韓佳良,劉建新,劉紅云
?
熱應(yīng)激對(duì)奶牛泌乳性能的影響及其機(jī)制
韓佳良,劉建新,劉紅云
(浙江大學(xué)奶業(yè)科學(xué)研究所,杭州 310058)
隨著溫室效應(yīng)加劇,奶牛熱應(yīng)激問(wèn)題日益凸顯,對(duì)乳業(yè)造成巨大經(jīng)濟(jì)損失。熱應(yīng)激是一復(fù)雜的生理應(yīng)答過(guò)程,奶牛在溫?zé)岘h(huán)境下表現(xiàn)為呼吸和心率加快,直腸溫度升高,采食量下降,對(duì)其內(nèi)分泌系統(tǒng)和免疫系統(tǒng)造成負(fù)面影響,嚴(yán)重降低奶牛泌乳性能。目前關(guān)于奶牛熱應(yīng)激的報(bào)道多集中于生產(chǎn)試驗(yàn),特別是飼喂功能性飼料添加劑對(duì)應(yīng)激的緩解作用,但其具體作用機(jī)制尚不清晰。文章介紹了熱應(yīng)激對(duì)國(guó)內(nèi)外不同地區(qū)奶牛產(chǎn)奶量和乳品質(zhì)的廣泛影響,并從能量代謝、內(nèi)分泌、氧化應(yīng)激、細(xì)胞凋亡和自噬等方面綜述了熱應(yīng)激對(duì)奶牛泌乳性能的影響機(jī)制。能量代謝方面,從奶牛采食量減少、脂質(zhì)分解和能量代謝紊亂等內(nèi)在分子學(xué)機(jī)理角度解釋了奶牛在熱應(yīng)激下處于能量負(fù)平衡狀態(tài)的原因;內(nèi)分泌方面,介紹了熱應(yīng)激對(duì)奶牛下丘腦-垂體-腎上腺軸/甲狀腺軸/性腺軸/生長(zhǎng)軸的調(diào)控,分析了激素變化對(duì)機(jī)體的影響及其作用機(jī)制;氧化應(yīng)激方面,重點(diǎn)闡述了熱應(yīng)激通過(guò)影響機(jī)體內(nèi)ROS水平從而產(chǎn)生氧化應(yīng)激的分子機(jī)制及激活的相關(guān)防御信號(hào)通路;細(xì)胞凋亡和自噬方面,介紹了高溫脅迫引起奶牛乳腺上皮細(xì)胞損傷,細(xì)胞凋亡相關(guān)基因表達(dá)引發(fā)的內(nèi)源性和外源性細(xì)胞凋亡,而過(guò)度自噬引發(fā)的細(xì)胞損傷也對(duì)乳腺泌乳起負(fù)面調(diào)控作用。筆者指出,在可預(yù)見(jiàn)的未來(lái),熱應(yīng)激將是奶牛養(yǎng)殖業(yè)面臨的最大難題,應(yīng)建立可控的奶牛熱應(yīng)激模型運(yùn)用于生產(chǎn)實(shí)踐研究,并加強(qiáng)奶牛乳腺上皮細(xì)胞水平的基礎(chǔ)研究,結(jié)合高通量數(shù)據(jù)分析技術(shù),系統(tǒng)揭示熱應(yīng)激的發(fā)病機(jī)制,為緩解熱應(yīng)激提供全面的理論依據(jù)。
奶牛;熱應(yīng)激;泌乳性能
近幾年,隨著溫室效應(yīng)加劇,熱應(yīng)激對(duì)奶牛生產(chǎn)性能的影響已成為奶牛養(yǎng)殖業(yè)亟需解決的難題。中國(guó)奶業(yè)發(fā)展呈現(xiàn)南北不均態(tài)勢(shì),奶牛主要養(yǎng)殖在北方地區(qū),而南方卻有著巨大的市場(chǎng)需求。許多養(yǎng)殖企業(yè)嘗試在南方飼養(yǎng)奶牛,以滿(mǎn)足其市場(chǎng)空缺。泌乳性能作為奶牛最重要的生產(chǎn)指標(biāo),受高溫影響顯著,所以南方地區(qū)普遍存在的高溫環(huán)境對(duì)奶牛泌乳性能的影響是奶農(nóng)焦慮的主要問(wèn)題之一。本文從能量代謝、內(nèi)分泌、氧化應(yīng)激、細(xì)胞凋亡和自噬等方面綜述了熱應(yīng)激對(duì)奶牛泌乳性能的影響及其機(jī)制,并結(jié)合組學(xué)技術(shù)揭示轉(zhuǎn)錄、蛋白和代謝水平物質(zhì)變化,為熱應(yīng)激狀態(tài)下改善奶牛乳腺機(jī)能進(jìn)而采取保護(hù)措施以提高泌乳性能提供理論依據(jù)。
熱應(yīng)激是動(dòng)物機(jī)體應(yīng)對(duì)環(huán)境高溫所產(chǎn)生的非特異性應(yīng)答反應(yīng)。國(guó)外學(xué)者采用熱應(yīng)激表示動(dòng)物機(jī)體應(yīng)對(duì)高溫環(huán)境產(chǎn)生的散熱需求[1]。國(guó)內(nèi)學(xué)者則認(rèn)為熱應(yīng)激是所有與高溫有關(guān)的因素引起的有利于避免動(dòng)物機(jī)體功能紊亂并使其更好地適應(yīng)環(huán)境而發(fā)生在動(dòng)物細(xì)胞水平的自我調(diào)節(jié)[2]。奶牛熱應(yīng)激的影響程度一般采用溫濕指數(shù)(temperature-humidity index, THI)進(jìn)行估計(jì)[3],但由于不同奶牛年齡、品種、生理狀態(tài)等因素不同,單純依靠THI很難準(zhǔn)確評(píng)估奶牛熱應(yīng)激狀態(tài)。因此,還可結(jié)合熱休克蛋白表達(dá)水平、生理生化、生產(chǎn)性能、內(nèi)分泌等指標(biāo)評(píng)定奶牛熱應(yīng)激狀態(tài)。隨著養(yǎng)殖自動(dòng)化程度提高,可運(yùn)用紅外線(xiàn)熱像儀和加速度傳感器監(jiān)測(cè)奶牛呼吸頻率和往返踱步行為,實(shí)現(xiàn)遠(yuǎn)程監(jiān)控奶牛健康狀況[4],也可通過(guò)監(jiān)測(cè)奶牛活動(dòng)和反芻時(shí)間對(duì)熱應(yīng)激進(jìn)行早期預(yù)警[5]。
熱應(yīng)激可致使奶牛行為異常,生產(chǎn)和繁殖性能下降,發(fā)生疾病甚至導(dǎo)致奶牛死亡[6-7]。國(guó)內(nèi)外研究人員嘗試運(yùn)用多種方法緩解奶牛熱應(yīng)激,例如在干奶期飼喂?fàn)I養(yǎng)免疫調(diào)節(jié)劑可緩解奶牛熱應(yīng)激并提高其泌乳性能[8];近期研究關(guān)注開(kāi)發(fā)包含煙酸、維生素C、硫酸鉀、γ-氨基丁酸等抗應(yīng)激物質(zhì)的瘤胃保護(hù)膠囊,從而在營(yíng)養(yǎng)調(diào)控層面緩解奶牛熱應(yīng)激[9]。飼喂高能量混合日糧以保證熱應(yīng)激奶牛所需能量,但會(huì)增加奶牛瘤胃酸中毒風(fēng)險(xiǎn);目前奶牛養(yǎng)殖場(chǎng)多采用較為經(jīng)濟(jì)實(shí)用的噴霧風(fēng)扇系統(tǒng)進(jìn)行降溫,但造成環(huán)境濕度過(guò)大,使奶牛多發(fā)肢蹄病和乳房炎[10]。最新研究利用基因組育種值預(yù)測(cè)奶牛的熱耐受性,選育牛產(chǎn)奶量下降較少,因此用基因組選育耐熱性奶牛不失為一種抗熱應(yīng)激手段,在未來(lái)對(duì)動(dòng)物福利具有深遠(yuǎn)影響[11]。
產(chǎn)奶量是奶牛泌乳性能最基本的指標(biāo),其高低直接影響奶牛養(yǎng)殖場(chǎng)的經(jīng)濟(jì)效益。不同地區(qū)的高熱環(huán)境均會(huì)降低奶牛產(chǎn)奶量,但由于熱應(yīng)激程度、持續(xù)時(shí)間、奶牛品種、飼養(yǎng)條件等不同,產(chǎn)奶量降低的程度也不同。當(dāng)30<THI<60時(shí),德國(guó)荷斯坦奶牛處于正常狀態(tài),奶產(chǎn)量隨THI的升高而升高;當(dāng)THI>60時(shí),奶牛受到輕度熱應(yīng)激,奶產(chǎn)量下降,并隨THI的升高而逐漸降低[12]。短期中度熱應(yīng)激下,加拿大和美國(guó)北部地區(qū)奶牛日均奶產(chǎn)量下降4.8%,并對(duì)恢復(fù)階段存在長(zhǎng)期的負(fù)面影響[13]。當(dāng)THI>83時(shí),巴西南部荷斯坦奶牛受到強(qiáng)烈熱應(yīng)激,與對(duì)照組相比日均奶產(chǎn)量降低21%[14]。國(guó)內(nèi)研究中,李朝明等[15]試驗(yàn)表明熱應(yīng)激條件下荷斯坦、娟珊和娟荷雜交奶牛產(chǎn)奶量均下降,其中娟荷雜交奶牛產(chǎn)奶量?jī)?yōu)于其他組,表現(xiàn)出較好的耐熱性能??梢?jiàn)不同地區(qū)或品種的奶牛對(duì)熱應(yīng)激應(yīng)答程度不同。根據(jù)我國(guó)區(qū)域氣候條件,選育適應(yīng)高溫環(huán)境的奶牛品種并深入研究南方地區(qū)奶牛熱應(yīng)激閾值顯得尤為必要。
乳蛋白率、乳脂率、乳糖率和非脂固體含量等是奶牛乳品質(zhì)的重要指標(biāo)。乳蛋白和乳脂肪是構(gòu)成牛奶的重要營(yíng)養(yǎng)物質(zhì),是市場(chǎng)競(jìng)爭(zhēng)的核心因素。許多研究表明發(fā)生熱應(yīng)激時(shí),各泌乳階段奶牛的乳蛋白率、乳脂率、非脂固體含量均有下降趨勢(shì),且在泌乳前期降低幅度最大[12-13, 16-17],但對(duì)牛奶中乳糖率沒(méi)有顯著影響[18- 19]。熱應(yīng)激對(duì)乳蛋白的影響主要表現(xiàn)為乳腺上皮細(xì)胞酪蛋白等主要乳蛋白基因表達(dá)下調(diào),乳中總酪蛋白減少而尿素濃度增加,導(dǎo)致?tīng)I(yíng)養(yǎng)價(jià)值降低[20-21]。最新研究表明,熱應(yīng)激奶牛乳中短鏈和中鏈脂肪酸含量,磷脂酰乙醇胺、磷脂酰絲氨酸、磷脂酰膽堿、溶血磷脂酰膽堿和葡萄糖神經(jīng)酰胺等5種極性脂質(zhì)顯著降低[22]。極性脂質(zhì)是構(gòu)成脂肪球膜的主要成分,起到乳化劑的作用,可確保乳液體系的穩(wěn)定性[23]。此外,體細(xì)胞數(shù)是衡量原料乳質(zhì)量的一個(gè)重要指標(biāo),熱應(yīng)激條件下奶牛乳中體細(xì)胞數(shù)顯著增加,嚴(yán)重影響乳品質(zhì)[24]。但由于奶牛乳腺泌乳代謝受諸多因素調(diào)控,其泌乳參數(shù)不盡相同,大大增加了研究難度。只有深入了解熱應(yīng)激對(duì)奶牛泌乳性能的影響機(jī)制,才能合理調(diào)控泌乳進(jìn)而達(dá)到改善乳品質(zhì)的目的。
機(jī)體在生命活動(dòng)過(guò)程中,始終保持能量的動(dòng)態(tài)平衡。奶牛受到熱應(yīng)激時(shí)表現(xiàn)為干物質(zhì)采食量減少以最大限度減少熱總負(fù)荷,并加快激活散熱機(jī)制(出汗、血液流向皮膚)引起連鎖生理調(diào)節(jié)使維持能量增加,用于生產(chǎn)泌乳的能量減少[25-27]。下丘腦是動(dòng)物體溫和攝食調(diào)節(jié)中樞,熱信號(hào)經(jīng)下丘腦整合后通過(guò)神經(jīng)和內(nèi)分泌系統(tǒng)影響采食行為,其可通過(guò)合成載脂蛋白A-IV抑制食物攝取[28]。嚙齒動(dòng)物研究表明,熱應(yīng)激使小鼠體內(nèi)載脂蛋白A-IV表達(dá)上調(diào),這可能是動(dòng)物采食量下降的原因之一[29]。并且,奶牛在熱應(yīng)激狀態(tài)下血液葡萄糖含量顯著上升,刺激胰島素分泌增加[30-31],與免疫應(yīng)答和糖異生相關(guān)的氨基酸含量升高,并利用非酯化脂肪酸作為供能物質(zhì)和乳合成的前體物質(zhì),提示機(jī)體受熱應(yīng)激脅迫需要更多的氨基酸參與免疫反應(yīng)和糖異生競(jìng)爭(zhēng),最終導(dǎo)致機(jī)體處于能量負(fù)平衡狀態(tài)[32-34]。
熱應(yīng)激直接影響奶牛脂質(zhì)分解和能量代謝。HE等[35]運(yùn)用代謝組學(xué)檢測(cè)熱應(yīng)激奶牛乳樣中代謝物變化,發(fā)現(xiàn)牛奶和血漿中存在乳酸鹽、丙酮酸鹽、肌酸等十幾種差異代謝物,表明奶牛受到熱應(yīng)激后代謝紊亂,使機(jī)體處于能量負(fù)平衡狀態(tài),血乳屏障特異性功能下降。研究表明急性熱應(yīng)激通過(guò)激素敏感性脂肪酶(hormone-sensitive lipase,HSL)和脂滴包被蛋白(perilipin)的蛋白激酶A(protein kinase A,PKA)磷酸化增加細(xì)胞對(duì)脂肪分解信號(hào)的應(yīng)答[36]。泌乳早期奶牛對(duì)熱應(yīng)激的代謝適應(yīng)包括增加肌肉過(guò)氧化物酶體系中的長(zhǎng)鏈脂肪酸降解,允許肌肉葡萄糖利用以及減少肝臟供能,保證產(chǎn)奶能量供應(yīng)[37]。試驗(yàn)還表明,熱應(yīng)激奶牛血清中脂聯(lián)素和AMPK活性增加[38]。腺苷酸活化蛋白激酶(adenosine 5′ monophosphate–activated kinase,AMPK)是細(xì)胞重要的能量感受器,調(diào)節(jié)細(xì)胞內(nèi)代謝平衡。負(fù)能量刺激下AMPK使raptor蛋白Ser位點(diǎn)磷酸化受到抑制,導(dǎo)致哺乳動(dòng)物雷帕霉素靶蛋白復(fù)合體1(mammalian target of rapamycin complex 1,mTORC1)活性降低,進(jìn)而造成細(xì)胞基因轉(zhuǎn)錄及生物合成代謝紊亂[39- 40],最終影響奶牛乳腺泌乳性能。研究發(fā)現(xiàn),熱應(yīng)激期間奶牛干物質(zhì)采食量的下降僅能解釋產(chǎn)奶量下降的35%—50%[30, 41],證明還有其他因素對(duì)奶牛泌乳性能產(chǎn)生重要影響。
乳腺是乳汁合成的場(chǎng)所,在多種神經(jīng)內(nèi)分泌激素和生長(zhǎng)因子控制下發(fā)育、分化,合成并分泌乳汁[42]。熱應(yīng)激條件下奶牛合成代謝相關(guān)的激素水平改變,并影響相應(yīng)信號(hào)轉(zhuǎn)導(dǎo)通路和泌乳相關(guān)基因表達(dá),最終影響其泌乳性能[43]。
3.2.1 下丘腦-垂體-腎上腺軸 下丘腦-垂體-腎上腺軸在奶牛受到熱應(yīng)激時(shí)發(fā)揮重要作用。高熱環(huán)境刺激動(dòng)物下丘腦分泌促腎上腺皮質(zhì)激素釋放因子(CRF),進(jìn)而刺激垂體分泌促腎上腺皮質(zhì)激素(ACTH),促進(jìn)腎上腺糖皮質(zhì)激素(主要是皮質(zhì)醇)合成[44-45]。皮質(zhì)醇是反芻動(dòng)物主要應(yīng)激激素,其分泌增加可有效幫助機(jī)體抵御熱應(yīng)激,是導(dǎo)致血液葡萄糖增加的主要因素[46]。此外,腎上腺髓質(zhì)分泌腎上腺素(AMH)和去甲腎上腺素(INN)作用于中樞神經(jīng)系統(tǒng),引起奶牛興奮性增強(qiáng)、呼吸加快、血壓升高等全身適應(yīng)性反應(yīng),進(jìn)而使奶牛以犧牲產(chǎn)奶量為代價(jià)保證機(jī)體內(nèi)環(huán)境穩(wěn)定[47-48]。
3.2.2 下丘腦-垂體-甲狀腺軸 甲狀腺受熱應(yīng)激影響主要表現(xiàn)為甲狀腺功能降低以減少機(jī)體產(chǎn)熱,甲狀腺激素(TH)合成減少[49-50]。TH介導(dǎo)的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)在調(diào)節(jié)體溫、能量攝入和代謝適應(yīng)方面具有關(guān)鍵作用。最新研究發(fā)現(xiàn),熱應(yīng)激狀態(tài)下產(chǎn)后奶牛肝臟組織的TH依賴(lài)性基因(甲狀腺激素受體α、碘甲狀腺素脫碘酶1、共激活因子PPARGC1)表達(dá)降低,蛋白質(zhì)組學(xué)數(shù)據(jù)顯示肝臟氨基酸的分解代謝減少,轉(zhuǎn)而用于β-氧化和糖異生[51]。
3.2.3 下丘腦-垂體-性腺軸 熱應(yīng)激同樣可以影響下丘腦-垂體-性腺軸,調(diào)節(jié)促性腺激素釋放激素(GnRH)和促性腺激素(Gn)的合成分泌,進(jìn)而使促黃體激素(LH)、雌二醇(E2)、孕激素(P4)濃度減少,通過(guò)影響乳腺腺泡和導(dǎo)管系統(tǒng)的形成降低泌乳性能[52-55]。P4通過(guò)與膜結(jié)合型孕激素受體結(jié)合,調(diào)節(jié)促分裂素原活化蛋白激酶(mitogen-activated protein kinase,MAPK)和蛋白激酶B(protein kinase B,Akt)通路調(diào)控泌乳[56]。催乳素(PRL)與催乳素受體結(jié)合并激活酪氨酸激酶2(janus kinase 2,JAK2),催化信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄活化蛋白5(signal transducer and activator of transcription 5,STAT5)磷酸化,活化的STAT5以二聚體的形式進(jìn)入細(xì)胞核調(diào)控乳蛋白基因表達(dá)[56]。
3.2.4 下丘腦-垂體-生長(zhǎng)軸 熱應(yīng)激也會(huì)影響下丘腦-垂體-生長(zhǎng)軸。RHOADS等[57]研究發(fā)現(xiàn)熱應(yīng)激期間奶牛機(jī)體減少了胰島素樣生長(zhǎng)因子-1(IGF-1)的產(chǎn)生,同時(shí)減弱乳腺內(nèi)對(duì)生長(zhǎng)激素(GH)敏感的生物能量代謝過(guò)程。但熱應(yīng)激對(duì)IGF-1的影響仍存在爭(zhēng)議,李林等[58]研究顯示熱應(yīng)激奶牛血液中GH、IGF-1含量顯著上升,激活肝臟糖異生作用。GH可刺激IGF-1活化誘導(dǎo)的胰島素受體底物I,經(jīng)自磷酸化修飾后生成胰島素受體蛋白停泊位點(diǎn),通過(guò)磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)-Akt-哺乳動(dòng)物雷帕霉素靶點(diǎn)(mammalian target of rapamycin,mTOR)信號(hào)通路,從轉(zhuǎn)錄、翻譯水平調(diào)控奶牛泌乳過(guò)程[59]。
乳腺內(nèi)分泌調(diào)控奶牛泌乳的詳細(xì)機(jī)理尚不清楚。進(jìn)一步研究熱應(yīng)激對(duì)奶牛內(nèi)分泌的影響,可結(jié)合組學(xué)方法深入分析下丘腦-垂體-乳腺軸的激素及相關(guān)基因表達(dá)變化,揭示熱應(yīng)激影響內(nèi)分泌進(jìn)而調(diào)控泌乳的分子生物學(xué)機(jī)制。
機(jī)體氧化物質(zhì)的存在量超過(guò)其抗氧化能力,便會(huì)產(chǎn)生氧化應(yīng)激[60]。奶牛機(jī)體內(nèi)的氧化物和抗氧化酶水平可作為衡量氧化應(yīng)激程度的標(biāo)志物。試驗(yàn)證明,高溫環(huán)境下奶牛血漿中硫代巴比妥酸反應(yīng)產(chǎn)物(TBARS)濃度升高,細(xì)胞內(nèi)活性氧(ROS)水平、超氧化物歧化酶(SOD)活性、過(guò)氧化氫酶活性等指標(biāo)顯著增加,提示熱應(yīng)激可誘導(dǎo)產(chǎn)生氧化應(yīng)激,并觸發(fā)抗氧化酶防御系統(tǒng)[61-62]。
熱應(yīng)激通過(guò)影響機(jī)體內(nèi)ROS水平,進(jìn)而產(chǎn)生氧化應(yīng)激。其主要過(guò)程是動(dòng)物體溫上升影響機(jī)體內(nèi)代謝酶活性,加速細(xì)胞和組織中的代謝反應(yīng)以增加ROS產(chǎn)生。過(guò)多的自由基攻擊生物大分子反應(yīng)性Cys殘基使靶蛋白失活,并造成脂質(zhì)過(guò)氧化,最終引起蛋白質(zhì)和DNA損傷[63-65]。急性熱應(yīng)激可損傷線(xiàn)粒體膜電位,導(dǎo)致細(xì)胞線(xiàn)粒體功能障礙[66]。通過(guò)β-氧化或三羧酸循環(huán)等方式氧化線(xiàn)粒體底物,解偶聯(lián)蛋白水平下調(diào)而電子傳遞鏈活性增加,使超氧化物生成增加,隨后被SOD分解產(chǎn)生過(guò)氧化氫[67]。另一方面,熱應(yīng)激通過(guò)增加鐵蛋白釋放鐵的速率導(dǎo)致過(guò)多的過(guò)渡金屬離子(transition metal ions,TMI)生成,TMI可促進(jìn)超氧陰離子或過(guò)氧化氫生成[68]。過(guò)氧化氫以其恒定產(chǎn)生和相對(duì)穩(wěn)定的特性作為細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)的常見(jiàn)ROS信使,主要通過(guò)上調(diào)Kelch樣環(huán)氧氯丙烷相關(guān)蛋白1(Kelch-like ECH-associated protein-1,Keap1)-核因子2相關(guān)因子2(NF-E2-related factor 2,Nrf2)-抗氧化反應(yīng)元件(antioxidant response element,ARE)信號(hào)通路,進(jìn)而激活細(xì)胞內(nèi)防御信號(hào)通路[69]。同時(shí),奶牛脂肪組織蛋白組學(xué)結(jié)果亦證明熱應(yīng)激可通過(guò)Nrf2介導(dǎo)的氧化應(yīng)激、核受體FXR/RXR和LXR/RXR等應(yīng)激相關(guān)途徑影響組織蛋白組,并對(duì)奶牛的代謝應(yīng)激有疊加作用[70]。氧化應(yīng)激可造成細(xì)胞功能障礙并發(fā)生病理變化,乳腺組織損傷對(duì)奶牛的泌乳性能造成嚴(yán)重影響。根據(jù)熱應(yīng)激誘導(dǎo)產(chǎn)生氧化應(yīng)激機(jī)制,溫?zé)岘h(huán)境下可通過(guò)營(yíng)養(yǎng)調(diào)控的方法增加機(jī)體抗氧化水平以減少血漿脂質(zhì)過(guò)氧化,從而改善其應(yīng)激狀況[71]。例如葛根素可通過(guò)抑制ROS產(chǎn)生和上調(diào)熱休克蛋白72的表達(dá),明顯改善細(xì)胞由熱應(yīng)激引起的氧化應(yīng)激損傷[72]。
細(xì)胞凋亡是經(jīng)一系列物理、化學(xué)或環(huán)境刺激,在分子層面進(jìn)行調(diào)節(jié)而導(dǎo)致細(xì)胞自我破壞的過(guò)程。高溫可使奶牛乳腺上皮細(xì)胞超微結(jié)構(gòu)發(fā)生變化,表現(xiàn)為常染色體聚積邊緣化、片段DNA被細(xì)胞膜包裹形成凋亡小體、線(xiàn)粒體腫脹破裂等,說(shuō)明熱應(yīng)激誘導(dǎo)的細(xì)胞凋亡與線(xiàn)粒體凋亡途徑有直接關(guān)聯(lián)[73]。利用SW480細(xì)胞研究發(fā)現(xiàn),熱應(yīng)激可激活細(xì)胞中溶酶體-線(xiàn)粒體凋亡途徑,增加細(xì)胞內(nèi)活性氧物質(zhì)并使溶酶體膜通透性改變,組織蛋白酶B釋放到細(xì)胞質(zhì)中,線(xiàn)粒體去極化并使細(xì)胞色素C釋放到胞質(zhì)溶膠,從而引起細(xì)胞凋亡[74]。奶牛乳腺上皮細(xì)胞試驗(yàn)表明,高溫可引起細(xì)胞凋亡相關(guān)基因、蛋白酶激活因子表達(dá)顯著上升[75]。在線(xiàn)粒體凋亡途徑中起重要作用,由細(xì)胞色素C與以及組成的凋亡復(fù)合體激活[76]。此外,腫瘤壞死因子受體(TNFR)、、抗癌基因細(xì)胞凋亡信號(hào)因子上調(diào),表明熱應(yīng)激可通過(guò)外源性凋亡途徑誘導(dǎo)細(xì)胞凋亡,干擾正常生物活性[75]。信號(hào)通路在熱應(yīng)激誘導(dǎo)的細(xì)胞凋亡中起關(guān)鍵作用,其涉及線(xiàn)粒體電子傳遞鏈、糖酵解、細(xì)胞衰老死亡等多種生物途徑[77-78]。
正常情況下,自噬是保持細(xì)胞穩(wěn)態(tài)的關(guān)鍵機(jī)制。在哺乳動(dòng)物細(xì)胞中,自噬可通過(guò)溶酶體降解損傷的蛋白質(zhì)和細(xì)胞器,并利用所得的氨基酸、脂肪酸和糖類(lèi),滿(mǎn)足細(xì)胞的能量需求[79]。而在病理?xiàng)l件下,細(xì)胞饑餓、缺氧、氧化損傷和高熱都會(huì)誘發(fā)細(xì)胞自噬,過(guò)度的自噬會(huì)導(dǎo)致細(xì)胞損傷[80]。在奶牛研究中,熱應(yīng)激誘導(dǎo)干奶期奶牛乳腺細(xì)胞發(fā)生自噬,干擾了細(xì)胞最佳增殖期的乳腺再生,引起泌乳性能降低[81]。最新研究表明,雌二醇和孕激素可與自噬基因beclin 1形成復(fù)合物,調(diào)節(jié)Bcl-2磷酸化,誘導(dǎo)牛乳腺上皮細(xì)胞發(fā)生自噬[82],提示熱應(yīng)激造成的奶牛激素紊亂可能促使乳腺細(xì)胞發(fā)生自噬。mTOR信號(hào)通路的激活可有效抑制牛乳腺上皮細(xì)胞產(chǎn)生自噬,是控制自噬的中心環(huán)節(jié)[83]。自噬發(fā)生時(shí),轉(zhuǎn)化生長(zhǎng)因子β1(TGFβ1)可通過(guò)Smad蛋白(drosophila mothers against decapentaplegic protein)介導(dǎo)信號(hào)轉(zhuǎn)導(dǎo)降低mTOR上游信號(hào)Akt濃度,從而緩解mTOR對(duì)自噬的抑制作用[84]。奶牛的泌乳功能與乳腺細(xì)胞數(shù)量密切相關(guān),熱應(yīng)激時(shí)乳腺細(xì)胞發(fā)生程序性死亡(凋亡、自噬)而造成泌乳能力下降。此外,細(xì)胞焦亡是一種新的程序性死亡方式,其依賴(lài)于并伴有大量促炎因子釋放[85]。有研究表明熱應(yīng)激通過(guò)ROS依賴(lài)性高遷移率族蛋白1(high-mobility group box 1,HMGB1)的釋放而誘導(dǎo)大鼠肝臟炎癥小體激活,促使細(xì)胞焦亡[86]。熱應(yīng)激奶牛血漿蛋白質(zhì)組檢測(cè)顯示,轉(zhuǎn)甲狀腺素蛋白減少而血漿腫瘤壞死因子-α(TNF-α)和白細(xì)胞介素-6(IL-6)增加,證明熱應(yīng)激可誘導(dǎo)奶牛機(jī)體產(chǎn)生炎癥反應(yīng)[87],但其是否涉及乳腺細(xì)胞焦亡還需進(jìn)一步研究。
熱應(yīng)激一直是奶牛養(yǎng)殖業(yè)面對(duì)的重大難題。目前,國(guó)內(nèi)外針對(duì)奶牛熱應(yīng)激問(wèn)題已有諸多報(bào)道,但多集中于飼喂功能性飼料添加劑對(duì)熱應(yīng)激的緩解作用。今后,生產(chǎn)實(shí)踐中可通過(guò)建立奶牛熱應(yīng)激模型,明確熱應(yīng)激對(duì)奶牛整體的影響;基礎(chǔ)研究可通過(guò)奶牛乳腺上皮細(xì)胞熱應(yīng)激模型結(jié)合高通量數(shù)據(jù)分析技術(shù),系統(tǒng)研究熱應(yīng)激的發(fā)生機(jī)制。緩解熱應(yīng)激對(duì)奶牛泌乳性能的提升具有長(zhǎng)遠(yuǎn)影響,可為奶牛養(yǎng)殖業(yè)創(chuàng)造巨大的經(jīng)濟(jì)效益。因此,充分研究熱應(yīng)激對(duì)奶牛泌乳的影響機(jī)制并積極尋求緩解方法,具有重要的理論和實(shí)踐意義。
[1] SILANIKOVE N. Effects of heat stress on the welfare of extensively managed domestic ruminants., 2000: 67(1-2): 1-18.
[2] 周傳社, 譚支良, 趙陳鋒. 奶牛熱應(yīng)激的生理機(jī)制及其調(diào)控. 家畜生態(tài)學(xué)報(bào), 2006(06):173-177.
ZHOU C S, TAN Z L, ZHAO C F. Physiological mechanism and regulation of heat stress in dairy cows., 2006(06):173-177. (in Chinese)
[3] DIKMEN S, HANSEN P J. Is the temperature-humidity index the best indicator of heat stress., 2009, 1(92): 109-116.
[4] STEWART M, WILSON M T, SCHAEFER A L, HUDDART F, SUTHERLAND M A. The use of infrared thermography and accelerometers for remote monitoring of dairy cow health and welfare., 2017, 100(5):3893-3901.
[5] ABENI F, GALLI A. Monitoring cow activity and rumination time for an early detection of heat stress in dairy cow., 2017, 61(3):417-425.
[6] KADZERE C T, MURPHY M R, SILANIKOVE N, MALTZ E. Heat stress in lactating dairy cows: a review., 2002(77):59-91.
[7] DAHL G E, TAO S, MONTEIRO A P A. Effects of late-gestation heat stress on immunity and performance of calves1., 2016, 99(4):3193-3198.
[8] FABRIS T F, LAPORTA J, CORRA F N, TORRES Y M, KIRK D J, MCLEAN D J, CHAPMAN J D, DAHL G E. Effect of nutritional immunomodulation and heat stress during the dry period on subsequent performance of cows., 2017, 100(8):6733-6742.
[9] GUO W J, ZHEN L, ZHANG J X, LIAN S, SI H F, GUO J R, YANG H M. Effect of feeding Rumen-protected capsule containing niacin, K2SO4, vitamin C, and gamma-aminobutyric acid on heat stress and performance of dairy cows., 2017, 69:249-253.
[10] FOURNEL S, OUELLET V, CHARBONNEAU é. Practices for alleviating heat stress of dairy cows in humid continental Climates: A Literature Review., 2017, 7(5):37.
[11] GARNER J B, DOUGLAS M L, WILLIAMS S R O, WALES W J, MARETT L C, NGUYEN T T T, REICH C M, HAYES B J. Genomic selection improves heat tolerance in dairy cattle., 2016, 6(1): 34114.
[12] GORNIAK T, MEYER U, SüDEKUM K, D?NICKE S. Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate., 2014, 5(68):358-369.
[13] OMINSKI K H, KENNEDY A D, WITTENBERG K M. Physiological and Production Responses to Feeding Schedule in Lactating Dairy Cows Exposed to Short-Term, Moderate Heat Stress., 2002(85):730-737.
[14] GARCIA A B, ANGELI N, MACHADO L, de CARDOSO F C, GONZALEZ F. Relationships between heat stress and metabolic and milk parameters in dairy cows in southern Brazil., 2015, 47(5):889-894.
[15] 李朝明, 別應(yīng)堂, 魏學(xué)良. 熱應(yīng)激對(duì)荷斯坦和娟姍及娟荷雜交奶牛生產(chǎn)性能的影響. 中國(guó)畜牧雜志, 2014(17):77-81.
LI C M, BIE Y T, WEI X L. Effects of heat stress on holstein, jersey and jersey×holstein dairy cows., 2014(17):77-81. (in Chinese)
[16] BERNABUCCI U, BIFFANI S, BUGGIOTTI L, VITALI A, LACETERA N, NARDONE A. The effects of heat stress in Italian Holstein dairy cattle., 2014, 97(1):471-486.
[17] GAO S T, GUO J, QUAN S Y, NAN X M, FERNANDEZ M V S, BAUMGARD L H, BU D P. The effects of heat stress on protein metabolism in lactating Holstein cows., 2017, 100(6):5040-5049.
[18] BAHASHWAN S. Effect of cold and hot seasons on fat, protein and lactose of Dhofari cow’s milk., 2014, 2(1):47-49.
[19] JOKSIMOVIC-TODOROVIC M, DAVIDOVIC V, HRISTOV S, STANKOVIC B. Effect of heat stress on milk production in dairy cows., 2011, 27(3):1017-1023.
[20] COWLEY F C, BARBER D G, HOULIHAN A V, POPPI D P. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism., 2015, 98(4):2356-2368.
[21] HU H, ZHANG Y, ZHENG N, CHENG J, WANG J. The effect of heat stress on gene expression and synthesis of heat-shock and milk proteins in bovine mammary epithelial cells., 2016, 87(1):84-91.
[22] LIU Z, EZERNIEKS V, WANG J, ARACHCHILLAGE N W, GARNER J B, WALES W J, COCKS B G, ROCHFORT S. Heat stress in dairy cattle alters lipid composition of milk., 2017, 7(1):1-10.
[23] SA?NCHEZJUANES F, ALONSO J, ZANCADA L, HUESO P. Distribution and fatty acid content of phospholipids from bovine milk and bovine milk fat globule membranes., 2009, 5(19):273-278.
[24] HAGIYA K, HAYASAKA K, YAMAZAKI T, SHIRAI T, OSAWA T, TERAWAKI Y, NAGAMINE Y, MASUDA Y, SUZUKI M. Effects of heat stress on production, somatic cell score and conception rate in Holsteins., 2017, 88(1):3-10.
[25] WEST J W. Effects of heat-stress on production in dairy cattle., 2003, 86:2131-2144.
[26] DE ANDRADE FERRAZZA R, MOGOLLóN GARCIA H D, VALLEJO ARISTIZáBAL V H, de SOUZA NOGUEIRA C, VERíSSIMO C J, SARTORI J R, SARTORI R, PINHEIRO FERREIRA J C. Thermoregulatory responses of Holstein cows exposed to experimentally induced heat stress., 2017, 66:68-80.
[27] YAN F, XUE B, SONG L, XIAO J, DING S, HU X, BU D, YAN T. Effect of dietary net energy concentration on dry matter intake and energy partition in cows in mid-lactation under heat stress., 2016, 87(11):1352-1362.
[28] FUJIMOTO K, FUKAGAWA K, SAKATA T, TSO P. Suppression of food intake by apolipoprotein A-IV is mediated through the central nervous system in rats., 1993, 91(4):1830-1833.
[29] MEMON S B, LIAN L, GADAHI J A, GENLIN W. Proteomic response of mouse pituitary gland under heat stress revealed active regulation of stress responsive proteins., 2016, 61:82-90.
[30] WHEELOCK J B, RHOADS R P, VANBAALE M J, SANDERS S R, BAUMGARD L H. Effects of heat stress on energetic metabolism in lactating Holstein cows1., 2010, 93(2): 644-655.
[31] O BRIEN M D, RHOADS R P, SANDERS S R, DUFF G C, BAUMGARD L H. Metabolic adaptations to heat stress in growing cattle., 2010, 38(2):86-94.
[32] GUO J, GAO S, QUAN S, ZHANG Y, BU D, WANG J. Blood amino acids profile responding to heat stress in dairy cows., 2018, 31(1): 47-53.
[33] BAUMGARD L H, WHEELOCK J B, SANDERS S R, MOORE C E, GREEN H B, WALDRON M R, RHOADS R P. Postabsorptive carbohydrate adaptations to heat stress and monensin supplementation in lactating Holstein cows1., 2011, 94(11):5620-5633.
[34] MIN L, ZHAO S, TIAN H, ZHOU X, ZHANG Y, LI S, YANG H, ZHENG N, WANG J. Metabolic responses and ‘omics’ technologies for elucidating the effects of heat stress in dairy cows., 2016. DOI :10.1007/s00484-016-1283-z.
[35] TIAN H, ZHENG N, WANG W, CHENG J, LI S, ZHANG Y, WANG J. Integrated metabolomics study of the milk of heat-stressed lactating dairy cows., 2016, 6:24208.
[36] FAYLON M P, BAUMGARD L H, RHOADS R P, SPURLOCK D M. Effects of acute heat stress on lipid metabolism of bovine primary adipocytes., 2015, 98(12):8732-8740.
[37] KOCH F, LAMP O, ESLAMIZAD M, WEITZEL J, KUHLA B. Metabolic response to heat stress in late-pregnant and early lactation dairy cows: implications to liver-muscle crosstalk., 2016, 11(8):e160912.
[38] MIN L, CHENG J B, SHI B L, YANG H J, ZHENG N, WANG J Q. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows., 2015, 16(6):541-548.
[39] GWINN D M, SHACKELFORD D B, EGAN D F, MIHAYLOVA M M, MERY A, VASQUEZ D S, TURK B E, SHAW R J. AMPK phosphorylation of raptor mediates a metabolic checkpoint., 2008, 30(2):214-226.
[40] ARAMBURU J, ORTELLS M C, TEJEDOR S, BUXADE M, LOPEZ-RODRIGUEZ C. Transcriptional regulation of the stress response by mTOR., 2014, 7(332):re2.
[41] RHOADS M L, RHOADS R P, VANBAALE M J, COLLIER R J, SANDERS S R, WEBER W J, CROOKER B A, BAUMGARD L H. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. production, metabolism, and aspects of circulating somatotropin., 2009, 92(5):1986-1997.
[42] MURNEY R, STELWAGEN K, WHEELER T T, MARGERISON J K, SINGH K. The effects of milking frequency in early lactation on milk yield, mammary cell turnover, and secretory activity in grazing dairy cows., 2015, 98(1):305-311.
[43] LEROY J L M R, RIZOS D, STURMEY R, BOSSAERT P. Intrafollicular conditions as a major link between maternal metabolism and oocyte quality: a focus on dairy cow fertility., 2012(24):1-12.
[44] YADAV B, PANDEY V, YADAV S, SINGH Y, KUMAR V, SIROHI R. Effect of misting and wallowing cooling systems on milk yield, blood and physiological variables during heat stress in lactating Murrah buffalo., 2016, 58(1): 2.
[45] IHSANULLAH, QURESHI M S, SUHAIL S M, AKHTAR S, KHAN R U. Postpartum endocrine activities, metabolic attributes and milk yield are influenced by thermal stress in crossbred dairy cows., 2017, 61:1-9.
[46] VUJANAC IVAN H J ? H. Effect of heat stress on metabolic and endocrine status of dairy cows., 2012: 11-14.
[47] 王選慧, 任作寶. 淺談熱應(yīng)激對(duì)奶牛的影響及調(diào)控措施. 中獸醫(yī)醫(yī)藥雜志, 2014(04):76-78.
WAN X H, REN Z B. Discussion on the influences of heat stress on dairy cattle and control measures., 2014(04):76-78. (in Chinese)
[48] TITTO C G A, NEGR O J O A, CANAES T D S, TITTO R M, LEME-DOS SANTOS T M D C, HENRIQUE F L, CALVIELLO R F, PEREIRA A M F, TITTO E A L. Heat stress and ACTH administration on cortisol and insulin-like growth factor I (IGF-I) levels in lactating Holstein cows., 2015, 45(1):1-7.
[49] LóPEZ E, MELLADO M, MARTíNEZ A M, VéLIZ F G, GARCíA J E, de SANTIAGO A, CARRILLO E. Stress-related hormonal alterations, growth and pelleted starter intake in pre-weaning Holstein calves in response to thermal stress., 2017.DOI:10.1007/s00484-017-1458-2.
[50] MULLUR R, LIU Y Y, BRENT G A. Thyroid hormone regulation of metabolism., 2014, 94(2):355-382.
[51] WEITZEL J M, VIERGUTZ T, ALBRECHT D, BRUCKMAIER R, SCHMICKE M, TUCHSCHERER A, KOCH F, KUHLA B. Hepatic thyroid signaling of heat-stressed late pregnant and early lactating cows., 2017, 234(2):129-141.
[52] KHODAEI-MOTLAGH M, SHAHNEH A Z, MASOUMI R, DERENSIS F. Alterations in reproductive hormones during heat stress in dairy cattle., 2011, 29(10): 5552-5558.
[53] QU M, WEI S, CHEN Z, WANG G, ZHENG Y, YAN P. Differences of hormones involved in adipose metabolism and lactation between high and low producing Holstein cows during heat stress., 2015, 1(4):339-343.
[54] ROTH Z, WOLFENSON D. Comparing the effects of heat stress and mastitis on ovarian function in lactating cows: basic and applied aspects., 2016, 56:S218-S227.
[55] LI L, WU J, LUO M, SUN Y, WANG G. The effect of heat stress on gene expression, synthesis of steroids, and apoptosis in bovine granulosa cells., 2016, 21(3):467-475.
[56] SALAZAR M, LERMA-ORTIZ A, HOOKS G M, ASHLEY A K, ASHLEY R L. Progestin-mediated activation of MAPK and AKT in nuclear progesterone receptor negative breast epithelial cells: The role of membrane progesterone receptors., 2016, 591(1):6-13.
[57] RHOADS M L, KIM J W, COLLIER R J, CROOKER B A, BOISCLAIR Y R, BAUMGARD L H, RHOADS R P. Effects of heat stress and nutrition on lactating Holstein cows: II. Aspects of hepatic growth hormone responsiveness., 2010, 93(1): 170-179.
[58] 李林, 艾陽(yáng), 謝正露, 曹洋, 張?jiān)词? 熱應(yīng)激狀態(tài)下泌乳奶牛通過(guò)激活GHIGF-I軸增強(qiáng)糖異生變化.中國(guó)農(nóng)業(yè)科學(xué), 2016(15): 3046-3053.
LI L, AI Y, XIE Z L,CAO Y, ZHANG Y S. Lactating dairy cows under heat stress enhanced gluconeogenesis by activating the GHIGF-I axis., 2016(15):3046-3053. (in Chinese)
[59] AKERS R M. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows., 2006, 89: 1222-1234.
[60] MARTINDALE J L, HOLBROOK N J. Cellular response to oxidative stress: signaling for suicide and survival., 2002, 192(1):1-15.
[61] SAKATANI M, BALBOULA A Z, YAMANAKA K, TAKAHASHI M. Effect of summer heat environment on body temperature, estrous cycles and blood antioxidant levels in Japanese Black cow., 2012, 83(5):394-402.
[62] WAIZ S A, RAIES-UL-HAQ M, DHANDA S, KUMAR A, GOUD T S, CHAUHAN M S, UPADHYAY R C. Heat stress and antioxidant enzyme activity in bubaline () oocytes duringmaturation., 2016, 60(9): 1357-1366.
[63] 權(quán)素玉, 張?jiān)词? 卜登攀. 熱應(yīng)激造成奶牛乳腺上皮細(xì)胞損傷并影響乳合成相關(guān)載體的基因表達(dá). 畜牧獸醫(yī)學(xué)報(bào), 2016(08): 1704-1713.
QUAN S Y, ZHANG Y S, BU D P. Heat stress-induced cell injury and effects on the gene expression of milk synthesis-related transporters in dairy cow., 2016(08):1704-1713. (in Chinese)
[64] TREVISAN M, BROWNE R, RAM M, MUTI P, FREUDENHEIM J, CAROSELLA A M, ARMSTRONG D. Correlates of markers of oxidative status in the general population., 2001, 4(154):348-356.
[65] HOLMSTR?M K M, FINKEL T. Cellular mechanisms and physiological consequences of redox-dependent signalling., 2014, 15(6):411-421.
[66] LI L, SUN Y, WU J, LI X, LUO M, WANG G. The global effect of heat on gene expression in cultured bovine mammary epithelial cells., 2015, 20(2):381-389.
[67] AKBARIAN A, MICHIELS J, DEGROOTE J, MAJDEDDIN M, GOLIAN A, De SMET S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals., 2016, 7(1):37.
[68] BELHADJ SLIMEN I, NAJAR T, GHRAM A, ABDRRABBA M. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review., 2016, 100(3):401-412.
[69] JIN X L, WANG K, LIU L, LIU H Y, ZHAO F Q, LIU J X. Nuclear factor-like factor 2-antioxidant response element signaling activation by tert-butylhydroquinone attenuates acute heat stress in bovine mammary epithelial cells., 2016, 99(11): 9094-9103.
[70] ZACHUT M, KRA G, LIVSHITZ L, PORTNICK Y, YAKOBY S, FRIEDLANDER G, LEVIN Y. Seasonal heat stress affects adipose tissue proteome toward enrichment of the Nrf2-mediated oxidative stress response in late-pregnant dairy cows., 2017, 158:52-61.
[71] LIU H, ZHAO K, ZHOU M, WANG C, YE J, LIU J. Cytoprotection of vitamin E on hyperthermia-induced damage in bovine mammary epithelial cells., 2010, 35(5):250-253.
[72] CONG X, ZHANG Q, LI H, JIANG Z, CAO R, GAO S, TIAN W. Puerarin ameliorates heat stress–induced oxidative damage and apoptosis in bovine Sertoli cells by suppressing ROS production and upregulating Hsp72 expression., 2017, 88:215-227.
[73] 杜娟, 狄和雙, 郭亮, 李忠浩, 蔡亞非, 王根林. 高溫對(duì)乳腺上皮細(xì)胞生長(zhǎng)及凋亡的影響. 動(dòng)物學(xué)報(bào), 2006, 5(52):959-965.
DU J, DI H S, GUO L, LI Z H, CAI Y F, WANG G L. The effect of high temperature on maternal Mary epithelial cells proliferation and apoptosis., 2006, 5(52):959-965. (in Chinese)
[74] YI G, LI L, LUO M, HE X, ZOU Z, GU Z, SU L. Heat stress induces intestinal injury through lysosome- and mitochondria-dependent pathwayand., 2017, 25(8):40741-40755.
[75] HU H, WANG J, GAO H, LI S, ZHANG Y, ZHENG N. Heat-induced apoptosis and gene expression in bovine mammary epithelial cells., 2016, 56(5):918.
[76] 黃帆, 呂秋鳳. 熱應(yīng)激誘導(dǎo)的氧化應(yīng)激對(duì)動(dòng)物腸道組織的損傷. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2017,29( 6):1856-1860.
HUANG F, Lü Q F. Oxidative stress induced by heat stress: injury on intestinal tissue of animals., 2017, 29(6) :1856-1860. (in Chinese)
[77] GU Z T, WANG H, LI L, LIU Y S, DENG X B, HUO S F, YUAN F F, LIU Z F, TONG H S, SU L. Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilical vein endothelial cell., 2014, 4(3) :4469.
[78] BOUCHAMA A, AZIZ M A, MAHRI S A, GABERE M N, DLAMY M A, MOHAMMAD S, ABBAD M A, HUSSEIN M. A model of exposure to extreme environmental heat uncovers the human transcriptome to heat stress., 2017, 7(1) :9429
[79] CHEN Z, WU Y, WANG P, WU Y, LI Z, ZHAO Y, ZHOU J, ZHU C, CAO C, MAO Y, XU F, WANG B, CORMIER S A, YING S, LI W, SHEN H. Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium., 2015, 12(2):297-311.
[80] CHANDRIKA B B, YANG C, OU Y, FENG X, MUHOZA D, HOLMES A F, THEUS S, DESHMUKH S, HAUN R S, KAUSHAL G P. Endoplasmic reticulum stress-induced autophagy provides cytoprotection from chemical hypoxia and oxidant injury and ameliorates renal ischemia-reperfusion injury., 2015, 10(10): e140025.
[81] WOHLGEMUTH S E, RAMIREZ-LEE Y, TAO S, MONTEIRO A P A, AHMED B M, DAHL G E. Short communication: Effect of heat stress on markers of autophagy in the mammary gland during the dry period., 2016, 99(6):4875-4880.
[82] ZIELNIOK K, SOBOLEWSKA A, GAJEWSKA M. Mechanisms of autophagy induction by sex steroids in bovine mammary epithelial cells., 2017:16-247.
[83] SOBOLEWSKA A, GAJEWSKA M, ZARZY?SKA J, GAJKOWSKA B, MOTYL T. IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway., 2009, 88(2):117-130.
[84] TOMASZ M, GAJEWSKA M, ZARZYNSKA J, GAJKOWSKA A, BARBARA S. Regulation of autophagy in bovine mammary epithelial cells., 2007, 5(3):484-486.
[85] MIAO E A, LEAF I A, TREUTING P M, MAO D P, DORS M, SARKAR A, WARREN S E, WEWERS M D, ADEREM A. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria., 2010, 11(12): 1136-1142.
[86] GENG Y, MA Q, LIU Y, PENG N, YUAN F. Heatstroke induces liver injury via IL-1b and HMGB1-induced pyroptosis., 2015, 3(63):622-633.
[87] MIN L, ZHENG N, ZHAO S, CHENG J, YANG Y, ZHANG Y, YANG H, WANG J. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis., 2016, 471(2): 296-302.
(責(zé)任編輯 林鑒非)
Effect of Heat Stress on Lactation Performance in Dairy Cows
HAN JiaLiang, LIU JianXin,LIU HongYun
(Institute of Dairy Science, Zhejiang University, Hangzhou 310058)
With the steady aggravation of global warming, dairy cows face increasing heat stress, which results increasing economic loss to the dairy industry. Heat stress occurs when cows are exposed to extreme heat and cannot maintain their core temperature. Under hot temperature environment, dairy cattle is characterized by increased respiration, heart rate, and rectal temperature and decreased feed intake, which have a negative impact on endocrine system and immune system and seriously reduce milk performance of dairy cows. Previous studies of heat stress in dairy cows focused on its effects on productive performance, especially to alleviate the effect of heat stress by functional feed additives, but the specific mechanism of heat stress is not clear. This paper summarizes the widespread impact of heat stress on milk production and quality of dairy cows in different regions, and introduces the known mechanisms of heat stress from aspects of energy metabolism, endocrine, oxidative stress, apoptosis and autophagy. In the aspect of energy metabolism, heat stress induces a negative energy balance in cows by reducing food intake and inducing disorder in lipid breakdown and energy metabolism; In terms of endocrine system, heat stress affects the hypothalamic-pituitary-adrenal axis / thyroid axis / gonadal axis / growth axis of dairy cows and results in hormonal changes. In oxidative stress, heat stress affects the ROS levels in vivo and activates related defense signal pathways. In the aspect of apoptosis and autophagy, heat stress contributes to the damage of mammary epithelial cells by the expression of apoptosis-related genes and by excessive autophagy. The paper put forward that in the foreseeable future, heat stress will be a major challenge for the dairy industry. It is necessary to establish cows heat stress models to comprehensively investigate the basic mechanisms of heat stress in dairy cows using advanced cellular and molecular techniques. In addition, efforts should be placed to develop new interventions to reduce the damage of hear stress to dairy cows.
dairy cow; heat stress; lactation performance
2018-04-10;
2018-07-17
“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0500503)、國(guó)家自然科學(xué)基金(31672447)
韓佳良,E-mail:ls-han@foxmail.com。
劉紅云,E-mail:hyliu@zju.edu.cn
10.3864/j.issn.0578-1752.2018.16.012