Sato S,Okada HH.Possible mechanism of steroid action of the plant herb extracts glycyrrhizin,glycyrrhetinic acid,and paeoniflorin:inhibition by plant herb extracts of steroid protein binding in the rabbit[J].Am J Obstet Gynecol,1986,155(5):1134-1139.
[5] Kr?henbühl S,Hasler F,Frey BM,et al.Kinetics and dynamics of orally administered 18 beta-glycyrrhetinic acid in humans[J].J Clin Endocrinol Metab,1994,78(3):581-585.
[6] Asl MN,Hosseinzadeh H.Review of pharmacological effects of glycyrrhiza sp.and its bioactive compounds[J].Phytother Res,2008,22(6):709-724.
[7] Li JY,Cao HY,Liu P,et al.Glycyrrhizic acid in the treatment of liver diseases:literature review[J].Biomed Res Int,2014,2014:872139.
[8] Qu Y,Zong L,Xu M,et al.Effects of 18α-glycyrrhizin on TGF-β1/Smad signaling pathway in rats with carbon tetrachloride-induced liver fibrosis[J].Int J Clin Exp Pathol,2015,8(2):1292-1301.
[9] Liang B,Guo XL,Jin J,et al.Glycyrrhizic acid inhibits apoptosis and fibrosis in carbon-tetrachloride-induced rat liver injury[J].World J Gastroenterol,2015,21(17):5271-5280.
[10]Kao TC,Wu CH,Yen GC.Glycyrrhizic acid and 18β-glycyrrhetinic acid recover glucocorticoid resistance via PI3K-induced AP1,CRE and NFAT activation[J].Phytomedicine,2013,20(3-4):295-302.
[11]Sato H,Goto W,Yamamura J,et al.Therapeutic basis of glycyrrhizin on chronic hepatitis B[J].Antiviral Res,1996,30(2-3):171-177.
[12]Van Rossum TG,Vulto AG,de Man RA,et al.Review article:glycyrrhizin as a potential treatment for chronic hepatitis C[J].Aliment Pharmacol Ther,1998,12(3):199-205.
[13]Yasui S,Fujiwara K,Tawada A,et al.Efficacy of intravenous glycyrrhizin in the early stage of acute onset autoimmune hepatitis[J].Dig Dis Sci,2011,56(12):3638-3647.
[14]Yan T,Wang H,Zhao M,et al.Glycyrrhizin protects against acetaminophen-induced acute liver injury via alleviating tumor necrosis factor α-mediated apoptosis[J].Drug Metab Dispos,2016,44(5):720-731.
[15]Sil R,Ray D,Chakraborti AS.Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model[J].Mol Cell Biochem,2015,409(1-2):177-189.
[16]Hsiang CY,Lin LJ,Kao ST,et al.Glycyrrhizin,silymarin,and ursodeoxycholic acid regulate a common hepatoprotective pathway in HepG2 cells[J].Phytomedicine,2015,22(7-8):768-777.
[17]Tsai JJ,Kuo HC,Lee KF,et al.Glycyrrhizin represses total parenteral nutrition-associated acute liver injury in rats by suppressing endoplasmic reticulum stress[J].Int J Mol Sci,2013,14(6):12563-12580.
[18]Sil R,Chakraborti AS.Oxidative inactivation of liver mitochondria in high fructose diet-induced metabolic syndrome in rats:effect of glycyrrhizin treatment[J].Phytother Res,2016,30(9):1503-1512.
[19]Korenaga M,Hidaka I,Nishina S,et al.A glycyrrhizin-containing preparation reduces hepatic steatosis induced by hepatitis C virus protein and iron in mice[J].Liver Int,2011,31(4):552-560.
[20]Okuma Y,Liu K,Wake H,et al.Glycyrrhizin inhibits traumatic brain injury by reducing HMGB1-RAGE interaction[J].Neuropharmacology,2014,85:18-26.
[21]Barakat W,Safwet N,El-Maraghy NN,et al.Candesartan and glycyrrhizin ameliorate ischemic brain damage through downregulation of the TLR signaling cascade[J].Eur J Pharmacol,2014,724:43-50.
[22]Su S,Wu J,Gong T,et al.Inhibition of high mobility group box 1-Toll-like receptor-4 signaling by glycyrrhizin contributes to the attenuation of cold ischemic injury of liver in a rat model[J].Transplant Proc,2016,48(1):191-198.
[23]Ni B,Cao Z,Liu Y.Glycyrrhizin protects spinal cord and reduces inflammation in spinal cord ischemia-reperfusion injury[J].Int J Neurosci,2013,123(11):745-751.
[24]Kim YM,Kim HJ,Chang KC.Glycyrrhizin reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and endotoxemic mice by p38/Nrf2-dependent induction of HO-1[J].Int Immunopharmacol,2015,26(1):112-118.
[25]Zhai CL,Zhang MQ,Zhang Y,et al.Glycyrrhizin protects rat heart against ischemia-reperfusion injury through blockade of HMGB1-dependent phospho-JNK/Bax pathway[J].Acta Pharmacol Sin,2012,33(12):1477-1487.
[26]Ye S,Zhu Y,Ming Y,et al.Glycyrrhizin protects mice against renal ischemia-reperfusion injury through inhibition of apoptosis and inflammation by downregulating p38 mitogen-activated protein kinase signaling[J].Exp Ther Med,2014,7(5):1247-1252.
[27]Wang W,Chen X,Zhang J,et al.Glycyrrhizin attenuates isoflurane-induced cognitive deficits in neonatal rats via its anti-inflammatory activity[J].Neuroscience,2016,316:328-336.
[28]Mollica L,De Marchis F,Spitaleri A,et al.Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities[J].Chem Biol,2007,14(4):431-441.
[29]Fu Y,Zhou E,Wei Z,et al.Glycyrrhizin inhibits lipopolysaccharide-induced inflammatory response by reducing TLR4 recruitment into lipid rafts in RAW264.7 cells[J].Biochim Biophys Acta,2014,1840(6):1755-1764.
[30]Fu Y,Zhou E,Wei Z,et al.Glycyrrhizin inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model[J].FEBS J,2014,281(11):2543-2557.
[31]Fakhari S,Abdolmohammadi K,Panahi Y,et al.Glycyrrhizin attenuates tissue injury and reduces neutrophil accumulation in experimental acute pancreatitis[J].Int J Clin Exp Pathol,2014,7(1):101-109.
[32]Kudo T,Okamura S,Zhang Y,et al.Topical application of glycyrrhizin preparation ameliorates experimentally induced colitis in rats[J].World J Gastroenterol,2011,17(17):2223-2228.
[33]Pompei R,Flore O,Marccialis MA,et al.Glycyrrhizic acid inhibits virus growth and inactivates virus particles[J].Nature,1979,281(5733):689-690.
[34]Matsumoto Y,Matsuura T,Aoyagi H,et al.Antiviral activity of glycyrrhizin against hepatitis C virus in vitro[J].PLoS One,2013,8(7):e68992.
[35]Ashfaq UA,Masoud MS,Nawaz Z,et al.Glycyrrhizin as antiviral agent against Hepatitis C Virus[J].J Transl Med,2011,9:112.
[36]Zhang H,Song Y,Zhang Z.Glycyrrhizin administration ameliorates coxsackievirus B3-induced myocarditis in mice[J].Am J Med Sci,2012,344(3):206-210.
[37]Michaelis M,Geiler J,Naczk P,et al.Glycyrrhizin inhibits highly pathogenic H5N1 influenza A virus-induced pro-inflammatory cytokine and chemokine expression in human macrophages[J].Med Microbiol Immunol,2010,199(4):291-297.
[38]Yoshida T,Kobayashi M,Li XD,et al.Inhibitory effect of glycyrrhizin on the neutrophil-dependent increase of R5 HIV replication in cultures of macrophages[J].Immunol Cell Biol,2009,87(7):554-558.
[39]Panahi Y,Fakhari S,Mohammadi M,et al.Glycyrrhizin down-regulates CCL2 and CXCL2 expression in cerulein-stimulated pancreatic acinar cells[J].Am J Clin Exp Immunol,2015,4(1):1-6.
[40]Kimura M,Watanabe H,Abo T.Selective activation of extrathymic T cells in the liver by glycyrrhizin[J].Biotherapy,1992,5(3):167-176.
[41]Miyaji C,Miyakawa R,Watanabe H,et al.Mechanisms underlying the activation of cytotoxic function mediated by hepatic lymphocytes following the administration of glycyrrhizin[J].Int Immunopharmacol,2002,2(8):1079-1086.
[42]Li XL,Zhou AG.Evaluation of the immunity activity of glycyrrhizin in AR mice[J].Molecules,2012,17(1):716-727.
[43]Li XL,Zhou AG,Zhang L,et al.Antioxidant status and immune activity of glycyrrhizin in allergic rhinitis mice[J].Int J Mol Sci,2011,12(2):905-916.
[44]Bordbar N,Karimi MH,Amirghofran Z.The effect of glycyrrhizin on maturation and T cell stimulating activity of dendritic cells[J].Cell Immunol,2012,280(1):44-49.
[45]Hua H,Liang Z,Li W,et al.Phenotypic and functional maturation of murine dendritic cells (DCs) induced by purified glycyrrhizin (GL)[J].Int Immunopharmacol,2012,12(3):518-525.
[46]Tu CT,Li J,Wang FP,et al.Glycyrrhizin regulates CD4+T cell response during liver fibrogenesis via JNK,ERK and PI3K/AKT pathway[J].Int Immunopharmacol,2012,14(4):410-421.
[47]Arase Y,Ikeda K,Murashima N,et al.The long term efficacy of glycyrrhizin in chronic hepatitis C patients[J].Cancer,1997,79(8):1494-500.
[48]Koike K.Expression of junB is markedly stimulated by glycyrrhizin in a human hepatoma cell line[J].Oncol Rep,2011,25(3):609-617.
[49]鄭曉珂,王利娟,張紅巧,等.甘草酸苷對(duì)肝癌細(xì)胞SMCC-7721凋亡的誘導(dǎo)作用[J].重慶醫(yī)學(xué),2016,45(14):1879-1881,1885.
[50]Huang RY,Chu YL,Jiang ZB,et al.Glycyrrhizin suppresses lung adenocarcinoma cell growth through inhibition of thromboxane synthase[J].Cell Physiol Biochem,2014,33(2):375-388.
[51]Park JM,Park SH,Hong KS,et al.Special licorice extracts containing lowered glycyrrhizin and enhanced licochalcone A prevented Helicobacter pylori-initiated,salt diet-promoted gastric tumorigenesis[J].Helicobacter,2014,19(3):221-236.
[52]Jung GD,Yang JY,Song ES,et al.Stimulation of melanogenesis by glycyrrhizin in B16 melanoma cells[J].Exp Mol Med,2001,33(3):131-135.
[53]潘博宇,王荷花,張小驥,等.甘草酸、甘草苷對(duì)腫瘤細(xì)胞中硫氧還蛋白的核定位影響及其臨床意義[J].華中科技大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2016,45(2):181-184.
[54]Smolarczyk R,Cichoń T,Matuszczak S,et al.The role of glycyrrhizin,an inhibitor of HMGB1 protein,in anticancer therapy[J].Arch Immunol Ther Exp (Warsz),2012,60(5):391-399.
[55]Stewart PM,Wallace AM,Valentino R,et al.Mineralocorticoid activity of liquorice:11-beta-hydroxysteroid dehydrogenase deficiency comes of age[J].Lancet,1987,2(8563):821-824.
[56]Manns MP,Wedemeyer H,Singer A,et al.Glycyrrhizin in patients who failed previous interferon alpha-based therapies:biochemical and histological effects after 52 weeks[J].J Viral Hepat,2012,19(8):537-546.
[57]Yasui S,Fujiwara K,Tawada A,et al.Efficacy of intravenous glycyrrhizin in the early stage of acute onset autoimmune hepatitis[J].Dig Dis Sci,2011,56(12):3638-3647.