国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

解析Besov型空間在Bloch空間的閉包

2018-01-29 02:27
關(guān)鍵詞:易知乘積湛江

錢 睿 深

(嶺南師范學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,廣東 湛江 524048)

1 引 言

令Bloch空間B表示滿足下列條件的全體函數(shù)f∈H(D):

2 主要結(jié)果

(1-|z|2)|f′(z)|≤(1-|z|2)|f′(z)-g′(z)|+(1-|z|2)|g′(z)|,

另一方面,設(shè)f∈B.由文獻(xiàn)[11,引理4.2]知,

以及

那么f(z)=f1(z)+f2(z).現(xiàn)在將證明f1∈B.因?yàn)閒2(z)=f(z)-f1(z),所以

即f2∈B,其中,C為正常數(shù).從而,易知f1∈B.

稱θ(z)為Blaschke乘積.

所以對(duì)于任意的ε>0,可以推出

因此,

由文獻(xiàn)[12,69頁(yè)],有

證畢.

[1] N. Arcozzi, D. Blasi and J. Pau, Interpolating sequences on analytic Besov type spaces[J].Indiana Univ Math J,2009,58:1281-1318.

[2] J Anderson, J Clunie , Ch Pommerenke, On Bloch functions and normal functions[J]. J Reine Angew Math, 1974,270:12-37.

[3] D. Blasi and J. Pau, A characterization of Besov-type spaces and applications to Hankel-type operators[J]. Michigan Math J,2008,56: 401-417.

[4] L Carleson, An interpolation problem for bounded analytic functions[J]. Amer J Math,1958,80:921-930.

[5] L Carleson, On the zeros of functions with bounded Dirichlet integrals[J]. Math Z,1958,56:289-295.

[6] L Carleson, Interpolation by bounded analytic functions and the Corona problem[J]. Ann of Math,1962,76:547-559.

[7] P Galanopoulos, N. Monreal Galan and J. Pau, Closure of Hardy spaces in the Bloch space[J]. J Math Anal Appl.,2015,429:1214-1221.

[8] D Girela, J. A. Pelaez and D. Vukotic, Integrability of the derivative of a Blaschke product[J]. Proc Edinb Math Soc,2007,50:673-687.

[9] N Monreal Galan and A. Nicolau, The closure of the Hardy space in the Bloch norm[J]. Algebra i Analiz. 2010,22:75-81, translation in St. Petersburg Math J,2011,22:55-59.

[10] ZHAO R. Distances from Bloch functions to some Mobius invariant spaces[J]. Ann. Acad Sci Fenn Math,2008,33:303-313.

[11] ZHU K. Bloch type spaces of analytic functions[J]. Rocky Mountain J Math,1993,23:1143--1177.

猜你喜歡
易知乘積湛江
序列(12+Q)(22+Q)…(n2+Q)中的完全平方數(shù)
漫步湛江
一個(gè)數(shù)論函數(shù)方程的可解性
乘積最大
最強(qiáng)大腦
最強(qiáng)大腦
從《曲律易知》看民國(guó)初年曲學(xué)理論的轉(zhuǎn)型
一道高考立體幾何題的多維度剖析
“無限個(gè)大于零小于1的數(shù)的乘積不等于零”的一則簡(jiǎn)例
寫湛江、畫湛江大型書畫基層采風(fēng)作品選