国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

優(yōu)化知識教學(xué),耦合學(xué)生的“思維斷層”

2018-01-22 17:42呂海霞
關(guān)鍵詞:耦合

呂海霞

摘 要:思維是學(xué)生數(shù)學(xué)學(xué)習(xí)的核心。學(xué)生在數(shù)學(xué)學(xué)習(xí)中常常會出現(xiàn)思維間斷、片面、模糊甚至茫然等現(xiàn)象。在數(shù)學(xué)教學(xué)中,教師要運(yùn)用“問題串”“知識串”和“認(rèn)知串”,豐富知識形成過程、深化知識體驗(yàn)過程、活化知識探究過程、注重知識延展過程,進(jìn)而耦合學(xué)生的思維斷層。

關(guān)鍵詞:認(rèn)知串;思維斷層;耦合

“思維”是學(xué)生數(shù)學(xué)學(xué)習(xí)的核心,培育學(xué)生的“思維力”是數(shù)學(xué)教學(xué)的生命線。然而,在數(shù)學(xué)教學(xué)中,我們常常遭遇這樣的尷尬:一個試圖激發(fā)學(xué)生思維風(fēng)暴的問題卻不能激發(fā)學(xué)生思維的任何漣漪,甚至換回學(xué)生沉默的無言以對。這其中,固然有問題質(zhì)量、問題品質(zhì)原因,但究其根本,則在于學(xué)生的數(shù)學(xué)思維出現(xiàn)了斷層。所謂“思維斷層”,是指學(xué)生在數(shù)學(xué)學(xué)習(xí)中出現(xiàn)的思維間斷、片面、模糊甚至茫然等現(xiàn)象。一旦學(xué)生出現(xiàn)思維斷層,就容易陷入學(xué)習(xí)的低谷狀態(tài),甚至陷入“習(xí)得性無助”狀態(tài)。巧用“認(rèn)知串”,從學(xué)生的具體學(xué)情出發(fā),讓學(xué)生對數(shù)學(xué)知識主動建構(gòu),做問題的發(fā)現(xiàn)者、探究者和解決者,能夠有效耦合學(xué)生的思維斷層。

一、豐富知識形成過程,夯實(shí)學(xué)生的思維根基

知識是學(xué)生思維的基礎(chǔ),也是學(xué)生探究的基礎(chǔ)。西方有句諺語——“空袋不能成立”。在數(shù)學(xué)學(xué)習(xí)中,很多時候?qū)W生常常因?yàn)橹R的遺忘、缺席而不能展開應(yīng)有的數(shù)學(xué)思維。因此,教師要盤活學(xué)生的經(jīng)驗(yàn),喚醒學(xué)生塵封的知識儲備。在學(xué)生出現(xiàn)思維斷層時,教師要能夠及時對學(xué)生進(jìn)行舊知激活,將新舊知識成功鏈接,或補(bǔ)充相關(guān)知識,以便夯實(shí)學(xué)生思維根基。

教學(xué)《圓柱的體積》時,通常教法是:教師按照教材邏輯,向?qū)W生展示圓柱體轉(zhuǎn)化成長方體的過程,讓學(xué)生直觀看到“圓柱體的底面積就是長方體的底面積”“圓柱的高就是長方體的高”“圓柱的體積就是長方體的體積”。在對圓柱體和長方體進(jìn)行比較的過程中,學(xué)生往往沒有形成多個觀察圓柱體和長方體的關(guān)系視點(diǎn),因此僅僅形成了這樣的兩個公式“V=Sh和V=πr2h”。因此,在解決問題過程中,學(xué)生對于這樣的問題——“一張長方形的紙卷成圓柱,怎樣卷體積大?”就顯得束手無策。部分學(xué)優(yōu)生則采用“假設(shè)法”,假設(shè)長方形紙的長和寬,也就是圓柱的底面周長和高,分別算出長方形紙的不同卷法所形成的圓柱體的體積。正是由于相關(guān)知識的缺乏,導(dǎo)致了學(xué)生數(shù)學(xué)思維的斷裂。筆者在教學(xué)中豐富知識形成過程,讓學(xué)生對圓柱體切拼后的長方體進(jìn)行不同方向的擺放。學(xué)生直觀看到,不同的擺放方式,其底面積是不同的,可以是圓柱的底面積,可以是圓柱側(cè)面積的一半,還可以是圓柱縱切面的一半,也就是圓柱高與直徑乘積的一半。知識串所形成的多元認(rèn)知,夯實(shí)了學(xué)生的思維根基,學(xué)生對圓柱體積的認(rèn)識更為深刻。實(shí)踐證明,學(xué)生在遇到這樣的問題時能夠主動結(jié)合推導(dǎo)過程展開思考,因?yàn)椴还軐㈤L方形紙?jiān)鯓泳?,“長方形的面積就是圓柱的側(cè)面積”這一點(diǎn)是不變的。因此,決定圓柱體積大小的就是圓柱的半徑。

任何知識的存在都具有其特定的組織圖式。教學(xué)中,教師要用合理、多元的方式豐富知識形成過程,形成多元的認(rèn)知串。只有當(dāng)學(xué)生了解自己當(dāng)前所學(xué)知識在數(shù)學(xué)體系中所處的位置以及數(shù)學(xué)知識的意義和價(jià)值時,學(xué)生的數(shù)學(xué)思維才能走向深入,學(xué)生的數(shù)學(xué)探究才能得以延續(xù),學(xué)生的“思維斷層”問題才能得到有效預(yù)防。

二、深化知識體驗(yàn)過程,墊高學(xué)生的思維起點(diǎn)

如上所述,數(shù)學(xué)教學(xué)不僅需要豐富知識的形成過程,而且需要學(xué)生獲得深度的活動體驗(yàn)。很多時候,學(xué)生由于缺乏對知識的深度體驗(yàn),缺乏對解決問題的策略體驗(yàn)而造成思維斷層,導(dǎo)致學(xué)生探究無法繼續(xù)。為此,教師有必要深化學(xué)生的知識體驗(yàn)、問題解決策略體驗(yàn),只有這樣,才能墊高學(xué)生的思維起點(diǎn)。

教學(xué)《圓錐的體積》,許多教師用“說實(shí)驗(yàn)”“講實(shí)驗(yàn)”“演實(shí)驗(yàn)”的方法進(jìn)行教學(xué),盡管學(xué)生也知道了“圓柱的體積是等底等高的圓錐的體積的3倍”,但學(xué)生并沒有獲得深度的學(xué)習(xí)體驗(yàn)?!凹埳系脕斫K覺淺,絕知此事要躬行”“紙上得來終覺淺,心中悟出始知深”。只有讓學(xué)生開展實(shí)實(shí)在在的操作活動、實(shí)驗(yàn)活動,學(xué)生才能真正理解知識,從而墊高學(xué)生問題解決的思維起點(diǎn)。通過對完整的知識串——等底等高、等底不等高、等高不等底、不等底不等高等的圓柱和圓錐的數(shù)學(xué)實(shí)驗(yàn),學(xué)生能夠認(rèn)識到,“等底等高的圓柱和圓錐,圓柱的體積一定是圓錐的3倍”“圓柱的體積是圓錐體積的3倍,它們不一定等底等高”“等底不等高或者等高不等底的圓柱和圓錐,圓柱的體積一定不可能是圓錐的3倍”“不等底不等高的圓柱和圓錐,圓柱的體積有可能是圓錐的3倍”等。不僅如此,學(xué)生在數(shù)學(xué)實(shí)驗(yàn)中還能對實(shí)驗(yàn)過程中影響實(shí)驗(yàn)結(jié)果的因子做出具體分析,如“由于沙子的空隙比較大,所以用沙子做實(shí)驗(yàn)沒有用水做實(shí)驗(yàn)來得精準(zhǔn)”“將圓錐里的水倒入圓柱,沒有將圓柱里的水倒入圓錐來得精準(zhǔn),因?yàn)閷A錐里的水倒入圓柱,圓錐的內(nèi)壁要多次粘住水珠”等。有了這樣豐富的過程體驗(yàn),學(xué)生才能深刻地把握圓柱體積和等底等高圓錐體積之間的關(guān)系。在解決問題時,學(xué)生才能對問題展開深度分析,才能根據(jù)等底等高的圓柱和圓錐之間的關(guān)系對問題進(jìn)行直覺思維、直接感悟。

在知識體驗(yàn)學(xué)習(xí)中,學(xué)生通過對諸種圓柱與圓錐的關(guān)系探究,思維不再失穩(wěn),而是逐漸變得穩(wěn)固起來。他們能感悟到:如果一個圓柱和一個圓錐的體積相等,底面積也相等,高就不可能相等,而且圓錐的高必定是圓柱高的3倍。對數(shù)學(xué)知識過程的感悟,讓學(xué)生能沖破思維無序、無助的斷層。

三、活化知識探究過程,優(yōu)化學(xué)生的思維方式

課堂教學(xué)中,教師不僅要引導(dǎo)學(xué)生關(guān)注知識的來龍去脈,關(guān)注知識的本源以及知識的流向,而且要通過適當(dāng)?shù)姆绞揭龑?dǎo)學(xué)生進(jìn)行知識的橫向、縱向比對和探究,在比較、變式中認(rèn)識知識本質(zhì),從而優(yōu)化學(xué)生思維方式?;罨R探究過程,需要教師激發(fā)學(xué)生認(rèn)知沖突,激活學(xué)生認(rèn)知內(nèi)驅(qū)力。

教學(xué)《小數(shù)點(diǎn)位置移動引起小數(shù)大小的變化》,通常教法是:教師寫出幾組小數(shù)點(diǎn)移動之前的小數(shù)和小數(shù)點(diǎn)移動之后的小數(shù),讓學(xué)生比較小數(shù)點(diǎn)移動前后小數(shù)的大小變化,同時讓學(xué)生觀察小數(shù)點(diǎn)是怎樣移動的,如此概括出“小數(shù)點(diǎn)位置移動引起小數(shù)大小的變化規(guī)律”。這樣的“不完全歸納法”讓學(xué)生對小數(shù)點(diǎn)位置移動產(chǎn)生疑惑:小數(shù)點(diǎn)怎么可以隨便移動呢?小數(shù)點(diǎn)移動的數(shù)學(xué)本質(zhì)是什么?筆者在教學(xué)中活化學(xué)生探究過程,優(yōu)化學(xué)生思維方式。如0.352×100=35.2,0.352到35.2,表面上看是小數(shù)點(diǎn)向右移動了兩位,其數(shù)學(xué)本質(zhì)是小數(shù)的每一個組成部分都擴(kuò)大了100倍。為此,我們設(shè)置“問題串”引導(dǎo)學(xué)生認(rèn)知:0.352的小數(shù)點(diǎn)向右移動兩位,0.3發(fā)生了怎樣的變化?0.05發(fā)生了怎樣的變化?0.002發(fā)生了怎樣的變化?學(xué)生通過觀察、比較、交流、討論發(fā)現(xiàn):將0.352的小數(shù)點(diǎn)向右移動兩位,其數(shù)學(xué)本質(zhì)是小數(shù)擴(kuò)大了100倍,即0.3×100=30,0.05×100=5,0.002×100=0.2,也就是原來十分位上的“3”、百分位上的“5”、千分位上的“2”在分別乘100后,變成了十位上的“3”、個位上的“5”、十分位上的“2”,相當(dāng)于用30+5+0.2,這其中運(yùn)用了乘法分配律。這樣的教學(xué),讓學(xué)生思維實(shí)現(xiàn)了翻轉(zhuǎn)。有學(xué)生認(rèn)為,就像人坐在車?yán)?,其?shí)是車向前行,但里面的人卻看到路旁的樹向后退。小數(shù)點(diǎn)移動的數(shù)學(xué)本質(zhì)是小數(shù)中的每一個數(shù)字發(fā)生了變化,是數(shù)字在動,看起來卻是小數(shù)點(diǎn)在動。這其中,十進(jìn)制計(jì)數(shù)法是數(shù)字運(yùn)動的動力。endprint

傳統(tǒng)的數(shù)學(xué)教學(xué)往往很少考慮學(xué)生的認(rèn)知水平及其發(fā)展需要,對學(xué)生一味“塑造”“填塞”,這是不利于培養(yǎng)學(xué)生數(shù)學(xué)思維,發(fā)展學(xué)生數(shù)學(xué)素養(yǎng)的。作為數(shù)學(xué)教學(xué)的組織者、建構(gòu)者,教師應(yīng)以學(xué)生的認(rèn)知發(fā)展為軸心,引領(lǐng)學(xué)生的數(shù)學(xué)探究,讓數(shù)學(xué)課堂呈現(xiàn)出開放、互動、動態(tài)、多元的教學(xué)樣態(tài)。

四、注重知識延展過程,提升學(xué)生的思維品質(zhì)

通常情況下,數(shù)學(xué)知識有兩種形態(tài):顯性形態(tài)和隱性形態(tài)。一般而言,數(shù)學(xué)知識、技能等屬于顯性知識,而數(shù)學(xué)思想、方法、活動經(jīng)驗(yàn)等則屬于隱性知識。教學(xué)中,教師不僅需要關(guān)注顯性知識,更需要關(guān)注隱性知識。只有關(guān)注隱性知識,才能提升學(xué)生思維品質(zhì),才能促進(jìn)學(xué)生數(shù)學(xué)素養(yǎng)的可持續(xù)性發(fā)展。

教學(xué)蘇教版四年級上冊《用計(jì)算器計(jì)算》一課,為了讓學(xué)生對計(jì)算工具形成科學(xué)的、理性的態(tài)度,筆者安排了這樣一道題:111111111×111111111=( )。學(xué)生發(fā)現(xiàn),這道題目已經(jīng)超越了計(jì)算器屏幕的顯示范圍,怎么辦呢?有學(xué)生認(rèn)為可以用“苦算”的方法,有學(xué)生認(rèn)為可以“以小見大找規(guī)律”,先借助計(jì)算器計(jì)算1×1,11×11,111×111和1111×1111的積,大部分學(xué)生都認(rèn)同這種算法。孩子們興趣盎然地用計(jì)算器計(jì)算起來,他們很快發(fā)現(xiàn)了這組習(xí)題串的規(guī)律,推算出了結(jié)果。在這個過程中,有學(xué)生對這樣的有趣味性的結(jié)果展開探究,他們還希望借助豎式探明原因。為此,筆者又向?qū)W生補(bǔ)充了“楊輝三角”的知識。有學(xué)生認(rèn)為,數(shù)學(xué)學(xué)習(xí)要善于找規(guī)律;有學(xué)生認(rèn)為,當(dāng)我們在數(shù)學(xué)學(xué)習(xí)中遇到復(fù)雜、繁難的問題時,要將復(fù)雜的問題轉(zhuǎn)化成簡單的問題;有學(xué)生認(rèn)為,數(shù)學(xué)學(xué)習(xí)要從簡單的情況入手;……

在學(xué)生小結(jié)反思的過程中,筆者相機(jī)出示華羅庚名言:善于“退”,足夠的“退”,退到最原始而不失重要性的地方,退到我們?nèi)菀卓辞鍐栴}的地方,是學(xué)好數(shù)學(xué)的一個訣竅。通過討論、交流,學(xué)生對這種“退”的策略心領(lǐng)神會。學(xué)習(xí)數(shù)學(xué)就是學(xué)習(xí)一種轉(zhuǎn)化思想,即將一般轉(zhuǎn)化成特殊,把未知轉(zhuǎn)化成已知,將復(fù)雜轉(zhuǎn)化成簡單,將陌生轉(zhuǎn)化成熟悉。

學(xué)生思維斷層的成因很多,作為教師應(yīng)當(dāng)善于發(fā)現(xiàn)和洞察,善于分析和研究。從某種意義上說,學(xué)生每一次思維斷層現(xiàn)象的出現(xiàn),都為教師對學(xué)生數(shù)學(xué)學(xué)習(xí)的深度研究提供了一種可能、一個契機(jī)。教學(xué)中,教師可以巧用“問題串”“知識串”“認(rèn)知串”等構(gòu)建學(xué)生數(shù)學(xué)學(xué)習(xí)的起點(diǎn),讓學(xué)生沖破由知識斷裂、慣有認(rèn)知所造成的思維斷層,自覺改變學(xué)生思維方式,不斷形成學(xué)生新的思維策略。endprint

猜你喜歡
耦合
非Lipschitz條件下超前帶跳倒向耦合隨機(jī)微分方程的Wong-Zakai逼近
Riketake混沌系統(tǒng)線性耦合同步
基于改進(jìn)SBELM的耦合故障診斷方法
厭氧氨氧化與反硝化耦合脫氮除碳研究Ⅰ:
基于Virtual.Lab下消聲器聲固耦合的模型建立
多星座GNSS/INS 緊耦合方法
基于“殼-固”耦合方法模擬焊接裝配
基于CFD/CSD耦合的葉輪機(jī)葉片失速顫振計(jì)算
一種可變耦合數(shù)控跳頻濾波器電路設(shè)計(jì)
求解奇異攝動Volterra積分微分方程的LDG-CFEM耦合方法