叢文娟,魯 靜,項(xiàng)水英,劉自兵
(安徽中醫(yī)藥大學(xué)針灸推拿學(xué)院針灸經(jīng)絡(luò)研究所,合肥 230038;*通訊作者,E-mail:zibingliu@163.com)
慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)是一種復(fù)雜的慢性炎癥性疾病,氣道炎癥尤其是小氣道炎癥和肺實(shí)質(zhì)的病變是COPD的主要病變及發(fā)病原因[1]。COPD的慢性炎癥涉及的炎性細(xì)胞主要為中性粒細(xì)胞、巨噬細(xì)胞、嗜酸性粒細(xì)胞、T-淋巴細(xì)胞和樹(shù)突狀細(xì)胞[2,3]。炎性細(xì)胞在理化因素如香煙煙霧(CS)、脂多糖(LPS)等刺激下,激活機(jī)體相關(guān)轉(zhuǎn)錄因子,使炎癥因子的基因轉(zhuǎn)錄水平表達(dá)增高、大量的炎性因子釋放,在肺及其他組織的炎癥中發(fā)揮著主要作用。COPD的發(fā)生發(fā)展可激活多條炎癥相關(guān)信號(hào)通路,如NF-κB,Notch,JAK-STAT,TGF-Smad,p38MAPK,TLRs信號(hào)通路,這些通路可能成為潛在的COPD研究及治療的靶點(diǎn)。本文就COPD發(fā)病機(jī)制研究中主要炎癥信號(hào)通路做相關(guān)綜述,為COPD相關(guān)信號(hào)通路的探索提供理論基礎(chǔ)。
核因子-κB(NF-κB)是一種細(xì)胞核轉(zhuǎn)錄因子,最初由Sen和Baltimore[4]報(bào)道提出,已有30多年的歷史,由于其信號(hào)轉(zhuǎn)導(dǎo)的普遍性與復(fù)雜性,至今仍是研究的熱點(diǎn)。NF-κB可以被炎癥因子如白細(xì)胞介素1β(IL-1β)和腫瘤壞死因子α(TNF-α)、生長(zhǎng)因子或趨化因子等激活。NF-κB由兩類(lèi)亞基形成同源或異源二聚體。一類(lèi)亞基包括p65(也稱(chēng)RelA)、RelB和C-Rel;另一類(lèi)亞基包括p50和p52。最常見(jiàn)的NF-κB亞基組成形式為p65/p50或p65/p65。NF-κB未被激活時(shí)和IκB-α形成一個(gè)復(fù)合物,分布在細(xì)胞漿中。在刺激因素存在的情況下,核因子-κB激酶抑制因子(IκB kinase,IKK)會(huì)被激活,導(dǎo)致IκB-α?xí)赟er32和Ser36位點(diǎn)被磷酸化,隨后被泛素-蛋白酶體途徑降解。NF-κB和IκB-α解聚后,其核定位序列暴露,從而被轉(zhuǎn)運(yùn)到細(xì)胞核內(nèi)促進(jìn)NF-κB依賴(lài)的基因轉(zhuǎn)錄。IKK復(fù)合物包括IKKα、IKKβ和IKKγ,其中IKKα和IKKβ是催化亞基,IKKγ是調(diào)節(jié)亞基。IKKβ的Ser177和Ser181和IKKα的Ser176和Ser180被磷酸化修飾后,會(huì)導(dǎo)致IKK的激活。
NF-κB廣泛存在于多種組織細(xì)胞中,參與多種基因的表達(dá)調(diào)控,參與炎癥反應(yīng)、免疫反應(yīng)、細(xì)胞凋亡及腫瘤發(fā)生等多種生物進(jìn)程,在廣泛的炎性系統(tǒng)中起著至關(guān)重要的作用,其信號(hào)通路在肺組織中的異常激活能導(dǎo)致多種肺部疾病的產(chǎn)生,尤其是COPD[5-7]。研究發(fā)現(xiàn),NF-κB蛋白在COPD患者的支氣管活檢標(biāo)本和患者炎癥細(xì)胞中被激活,其表達(dá)水平明顯升高,細(xì)胞質(zhì)中IκBα的DNA水平在吸煙者和COPD患者的肺組織中較健康對(duì)照組明顯降低。CS或LPS刺激細(xì)胞膜后可以增加Toll樣受體4(TLR4)的表達(dá),使IKKα/β磷酸化而激活NF-κB[8],導(dǎo)致炎性增強(qiáng)。在COPD中,NF-κB信號(hào)通路的持續(xù)激活可以生成和激活一種由巨噬細(xì)胞和調(diào)節(jié)性T細(xì)胞組成的促腫瘤的炎性環(huán)境[9],NF-κB對(duì)于氣道中細(xì)胞因子的表達(dá),以及趨化因子和細(xì)胞黏附分子有重要的調(diào)節(jié)作用[6]。在小鼠肺的肺泡和氣道上皮細(xì)胞中,CS暴露增加了RelB和RelA/p65的水平,導(dǎo)致促炎介質(zhì)的增加[10],CS和氧化劑可以激活NF-κB信號(hào)通路,增強(qiáng)基因轉(zhuǎn)錄和增加炎癥介質(zhì)如TNF-α,IL-1β、IL-6、IL-8、環(huán)氧化酶Cox-2等的表達(dá)和釋放,參與氣道炎癥和慢性阻塞性肺病的發(fā)病[11]。而RelB作為促炎基因轉(zhuǎn)錄的抑制劑,可以有效抑制香煙引起的炎性介質(zhì)等的表達(dá)[12]。而在吸煙和不吸煙的COPD患者肺成纖維細(xì)胞和血液樣本中,RelB蛋白表達(dá)明顯降低,減弱了對(duì)Cox-2的抑制,從而加重COPD的炎癥表達(dá)[13]。氣道上皮細(xì)胞中NF-κB信號(hào)通路的激活可以導(dǎo)致過(guò)敏性炎癥,而缺乏NF-κB和IκBα的重組小鼠,其致敏性減弱[14]。因此抑制NF-κB,減少相應(yīng)蛋白的生成,可以緩解COPD的炎性反應(yīng)程度。
JAK-STAT信號(hào)通路是由酪氨酸激酶JAK(Janus kinase)家族及轉(zhuǎn)錄因子STAT(signal transducer and activator of transcription)家族構(gòu)成的酪氨酸蛋白激酶,在COPD相關(guān)研究中,JAK-STAT信號(hào)通路在炎癥反應(yīng)和免疫應(yīng)答中起重要的調(diào)節(jié)作用,JAK-STAT信號(hào)通路不僅參與炎癥反應(yīng),同時(shí)也與細(xì)胞增殖、分化、凋亡以及免疫調(diào)節(jié)等密切相關(guān)[15]。目前發(fā)現(xiàn)有多種細(xì)胞因子如TNF-α、IL-6、IL-1β及趨化因子(CXCL)等通過(guò)與其受體相結(jié)合,與受體耦連的JAKs激酶聚集,導(dǎo)致周?chē)腏AKs互相磷酸化后被激活,激活后的JAKs磷酸化受體上的酪氨酸位點(diǎn)使受體與STATs結(jié)合,從而磷酸化,磷酸化后的STATs家族成員形成二聚體進(jìn)入細(xì)胞核,與核內(nèi)特異的DNA序列結(jié)合參與基因轉(zhuǎn)錄,發(fā)揮其生物學(xué)效應(yīng)[16,17]。
研究表明,在COPD急性加重期過(guò)程中JAK-STAT1/3發(fā)揮著重要作用[18],在COPD患者的肺組織中,STAT3的表達(dá)水平越高,肺部炎癥及肺氣腫的程度越重[19]。STAT3可在炎性介質(zhì)IL-6誘導(dǎo)下過(guò)度表達(dá),引起肺氣腫和肺氣道炎癥的發(fā)生,IL-6誘導(dǎo)的STAT3信號(hào)通路存在于Ⅱ型肺泡上皮細(xì)胞和細(xì)支氣管細(xì)胞中[20]。通過(guò)實(shí)驗(yàn)發(fā)現(xiàn)STAT6的活化促使IL-13表達(dá)水平升高,從而引起氣道上皮杯狀細(xì)胞增生和黏液下腺的肥大,從而認(rèn)為阻斷STAT6可以抑制氣道黏液高分泌,有研究提出阻斷STAT6的活化是治療氣道疾病的新療法[21],減輕COPD的癥狀。這就提示JAK-STAT信號(hào)通路抑制劑的研究可以成為COPD新的治療方法[22]。
轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor-β,TGF-β)自1981年被Robert發(fā)現(xiàn)以來(lái),對(duì)其傳導(dǎo)通路一直不清晰,至近年來(lái)發(fā)現(xiàn)細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)蛋白Smad家族,才清楚了TGF-β信號(hào)的傳導(dǎo)機(jī)制。TGF-β信號(hào)包括依賴(lài)Smad和非依賴(lài)Smad兩條信號(hào)途徑。當(dāng)TGF-β1與轉(zhuǎn)化生長(zhǎng)因子β受體I(TβRI)和受體Ⅱ(TβRⅡ)結(jié)合形成異源四聚體,TβRⅡ磷酸化,而后磷酸化TβRI,導(dǎo)致TβRI具有絲氨酸/蘇氨酸激酶活性,可以磷酸化下游相關(guān)的Smad信號(hào)分子,受體激活型Smads(R-Smads)與Smad4進(jìn)入細(xì)胞核與其他的轉(zhuǎn)錄調(diào)節(jié)分子共同調(diào)節(jié)基因轉(zhuǎn)錄。非依賴(lài)Smad的途徑是不依賴(lài)轉(zhuǎn)錄因子Smad發(fā)揮作用的。TGF-β在肺組織損傷后修復(fù)中起著至關(guān)重要的作用,起著支氣管重塑和誘導(dǎo)纖維細(xì)胞與氣道平滑肌細(xì)胞增殖的作用。TGF-β/Smads信號(hào)通路為多功能性信號(hào)通路,在肺纖維化患者和肺纖維化動(dòng)物模型中特異性增加[23]。TGF-β如TGF-β1/2和骨形成蛋白-6(BMP-6),在細(xì)胞外基質(zhì)成分、肺泡上皮細(xì)胞和成纖維細(xì)胞中發(fā)揮重要作用[24]。其中TGF-β1對(duì)肺和免疫系統(tǒng)具有重要的調(diào)節(jié)作用[25,26]。
研究發(fā)現(xiàn)TGF-β1mRNA在COPD大鼠氣道組織的表達(dá)明顯增多[27],COPD患者肺內(nèi)多種細(xì)胞均發(fā)現(xiàn)TGF-β1的表達(dá)增加,吸煙者和COPD患者中TGF-β1mRNA的水平高于非吸煙者,且TGF-β1mRNA的水平與小氣道阻塞程度和吸煙史呈正相關(guān)[28]。也有研究表明TGF-β1/smad2信號(hào)通路參與COPD炎癥和重構(gòu)的進(jìn)展,炎癥和氧化應(yīng)激在COPD中起重要作用,線粒體氧化應(yīng)激反應(yīng)在氣道氧化應(yīng)激中有重要作用。線粒體靶向抗氧化劑MitoQ通過(guò)抑制TGF-β誘導(dǎo)氣道平滑肌細(xì)胞增殖并減少CXCL8的釋放[29]。Li等[30]實(shí)驗(yàn)研究發(fā)現(xiàn)慢性氣道炎癥、重塑及肺氣腫大鼠肺組織IL-1β、TNF-α、p-NF-κB、p-IκBα、TGF-β1和Smad2表達(dá)高于對(duì)照組,中醫(yī)調(diào)補(bǔ)肺腎的方法能夠降低其表達(dá)水平,其機(jī)制可能與激活NF-κB/TGF-β1/smad2信號(hào)通路相關(guān)。
p38絲裂原活化蛋白激酶(p38 MAPK)是絲裂素活化蛋白激酶(MAPK)的一個(gè)亞型,由Brewster等[31]、Han等[32]于1993年發(fā)現(xiàn)并命名,目前已發(fā)現(xiàn)p38α、p38β、p38γ和p38δ 4個(gè)亞型,其中,p38α廣泛存在于各組織中,并在炎癥細(xì)胞中表達(dá)豐富。在COPD患者中p38 MAPK信號(hào)通路主要介導(dǎo)細(xì)胞外信號(hào)轉(zhuǎn)導(dǎo)到細(xì)胞核,在CS、LPS、氧化應(yīng)激等應(yīng)激條件下活化并參與細(xì)胞的生長(zhǎng)、分化、周期、凋亡、炎癥反應(yīng)等過(guò)程[33],參與了中性粒細(xì)胞、肥大細(xì)胞和嗜酸性粒細(xì)胞的遷移[34],并誘導(dǎo)促炎因子的釋放、細(xì)胞因子的轉(zhuǎn)錄調(diào)控,參與COPD慢性炎癥及氣道重塑的過(guò)程[35]。p38的活性還與肺功能損害及肺泡壁炎癥程度相關(guān)[36]。小氣道的炎癥和重塑是決定COPD嚴(yán)重程度和進(jìn)展的關(guān)鍵因素,p38 MAPK通路由細(xì)胞因子激活,并調(diào)節(jié)炎性細(xì)胞因子的表達(dá),包括CXCL8,MMPs等[37]。在COPD患者氣道及痰液中,p38 MAPK和CXCL8顯著增加。p38 MAPK活化與CXCL8高水平和中性粒細(xì)胞浸潤(rùn)密切相關(guān),且與疾病的嚴(yán)重程度相關(guān)。由此可見(jiàn)p38 MAPK在COPD中的病理發(fā)展過(guò)程中有重要作用[38]。在COPD患者中,CS暴露導(dǎo)致肺成纖維細(xì)胞Stat1-Tyr701及Ser727的磷酸化,并上調(diào)了MAPK信號(hào)通路上各基因的表達(dá),導(dǎo)致肺部炎癥,改變氧化還原反應(yīng),引起肺纖維化[39]。應(yīng)用p38抑制劑,可抑制香煙誘導(dǎo)的肺內(nèi)巨噬細(xì)胞及中性粒細(xì)胞的增加,有效地減少人肺泡巨噬細(xì)胞釋放TNF-α[40],并減輕吸煙COPD模型小鼠的肺內(nèi)炎癥反應(yīng)[41]。在治療COPD時(shí),p38 MAPK在以糖皮質(zhì)激素為主要藥物的治療中起抵抗作用,而使用p38 MAPK抑制劑可通過(guò)調(diào)控基質(zhì)金屬蛋白酶-9(MMP-9)下調(diào)大鼠肺組織中黏蛋白(MUC5AC)的表達(dá),減輕COPD大鼠氣道黏液分泌,因而在降低肺功能損害方面更有優(yōu)勢(shì)[42]。另外,p38MAPK在肺血管收縮中有重要作用,血管緊張素-Ⅱ可引起包括p38MAPK在內(nèi)的MAPK活化,并通過(guò)其磷酸化作用調(diào)節(jié)G蛋白,導(dǎo)致cAMP水平下降、血管阻力增加,造成肺動(dòng)脈高壓。
Toll樣受體(TLRs)屬于Ⅰ型跨膜蛋白受體,是先天性免疫識(shí)別的受體,在各種炎癥刺激的天然免疫中發(fā)揮著重要作用。TLR信號(hào)通路是由TLRs介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)通路,通過(guò)識(shí)別病原相關(guān)分子模式(PAMPs)來(lái)激活天然免疫系統(tǒng),其信號(hào)轉(zhuǎn)導(dǎo)途徑中主要通過(guò)髓樣分化蛋白分子88(MyD88)引起下游炎癥反應(yīng)。目前發(fā)現(xiàn)的TLR家族包括11個(gè)成員,廣泛分布于多種細(xì)胞。目前TLR在免疫反應(yīng)中的作用已得到充分證明,TLR基因多態(tài)性可導(dǎo)致呼吸道炎性疾病的嚴(yán)重程度和易感性發(fā)生劇烈變化。由于吸入空氣的持續(xù)暴露,肺部和呼吸道特別容易受到病原體和過(guò)敏原的影響。氣道上皮作為宿主防御的第一道防線,利用包括TLRs在內(nèi)的多種受體來(lái)檢測(cè)抗原和感染性微生物[43]。通過(guò)外源性病原體相關(guān)的分子模式(PAMPs)和宿主-衍生的損傷相關(guān)的分子模式激活TLRs,有選擇性地誘導(dǎo)炎癥、炎癥細(xì)胞招募和細(xì)胞因子釋放。
呼吸道上皮包含無(wú)數(shù)的TLR,參與激活免疫反應(yīng),包括TLR2、TLR4和TLR9在內(nèi)的幾個(gè)TLR參與了COPD的發(fā)病機(jī)制,特別是TLR2和TLR4被認(rèn)為是維持COPD炎癥反應(yīng)的主要TLRs,也是誘導(dǎo)機(jī)體對(duì)呼吸系統(tǒng)中微生物入侵的免疫應(yīng)答的主要介質(zhì)[44]。吸煙暴露與TLR4和TLR9基因表達(dá)的增加以及細(xì)胞因子過(guò)度生產(chǎn)之間存在著高度的相關(guān)性[46],TLR4和TLR9均已被證明有助于釋放CD8+T細(xì)胞的IL-8[45],通過(guò)IL-8的上調(diào),TLR9可以通過(guò)啟動(dòng)中性粒細(xì)胞的招募來(lái)引起炎癥反應(yīng)[45,46],TLR4缺乏促進(jìn)肺氣腫[47],缺乏TLR4表達(dá)的小鼠更容易受到氧化應(yīng)激的影響,原因是NADPH氧化酶(Nox)3的上調(diào)[48,49]。TLR4作為Nox3的抑制因子,可以調(diào)控ROS的釋放,在TLR4缺失的情況下,ROS可能達(dá)到有害水平,最終導(dǎo)致細(xì)胞凋亡和肺氣腫。TLRs與COPD的惡化相關(guān),研究表明,MyD88與TLR4協(xié)同作用于IL激酶,并上調(diào)IL的表達(dá)[50],MyD88、TLR4和IL-1受體1(IL1R1)之間的相互作用可導(dǎo)致COPD患者急性肺部炎癥。此外,由于吸煙導(dǎo)致的中性粒細(xì)胞的招募依賴(lài)于TLR4/MyD88/IL1R1信號(hào)[50,51],COPD患者在CD8+T細(xì)胞上的TLR1和TLR2表達(dá)增加,可能導(dǎo)致肺損傷和肺泡破壞[52]。Di Stefano等[53]研究發(fā)現(xiàn),在COPD急性加重期和穩(wěn)定期,TLR4和核苷酸結(jié)合寡聚域蛋白(NOD1)在支氣管黏膜上表達(dá)增強(qiáng),支氣管上皮中CD4+和CD8+細(xì)胞中TLR4、NOD1的表達(dá)量與氣道阻塞呈正相關(guān),參與COPD氣道炎癥的發(fā)生發(fā)展,提示TLR可能是治療慢阻肺的潛在治療靶點(diǎn)。
Notch信號(hào)通路廣泛存在于多種組織和免疫細(xì)胞中,是一條高度保守的信號(hào)轉(zhuǎn)導(dǎo)途徑,Notch信號(hào)通路由細(xì)胞外配體、跨膜受體、DNA結(jié)合蛋白及靶基因四部分組成。Notch信號(hào)在協(xié)調(diào)肺發(fā)育過(guò)程中表達(dá)明顯,在調(diào)控肺泡上皮、肺血管的生成和發(fā)育中起關(guān)鍵作用[54],且Notch家族中各種不同的受體和配體以及多種調(diào)節(jié)因子的相互作用,能夠在肺發(fā)育的過(guò)程中起到不同的作用[55,56]。近年來(lái)發(fā)現(xiàn)COPD的發(fā)生發(fā)展與免疫紊亂密切相關(guān),且與T淋巴細(xì)胞失衡有關(guān),而Notch信號(hào)在適應(yīng)性調(diào)節(jié)及獲得性免疫中發(fā)揮著主要作用[56]。最近進(jìn)行的研究表明,Notch受體、配體及下游分子在成人支氣管活檢及肺組織活檢標(biāo)本上皮細(xì)胞中廣泛表達(dá),且在成人吸煙者和吸煙的COPD患者的標(biāo)本中Notch受體和配體(如Notch3,DLL1,Hes)中是下調(diào)的[57]。Notch信號(hào)通路在顆粒物質(zhì)的誘導(dǎo)下過(guò)度激活,并能加劇COPD的免疫紊亂,導(dǎo)致T淋巴細(xì)胞亞群(如Th1,Th17等促炎性細(xì)胞增多)失衡,Notch1信號(hào)及其下游的Hes1 mRNA和蛋白水平增加[58]。CS暴露能夠啟動(dòng)肺淋巴組織中的Notch信號(hào)[58],CS暴露下,Notch信號(hào)在肺淋巴組織中被激活,Notch配體和受體表達(dá)水平升高,尤其是Notch3[59]。因此抑制Notch信號(hào)通路的激活可以減輕COPD的免疫紊亂[57]。
目前,關(guān)于COPD相關(guān)信號(hào)通路的研究并未完全闡明,以信號(hào)通路為靶點(diǎn)的治療方興未艾,關(guān)于信號(hào)機(jī)制在致病因素和治療中的研究也日益豐富。雖然人們已經(jīng)認(rèn)識(shí)到信號(hào)轉(zhuǎn)導(dǎo)在COPD發(fā)病機(jī)制中起著至關(guān)重要的作用,但具體的分子機(jī)制還不是很清楚?,F(xiàn)有研究資料表明,在COPD發(fā)病機(jī)制中,針對(duì)不同的信號(hào)通路,對(duì)細(xì)胞因子和緊密連接的網(wǎng)絡(luò)途徑進(jìn)行干預(yù)和治療,為COPD的治療提供新的策略,很有可能為COPD的臨床治療開(kāi)辟新的途徑。
參考文獻(xiàn):
[1]Vogelmeier CF, Criner GJ, Martinez FJ,etal. Global strategy for the diagnosis, management and prevention of chronic obstructive lung disease 2017 report[J]. Am J Respir Crit Care Med, 2017, 195(5):557-582.
[2]Teramoto S. COPD pathogenesis from the viewpoint of risk factors[J]. Intern Med, 2007, 46(2):77-79.
[3]Barnes, PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease [J]. J Allergy Clin Immunol, 2016,138(1): 16-27.
[4]Sen R, Baltimore D.Multiple nuclear factors interact with immunoglobulin enhancer sequences [J]. Cell, 1986, 46(5):705-716.
[5]I manifooladi AA, Yazdani S, Nourani MR. The role of nuclear factor-kappaB in inflammatory lung disease[J]. Inflamm Allergy Drug Targets,2010, 9(3):197-205.
[6]Schuliga M. NF-kappaB signaling in chronic inflammatory airway disease[J]. Biomolecules, 2015, 5(3):1266-1283.
[7]Kniss DA, Rovin B, Fertel RH,etal. Blockade NF-kappaB activation prohibits TNF-alpha-induced cyclooxygenase-2 gene expression in ED27 trophoblast-like cells[J]. Placenta, 2001, 22(1):80-89.
[8]孟瑩,余常輝,李婷,等.Toll樣受體4在煙熏和脂多糖聯(lián)合煙熏所致肺損傷大鼠中的表達(dá)及意義[J].中華醫(yī)學(xué)雜志,2013,93(28):2230-2234.
[9]Zaynagetdinov R, Sherrill TP, Gleaves LA,etal. Chronic NF-κB activation links COPD and lung cancer through generation of an immunosuppressive microenvironment in the lungs[J]. Oncotarget, 2015, 7(5):5470-5482.
[10]Yang SR,Yao H, Rajendrasozhan S,etal. RelB is differentially regulated by IκB kinase-α in B cells and mouse lung by cigarette smoke[J]. Am J Respir Cell Mol Biol, 2009, 40(2):147-158.
[11]Yang SR, Valvo S, Yao H,etal. IKK alpha causes chromatin modification on pro-inflammatory genes by cigarette smoke in mouse lung[J]. Am J Respir Cell Mol Biol,2008,38(6):689-698.
[12]Mcmillan DH, Baglole CJ, Thatcher TH,etal. Lung-targeted overexpression of the NF-κB member RelB inhibits cigarette smoke-induced inflammation[J]. Am J Pathol, 2011,179(1):125-133.
[13]Sheridan JA, Zago M, Nair P,etal. Decreased expression of the NF-κB family member RelB in lung fibroblasts from Smokers with and without COPD potentiates cigarette smoke-induced COX-2 expression[J]. Respir Res, 2015, 16(1):54-70.
[14]Tully JE, Hoffman SM, Lahue KG,etal. Epithelial NF-κB orchestrates house dust mite-induced airway inflammation, hyperresponsiveness, and fibrotic remodeling[J]. J Immunol, 2013, 191(12):5811-5821.
[15]O’Shea JJ, Schwartz DM, Villarino AV,etal. The JAK-STAT pathway: impact on human disease and therapeutic intervention [J]. Annu Rev Med, 2015, 66(1):311-328.
[16]Clarke D, Damera G, Sukkar MB,etal. Transcriptional regulation of cytokine function in airway smooth muscle cells[J]. Pulm Pharmacol Ther, 2009, 22(5):436-445.
[17]Morales JK, Falanga YT, Depcrynski A,etal. Mast cell homeostasis and the JAK-STAT pathway [J]. Genes Immun, 2010, 11(8):599-608.
[18]Yew-Booth L, Birrell MA, Lau MS,etal. JAK-STAT pathway activation in COPD[J].Eur Respir J,2015,46(3):843-845.
[19]Ruwanpura SM, Mcleod L, Miller A,etal. Deregulated Stat3 signaling dissociates pulmonary inflammation from emphysema in gp130 mutant mice[J]. Am J Physiol Lung Cell Mol Physiol, 2012, 302(7):L627-639.
[20]Quinton LJ, Jones MR, Robson BE,etal. Alveolar epithelial STAT3, IL-6 family cytokines, and host defense during Escherichia coli pneumonia[J]. Am J Respir Cell Mol Biol, 2008, 38(6):699-706.
[21]Lai H, Rogers DF. New pharmacotherapy for airway mucus hypersecretion in asthma and COPD: targeting intracellular signaling pathways[J]. J Aerosol Med Pulm Drug Deliv, 2010, 23(4):219-231.
[22]Banerjee S, Biehl A, Gadina M,etal. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects[J]. Drugs, 2017, 77(5):521-546.
[23]Shi Y, Gochuico BR, Yu G,etal. Syndecan-2 exerts antifibrotic effects by promoting caveolin-1-mediated transforming growth factor-β receptor I internalization and inhibiting transforming growth factor-β1signaling[J]. Am J Respir Crit Care Med, 2013, 188(7):831-841.
[24]Morty RE,K?nigshoff M,Eickelberg O.Transforming growth factor-beta signaling across ages: from distorted lung development to chronic obstructive pulmonary disease[J]. Proc Am Thorac Soc, 2009, 6(7):607-613.
[25]Loth DW, Artigas MS, Gharib SA,etal. Genome-wide association analysis identifies six new loci associated with forced vital capacity[J]. Nat Genet, 2014, 46(7):669-677.
[26]Ahlfeld SK, Jian W, Yong G,etal. Initial suppression of transforming growth factor-β signaling and loss of TGFBI causes early alveolar structural defects resulting in bronchopulmonary dysplasia[J]. Am J Pathol, 2016, 186(4):777-793.
[27]錢(qián)力,劉學(xué)軍.TNF-α mRNA和TGF-β1mRNA在慢性阻塞性肺疾病模型大鼠氣道中的表達(dá)及前列腺素E1的干預(yù)作用[J].山西醫(yī)科大學(xué)學(xué)報(bào),2008,39(11):968-971.
[28]Takizawa H, Tanaka M, Takami K,etal. Increased expression of transforming growth factor-β1, in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD)[J]. Am J Respir Crit Care Med, 2001, 163(6):1476-1483.
[29]Wiegman CH,Michaeloudes C,Haji G,etal. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2015, 136(3):769-780.
[30]Li Y, Li JS, Li WW,etal. Long-term effects of three Tiao-Bu Fei-Shen therapies on NF-κB/TGF-β1/smad2 signaling in rats with chronic obstructive pulmonary disease[J]. BMC Complement Altern Med, 2014, 14(1):140-149.
[31]Brewster JL, Valoir TD, Dwyer ND,etal. An Osmosensing signal transduction pathway in yeast[J]. Science, 1993, 259(5102):1760-1763.
[32]Han J, Lee JD, Bibbs L,etal. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cell[J]. Science, 1994, 265(5173):808-811.
[33]Cuadrado A,Nebreda AR.Mechanisms and functions of p38 MAPK signalling[J].Biochem J, 2010, 429(3):403-417.
[34]Chen Y, Zhao Y, Wang C,etal. Inhibition of p38 MAPK diminishes doxorubicin-induced drug resistance associated with P-glycoprotein in human leukemia K562 cells[J]. Med Sci Monit, 2012, 18(10):383-388.
[35]Chung KF.p38 mitogen-activated protein kinase pathways in asthma and COPD[J].Chest, 2011,139(6):1470-1479.
[36]Banerjee A, White CK, Panettieri R.p38 MAPK inhibitors, IKK2 inhibitors,and TNFα inhibitors in COPD[J].Curr Opin Pharmacol, 2012, 12(3):287-292.
[37]Barnes PJ. New therapies for chronic obstructive pulmonary disease[J]. Thorax, 1998, 53(2):137-147.
[38]Huang C, Xie M, He X,etal. Activity of sputum p38 MAPK is correlated with airway inflammation and reduced FEV1 in COPD patients[J]. Med Sci Monit, 2013, 19(7):1229-1235.
[39]Lee H, Park JR, Kim EJ,etal. Cigarette smoke-mediated oxidative stress induces apoptosis via the MAPKs/STAT1 pathway in mouse lung fibroblasts[J].Toxicol Lett,2016,240(1):140-148.
[40]Smith SJ, Fenwick PS, Nicholson AG,etal. Inhibitory effect of p38 mitogen-activated protein kinase inhibitors on cytokine release from human macrophages[J]. Br J Pharmacol, 2006, 149(4):393-404.
[41]Medicherla S, Fitzgerald MF, Spicer D,etal. p38alpha-selective mitogen-activated protein kinase inhibitor SD-282 reduces inflammation in a subchronic model of tobacco smoke-induced airway inflammation[J]. J Pharmacol Exp Ther, 2008, 324(3):921-929.
[42]曹繼磊,程兆忠,孫妮娜,等.p38 MAPK抑制劑對(duì)慢性阻塞性肺疾病大鼠氣道黏液高分泌的影響[J].齊魯醫(yī)學(xué)雜志,2016,31(5):527-530.
[43]Lafferty EI, Qureshi ST, Schnare M. The role of toll-like receptors in acute and chronic lung inflammation[J]. J Inflamm (Lond), 2010, 7(1):57.
[44]Oliveiranascimento L, Massari P, Wetzler LM. The role of TLR2 in infection and immunity[J]. Front Immunol, 2012, 3(6652):79-96.
[45]Nadigel J, Préfontaine D, Baglole CJ,etal. Cigarette smoke increases TLR4 and TLR9 expression and induces cytokine production from CD8+T cells in chronic obstructive pulmonary disease[J]. Respir Res, 2011, 12(1):149-162.
[46]József L, Khreiss T, El KD,etal. Activation of TLR-9 induces IL-8 secretion through peroxynitrite signaling in human neutrophils[J]. J Immunol, 2006, 176(2):1195-1202.
[47]Mortaz E,Adcock IM,Ito K,etal.Cigarette smoke induces CXCL8 production by human neutrophils via activation of TLR9 receptor[J]. Eur Respir J, 2010, 36(5):1143-1154.
[48]Chang HA,Xiao MW,Lam HC,etal.TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema[J]. Am J Physiol Lung Cell Mol Physiol,2012,303(9):748-757.
[49]Kampfrath T, Maiseyeu A, Ying Z,etal. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways[J]. Circ Res, 2011, 108(6):716-726.
[50]Zhang X, Shan P, Jiang G,etal. Toll-like receptor 4 deficiency causes pulmonary emphysema[J]. J Clin Invest, 2006, 116(11):3050-3059.
[51]Doz E, Noulin N, Boichot E,etal. Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent[J].J Immunol,2008,180(9):1169-1178.
[52]Sarir H, Henricks PA, Houwelingen AH,etal. Cells, mediators and Toll-like receptors in COPD[J]. Eur J Pharmacol,2008, 585(2/3):346-353.
[53]Freeman CM, Martinez FJ, Han MLK,etal. Lung CD8+T cells in COPD have increased expression of bacterial TLRs[J]. Respir Res, 2013, 14(1):13-26.
[54]Di SA, Flm R, Caramori G,etal. Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression[J]. Eur Respir J, 2017, 49(5), 1602006-1602017.
[55]Xu K, Moghal N, Egan SE. Notch signaling in lung development and disease[J]. Adv Exp Med Biol, 2012, 727:89-98.
[56]Ito T, Connett JM, Kunkel SL,etal. Notch system in the linkage of innate and adaptive immunity[J]. J Leukoc Biol, 2012, 92(1):59-65.
[57]Tilley AE, Harvey BG, Heguy A,etal. Down-regulation of the Notch pathway in human airway epithelium in association with smoking and chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2009, 179(6):457-466.
[58]楊鑫娜,劉曉菊,趙蘭婷,等.Notch信號(hào)通路在慢性阻塞性肺疾病免疫失衡中的作用及機(jī)制研究[J].中華結(jié)核和呼吸雜志,2016,39(11):881-885.
[59]Li S, Hu X, Wang Z,etal. Different profiles of notch signaling in cigarette smoke-induced pulmonary emphysema and bleomycin-induced pulmonary fibrosis[J]. Inflamm Res, 2015, 64(5):363-371.