李國民 劉海梅 錢琰琰 史 雨 姚 文 張 濤 周利軍 徐 虹 吳冰冰 孫 利
患兒, 男,2014年12月24日出生,2017年8月5日因“反復(fù)發(fā)熱、血小板減少1年”就診于復(fù)旦大學(xué)附屬兒科醫(yī)院(我院),以系統(tǒng)性紅斑狼瘡(SLE)收入院。
患兒1年前發(fā)熱后出現(xiàn)鼻腔出血,就診當(dāng)?shù)蒯t(yī)院,血常規(guī)PLT 8×109·L-1、凝血功能未見異常。骨髓穿刺提示粒紅系增生活躍,巨核細胞45個,顆粒巨核細胞16個,PLT散在可見。診斷“原發(fā)性血小板減少性紫癜”,予丙種球蛋白輸注及糖皮質(zhì)激素治療4 d,外周血PLT計數(shù)正常,口服潑尼松1月后停藥。6月前至2月前曾發(fā)熱4次,每次發(fā)熱4~7 d,外周血PLT計數(shù)均正常,體溫經(jīng)治療后恢復(fù)正常。就診當(dāng)?shù)貎和瘜?漆t(yī)院血液科。骨髓穿刺提示紅系增生低下,巨核細胞65個。骨髓活檢提示髓細胞增生明顯活躍,造血容積70%,單核細胞和淋巴細胞多見,粒紅系造血受
抑制,幼稚細胞呈現(xiàn),巨核細胞可見,但有退行性變。繼續(xù)丙種球蛋白輸注及糖皮質(zhì)激素治療。10 d前再次發(fā)熱,血常規(guī)Hb 62 g·L-1、PLT 11×109·L-1,C4 0.09 g·L-1,抗核抗體1∶320、抗心磷脂抗體和抗SSA均陽性,血清鐵蛋白1 048 ng·mL-1,AST 813 U·L-1。尿常規(guī)蛋白2+、RBC193.7個·μL-1,24 h尿蛋白定量180.6 mg。診斷“系統(tǒng)性紅斑狼瘡(SLE)、巨噬細胞活化綜合征”。予甲基潑尼松龍(MP)沖擊治療2個療程,MP沖擊治療之間及之后予足量MP口服、丙種球蛋白輸注、環(huán)孢素口服并輸注洗滌紅細胞和PLT等。經(jīng)治療PLT計數(shù)稍有改善。為進一步明確病因,來我院就診。
患兒系G2P2,足月順產(chǎn),出生體重2 900 g,出生時無產(chǎn)傷及窒息,既往體健。父親有高血壓病史,母親體健。父母非近親聯(lián)姻。母親妊娠史2-0-0-2。姐姐16歲,體健。
查體:血壓95/65 mmHg,身高88 cm(-1.5 SD),體重12 kg。神志清醒,精神欠佳。面容正常,面部紅色斑丘疹,壓之褪色。淺表淋巴結(jié)無腫大。兩肺未聞及干、濕性啰音,心率98·min-1,心律齊,無雜音。腹平軟,未及包塊,右肋下肝臟3 cm,質(zhì)軟,無壓痛,左肋下未及脾臟。左膝關(guān)節(jié)腫脹,皮溫增高,活動受限,有觸痛。神經(jīng)系統(tǒng)未見異常。
入院后多次血常規(guī)Hb 68~72 g·L-1、PLT計數(shù)(17~33)×109·L-1,尿沉渣蛋白質(zhì)定性微量至2+、尿蛋白/肌酐0.37、24 h尿蛋白定量186.5 mg,肝、腎功能指標(biāo)正常,免疫球蛋白IgG 21.4 g·L-1,IgA、IgM和IgE均在正常范圍,淋巴細胞亞群絕對計數(shù)(個/微升)CD3+995.0(57.3%)、CD3+CD4+628.5(36.2%)、CD3+CD8+349.8(20.1%)、CD19+604.2(34.8%)、CD16+CD56+112.1(6.4%),自身抗體ANA、抗ds-DNA抗體和抗SSA抗體均陽性,直接Coombs試驗陽性,補體C4 0.09 g·L-1,C3和CH50均在正常范圍。心臟彩超示心臟結(jié)構(gòu)與功能未見異常;腹部B超示右肋下肝臟3 cm、劍突下5 cm,腎、脾均未見異常。
入院后維持SLE診斷,繼續(xù)潑尼松龍和環(huán)孢素A口服治療,皮疹改善、關(guān)節(jié)腫痛消失,表1顯示實驗室指標(biāo)好轉(zhuǎn),目前仍在隨訪中。
表1 先證者實驗室相關(guān)指標(biāo)
因患兒起病年齡小,非SLE好發(fā)年齡段,經(jīng)患兒父母知情同意,對患兒及其父母進行家系WES。取患兒和其父母靜脈血2 mL,置EDTA抗凝管中混勻。在我院行二代測序,采用我院已建立的WES數(shù)據(jù)分析流程逐步篩選,發(fā)現(xiàn)105個變異位點,根據(jù)先證者表型進一步人工篩選到符合先證者主要臨床表型及遺傳模式的可能致病基因NRAS基因c.38G>A (p.G13D)雜合突變,先證者父母均未攜帶,為新發(fā)突變,見圖1。該變異為HGMD數(shù)據(jù)庫已報道的致病性突變。行Sange驗證,證實WES的NRAS基因在該家系的測序結(jié)果。
圖1WES的NRAS基因在該家系的測序結(jié)果圖
注 Sanger 驗證c.38G>A突變,箭頭為突變位點
Noonan綜合征(NS, OMIM 163950)是RAS病中相對常見的一種[1]。以RAS、自身免疫性疾病、SLE、Noonan綜合征為關(guān)鍵詞在中國知網(wǎng)、萬方、維普和中國生物醫(yī)學(xué)文獻數(shù)據(jù)庫中檢索;以RASopathies、autoimmune disorders、SLE、Noonan syndrome為關(guān)鍵詞檢索PubMed和EBSCO數(shù)據(jù)庫。符合RAS病定義及SLE診斷的文獻被納入,RAS病定義和SLE診斷參照相關(guān)文獻[2, 3]。排除指南、傳統(tǒng)綜述和動物實驗的文獻。中文數(shù)據(jù)庫檢索到23篇文獻報道NS 32例,均無并發(fā)自身免疫性疾病或SLE。8篇英文文獻符合RAS病并發(fā)SLE[4~11],表2顯示,男女各4例,診斷SLE的平均年齡16.7歲,7例臨床符合NS診斷,1例符合NS相關(guān)性疾病。與本文1例合并后共9例,SLE臨床指標(biāo):7例有單或多關(guān)節(jié)炎,6例有血液系統(tǒng)受累(主要表現(xiàn)為自身免疫性溶血和PLT下降),4例有心包炎,腎臟受累和口腔潰瘍各2例,其他少見表現(xiàn)有皮疹、脫發(fā)和光過敏等;免疫學(xué)指標(biāo):9例均ANA陽性,6例抗ds-DNA陽性,3例抗心磷脂抗體陽性,4例直接Coombs試驗陽性。有3例合并橋本甲狀腺炎。4例行相關(guān)基因檢測,3例得到了基因診斷。
表2 9例RAS病并發(fā)SLE患者的臨床特征
注 NSLAH: NS with loose anagen hair
本文患兒的臨床表現(xiàn)及相關(guān)實驗室檢查結(jié)果符合SLE診斷。臨床指標(biāo):①Hb、PLT計數(shù)均低于正常值,符合SLE血液系統(tǒng)受累的標(biāo)準(zhǔn)[3];②持續(xù)性蛋白尿,尿蛋白/肌酐0.37 (>0.2)mg/mg,24 h尿蛋白定量0.186(>0.150)g,也符合SLE腎臟受累的兒童標(biāo)準(zhǔn)[12];③左膝關(guān)節(jié)炎。免疫學(xué)指標(biāo)ANA、ds-DNA和抗心磷脂抗體陽性。SLE好發(fā)年齡段為青春期,5歲以下SLE十分罕見[11]。本文患兒起病年齡小,診斷SLE時只有2.6歲。SLE是累及多系統(tǒng)的自身免疫性疾病,全基因組關(guān)聯(lián)分析(GWAS)發(fā)現(xiàn)SLE存在遺傳易感性[13~15]。目前已發(fā)現(xiàn)多個易感基因與SLE發(fā)病有關(guān),并認為是多基因病[15]。不僅如此,近年發(fā)現(xiàn)多個單基因突變均與SLE發(fā)病有關(guān),特別是小年齡SLE還可能繼發(fā)其他遺傳性疾病[16, 17]。鑒于此,對本文患兒行家系全外顯子測序分析,結(jié)果顯示NRAS基因c.38G>A (p.G13D)雜合突變,該突變父母均不攜帶,為新發(fā)突變,Sanger法測序驗證了該突變。
文獻報道,NRAS基因雜合c.38G>A突變可以影響CD95(Fas/APO-1)介導(dǎo)的細胞凋亡,引起自身免疫性淋巴細胞增生綜合征(ALPS),其主要臨床特征為淋巴細胞增生性表現(xiàn),如脾臟腫大、自身免疫性疾病,以Coombs陽性溶血性貧血最為常見,免疫性PLT減少次之,還可發(fā)生自身免疫性中性粒細胞減少癥、腎小球腎炎、多發(fā)性神經(jīng)根炎和皮膚損害(包括蕁麻疹和非特異性皮膚血管炎)[18, 19]。NRAS基因雜合突變不僅可以引起ALPS,還可以引起NS[20]。
NRAS基因編碼的蛋白是RAS/MAPK信號通路中的信號轉(zhuǎn)導(dǎo)分子之一。RAS/MAPK信號通路可將細胞外生長因子信號傳至胞內(nèi),對調(diào)節(jié)細胞周期和細胞的分化、生長、衰老和凋亡起重要作用[1]。約1/3的人類腫瘤與體細胞RAS/MAPK信號通路分子編碼基因突變有關(guān),而生殖細胞RAS/MAPK信號通路分子編碼基因突變所致的一組遺傳異質(zhì)性疾病稱為“RAS病”[1, 21]。表3顯示,目前已發(fā)現(xiàn)25個RAS/MAPK信號通路分子編碼基因突變可導(dǎo)致9種臨床綜合征[22~43],該組疾病為常染色體顯性遺傳。NS是相對常見的一種RAS病,已知16個基因突變均可引起該病。約50%的NS由PTPN11基因突變引起[1]。每種RAS病都有其獨特的臨床表型,但由于每個基因突變都會使RAS/MAPK信號通路調(diào)節(jié)異常,這些RAS病又有相互重疊的臨床表型,如顱面部畸形,心臟畸形,皮膚、肌肉、骨骼和眼部異常,神經(jīng)認知功能受損,肌張力減退,癌癥的風(fēng)險增高[21]。哺乳動物的RAS基因家族有3個成員,分別是HRAS、KRAS和NRAS,其編碼蛋白稱為Ras蛋白,是膜結(jié)合型的GTP/GDP結(jié)合蛋白,在細胞內(nèi)可傳遞多種信號。
近年來研究發(fā)現(xiàn),ANA、抗ds-DNA、抗SSA/Ro和抗SSB/La等自身抗體可以在52%的RAS病患者中被檢測到,其中約14%的患者符合SLE、抗磷脂綜合征和自身免疫性肝炎等疾病診斷,約7%的患者僅有胃、腸和肝臟特異性抗體,無任何臨床癥狀[10]。經(jīng)文獻復(fù)習(xí)發(fā)現(xiàn),截止目前全球共有8例RAS病并發(fā)SLE(“R和S”)報道(見表2)。本例有ANA等多種自身抗體陽性,臨床符合SLE診斷,存在新發(fā)NRAS基因致病突變,考慮臨床特征由NRAS基因突變引起。文獻報道8例“R和S”診斷SLE的平均年齡為16.7歲,而本文患兒僅2.6歲;8例“R和S”臨床特征均符合NS和NS相關(guān)疾病診斷,本文患兒無面容異常,也無其他臟器畸形,臨床特征不符合NS診斷,雖然有自身免疫性貧血、PLT下降等,但無脾臟腫大,淋巴細胞亞群分析CD3+絕對計數(shù)接近CD4+和CD8+之和(提示無CD4-和CD8-雙陰T淋巴細胞增多),故臨床上也不符合ALPS;8例“R和S”中,僅4例行相關(guān)基因檢測,3例分別有PTPN11、KRAS和SHOC基因雜合致病性突變,1例排除PTPN11基因突變。本文患兒發(fā)現(xiàn)NRAS基因致病性雜合突變,未發(fā)現(xiàn)RAS病的其他基因存在致病性突變。因此,本文患兒基因型和表型均不同于文獻報道的“R和S”。由于SLE是環(huán)境因素觸發(fā)有遺傳背景的個體所導(dǎo)致的一種自身免疫性疾病,故不排除環(huán)境因素如感染可能是造成這種差異的原因。本文患兒每次發(fā)生自身免疫性貧血、PLT減少前均有發(fā)熱,有可能是SLE觸發(fā)的誘因。
表3 RAS病致病基因
“R和S”:最常見的臨床指標(biāo)是單或多關(guān)節(jié)炎,其次是血液系統(tǒng)受累,主要表現(xiàn)為自身免疫性溶血和PLT下降,再次是心臟(心包炎)、腎臟受累和口腔潰瘍,皮疹、脫發(fā)、光過敏等相對少見;常見異常免疫學(xué)指標(biāo)有ANA、抗ds-DNA抗體、抗心磷脂抗體、直接Coombs試驗,低補體血癥和抗Sm抗體不常見[4~11]。這些“R和S”患兒尚可以合并其他自身免疫性疾病,如橋本甲狀腺炎[4~11]。
綜上所述,體細胞NRAS基因突變可能與某些腫瘤發(fā)病相關(guān),生殖細胞NRAS基因突變所致RAS病可以表現(xiàn)為NS和ALPS。本文1例生殖細胞NRAS基因突變患兒僅有SLE表型,無NS或NS相關(guān)綜合征表現(xiàn),進一步豐富了NRAS基因突變表型譜。
[1] Tidyman WE, Rauen KA. Expansion of the RASopathies. Curr Genet Med Rep, 2016, 4(3): 57-64
[2] Rauen KA. The RASopathies. Annu Rev Genomics Hum Genet, 2013, 14: 355-369
[3] Petri M, Orbai AM, Alarcón GS, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum, 2012, 64(8): 2677-2686
[4] Martin DM, Gencyuz CF, Petty EM. Systemic lupus erythematosus in a man with Noonan syndrome. Am J Med Genet, 2001, 102(1): 59-62
[5] Amoroso A, Garzia P, Vadacca M, et al. The unusual association of three autoimmune diseases in a patient with Noonan syndrome. J Adolesc Health, 2003, 32(1): 94-97
[6] Alanay Y, Balci S, Ozen S. Noonan syndrome and systemic lupus erythematosus: presentation in childhood. Clin Dysmorphol, 2004, 13(3): 161-163
[7] Lopez-Rangel E, Malleson PN, Lirenman DS, et al. Systemic lupus erythematosus and other autoimmune disorders in children with Noonan syndrome. Am J Med Genet A, 2005, 139(3): 239-242
[8] Lisbona MP, Moreno M, Orellana C, et al. Noonan syndrome associated with systemic lupus erythematosus. Lupus, 18(3): 267-269
[9] Leventopoulos G, Denayer E, Makrythanasis P, et al. Noonan syndrome and systemic lupus erythematosus in a patient with a novel KRAS mutation. Clin Exp Rheumatol, 2010, 28(4): 556-557
[10] Quaio CR, Carvalho JF, da Silva CA, et al. Autoimmune disease and multiple autoantibodies in 42 patients with RASopathies. Am J Med Genet A, 2012, 158A(5): 1077-1082
[11] Bader-Meunier B, Cavé H, Jeremiah N, et al. Are RASopathies new monogenic predisposing conditions to the development of systemic lupus erythematosus? Case report and systematic review of the literature. Semin Arthritis Rheum, 2013, 43(2): 217-219
[12] 中華醫(yī)學(xué)會兒科分會腎臟病學(xué)組. 狼瘡性腎炎診療指南. 中華兒科雜志, 2010, 48(9): 687-689
[13] Morris DL, Sheng Y, Zhang Y, et al. Genome-wide association meta-analysis in
Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nat Genet, 48(8): 940-946
[14] Demirci FY, Wang X, Kelly JA, et al. Identification of a New Susceptibility Locus for Systemic Lupus Erythematosus on Chromosome 12 in Individuals of European Ancestry. Arthritis Rheumatol, 2016, 68(1): 174-183
[15] Ruiz-Larraaga O, Migliorini P, Uribarri M, et al. Genetic association study of systemic lupus erythematosus and disease subphenotypes in European populations. Clin Rheumatol, 2016, 35(5): 1161-1168
[16] Belot A, Cimaz R. Monogenic forms of systemic lupus erythematosus: new insights into SLE pathogenesis. Pediatr Rheumatol Online J, 2012, 10(1): 21
[17] 李國民, 劉海梅, 張濤, 等. 賴氨酸尿性蛋白耐受不良1家系(1例合并系統(tǒng)性紅斑狼瘡)報告并文獻復(fù)習(xí). 中國循證兒科雜志, 2017, 12(3): 190-195
[18] Munson PJ, Puck JM, Dale J, et al. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci U S A, 2007, 104(21): 8953-8958
[19] Agrebi N, Sfaihi Ben-Mansour L, Medhaffar M, et al. Autoimmune lymphoproliferative syndrome caused by homozygous FAS mutations with normal or residual protein expression. J Allergy Clin Immunol, 2017, 140(1): 298-301
[20] Altmüller F, Lissewski C, Bertola D, et al. Genotype and phenotype spectrum of NRAS germline variants. Eur J Hum Genet, 2017, 25(7): 823-831
[21] Tidyman WE, Rauen KA. Pathogenetics of the RASopathies. Hum Mol Genet, 2016, 25(R2): R123-R132[22] Hamdan FF, Gauthier J, Spiegelman D, et al. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N Engl J Med, 2009, 360(6): 599-uta
[23] Revencu N, Boon LM, Mendola A, et al. RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum Mutat, 2013, 34(12): 1632-1641
[24] Niihori T, Aoki Y, Narumi Y N, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet, 2006, 38(3): 294-296
[25] Cave H. Gene symbol: MAP2K1. Disease: Cardio-Facio-Cutaneous syndrome. Hum Genet, 2008, 123(5): 551
[26] Hanna N, Parfait B. Gene symbol: MAP2K2. Disease: Cardio-Facio-Cutaneous syndrome. Hum Genet, 2008, 123(5): 543
[27] Lorenz S, Petersen C, Kordaβ U, et al. Two cases with severe lethal course of Costello syndrome associated with HRAS p. G12C and p. G12D. Eur J Med Genet, 2012, 55(11): 615-619
[28] Bianchi M, Saletti V, Micheli R, et al. Legius Syndrome: two novel mutations in the SPRED1 gene. Hum Genome Var, 2015, 2: 15051
[29] Pannone L, Bocchinfuso G, Flex E, et al. Structural, Functional, and Clinical Characterization of a Novel PTPN11 Mutation Cluster Underlying Noonan Syndrome. Hum Mutat, 2017, 38(4): 451-459
[30] Carcavilla A, Pinto I, Muoz-Pacheco R, et al. LEOPARD syndrome (PTPN11, T468M) in three boys fulfilling neurofibromatosis type 1 clinical criteria. Eur J Pediatr, 2011, 170(8): 1069-1074
[31] Calcagni G, Baban A, De Luca E, et al. Coronary artery ectasia in Noonan syndrome: Report of an individual with SOS1 mutation and literature review. Am J Med Genet A, 2016, 170(3): 665-669
[32] Luo C, Yang YF, Yin BL, et al. Microduplication of 3p25.2. encompassing RAF1 associated with congenital heart disease suggestive of Noonan syndrome. Am J Med Genet A, 2012, 158A(8): 1918-1923
[33] Kobayashi T, Aoki Y, Niihori T, et al. Molecular and clinical analysis of RAF1 in Noonan syndrome and related disorders: dephosphorylation of serine 259 as the essential mechanism for mutant activation. Hum Mutat, 2010, 31(3): 284-294
[34] Addissie YA, Kotecha U, Hart RA, et al. Craniosynostosis and Noonan syndrome with KRAS mutations: Expanding the phenotype with a case report and review of the literature. Am J Med Genet A, 2015, 167A(11): 2657-2663
[35] Martinelli S, Stellacci E, Pannone L, et al. Molecular Diversity and Associated Phenotypic Spectrum of Germline CBL Mutations. Hum Mutat, 2015, 36(8): 787-796
[36] Flex E, Jaiswal M, Pantaleoni F, et al. Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Hum Mol Genet, 2014, 23(16): 4315-4327
[37] Kouz K, Lissewski C, Spranger S, et al. Genotype and phenotype in patients with Noonan syndrome and a RIT1 mutation. Genet Med, 2016, 18(12): 1226-1234
[38] Chen PC, Yin J, Yu HW, et al. Next-generation sequencing identifies rare variants associated with Noonan syndrome. Proc Natl Acad Sci USA. 2014, 111(31): 11473-11478
[39] Yamamoto GL, Aguena M, Gos M, et al. Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome. J Med Genet, 2015, 52(6): 413-421
[40] Lee BH, Kim JM, Jin HY, et al. Spectrum of mutations in Noonan syndrome and their correlation with phenotypes. J Pediatr, 2011, 159(6): 1029-1035
[41] Kraft M, Cirstea IC, Voss AK, et al. Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome-like phenotype and hyperactivated MAPK signaling in humans and mice. J Clin Invest, 2011, 121(9): 3479-3491
[42] Vissers LE, Bonetti M, Paardekooper J, et al. Heterozygous germline mutations in A2ML1 are associated with a disorder clinically related to Noonan syndrome. Eur J Hum Genet, 2015, 23(3): 317-324