楊 闖,厲嘉云,彭家建,白 贏
(杭州師范大學(xué)有機硅化學(xué)及材料技術(shù)教育部重點實驗室,浙江 杭州 311121)
過渡金屬-膦配體在催化反應(yīng)中的應(yīng)用
楊 闖,厲嘉云,彭家建,白 贏
(杭州師范大學(xué)有機硅化學(xué)及材料技術(shù)教育部重點實驗室,浙江 杭州 311121)
膦配體是均相過渡金屬催化反應(yīng)中使用最廣的一類配體,其立體效應(yīng)和電子效應(yīng)對過渡金屬催化反應(yīng)的影響很大.為提高反應(yīng)的轉(zhuǎn)化率和產(chǎn)物的選擇性,設(shè)計和修飾膦配體成為過渡金屬催化反應(yīng)研究的重點.文章綜述了過渡金屬非手性膦配合物在催化反應(yīng)中的研究進展.
膦配體;過渡金屬配合物;催化劑
為提高均相過渡金屬催化反應(yīng)的轉(zhuǎn)化率和目標產(chǎn)物選擇性,如何設(shè)計和修飾膦配體得到了廣泛研究.過渡金屬膦配合物在催化反應(yīng)中的應(yīng)用主要包括加氫反應(yīng)、N-甲基化反應(yīng)、甲?;磻?yīng)、偶聯(lián)反應(yīng)、烯丙基化反應(yīng)、乙烯齊聚反應(yīng)[1-2]、Michael加成[3-4]、硅氫加成反應(yīng)等.
圖1 cis-[RuCl2(dcype)(1a)]催化加氫反應(yīng)Fig. 1 Hydrogenation catalyzed with cis-[RuCl2(dcype)(1a)]
至少含一個甲硅烷基的配體與過渡金屬形成的配合物得到研究者們的廣泛關(guān)注,主要因為該類膦配體其σ給電子能力較強.2015年,Komuro等[6]報道含有二甲基硅基的膦配體2與Ru(H)Cl(PPh3)3反應(yīng)得到配合物3(圖2),并證實配合物3和配合物4的結(jié)構(gòu)在一定條件下是互變的.將配合物3在60 ℃且C6D6作為反應(yīng)溶劑的條件下催化苯乙烯的加氫反應(yīng),轉(zhuǎn)化率接近100%.其催化4-甲氧基苯乙烯加氫反應(yīng)轉(zhuǎn)化率為91%,4-乙基苯甲醚的選擇性為95%;催化3,3-二甲基-1-丁烯加氫反應(yīng)轉(zhuǎn)化率為88%,2,2-二甲基丁烷的選擇性接近100%.
圖2 Ru(H)Cl(PPh3)3/2催化加氫反應(yīng)Fig. 2 Hydrogenation catalyzed with Ru(H)Cl(PPh3)3/2
2016年,Rodrigues等[7]合成5種含P和吡啶基的釕配合物5a-5e,統(tǒng)稱為mer-[RuCl3(dppb)(N)](N為吡啶(5a),對甲基吡啶(5b),對乙烯基吡啶(5c),對叔丁基吡啶(5d),對苯基吡啶(5e)).當mer-[RuCl3(dppb)(5c)]作為反應(yīng)催化劑(圖3),底物分別為環(huán)己烯、十一醛、環(huán)己基甲醛時,反應(yīng)轉(zhuǎn)化率分別達96%,93%,73%.
圖3 mer-[RuCl3(dppb)(5c)]催化加氫反應(yīng)Fig. 3 Hydrogenation catalyzed with mer-[RuCl3(dppb)(5c)]
使用廉價且無毒的CO2作為C1源制備附加值大的化學(xué)物質(zhì)具有重要意義.CO2轉(zhuǎn)化為甲酸、甲醇(甲氧基)、甲烷等已得到了廣泛的研究.但應(yīng)用CO2作為胺的甲基化試劑還鮮有報道.
Jessop等[8]報道了仲胺在超臨界CO2中的反應(yīng)(圖4),以釕的絡(luò)合物RuH2[P(CH3)3]4和RuCl2[P(CH3)3]4催化二甲胺得到N,N-二甲基甲酰胺,反應(yīng)TOF可達8 000 h-1.由于超臨界二氧化碳具有弱的溶劑化作用,對氫氣具有很好的混合性,同時對過渡金屬配合物有很好的溶解度,使體系為高分散的均相體系,有利于反應(yīng)的進行.
圖4 RuCl2[P(CH3)3]4催化二甲胺的甲基化反應(yīng)Fig. 4 Methylation of dimethylamine with RuCl2[P(CH3)3]4
2013年,Li等[9]利用多種膦配體(圖5,6a-6f)與釕化合物[RuCl2(DMSO)4]形成配合物,催化CO2與不同類型胺的反應(yīng).以[RuCl2(DMSO)4]/nBuPAd2(Ad=金剛烷基)作催化劑、PhSiH3為硅烷、110 ℃條件下反應(yīng)16 h,催化N-甲基苯胺與CO2的甲基化反應(yīng)所得N,N-二甲基苯胺的產(chǎn)率為92%,而不加配體時產(chǎn)率僅為70%.其在最佳條件下用來催化取代苯胺類的N-甲基化反應(yīng),均取得了較好的催化效果.
圖5 N-甲基苯胺的甲基化反應(yīng)Fig. 5 Methylation of N-methylaniline
2015年,Dabbawala等[10]合成了7-15膦配體(圖6),將其與RuCl3·3H2O和RuCl2(PPh3)3得到的配合物用以催化二乙胺的甲酰化反應(yīng).未加入膦配體時二乙胺轉(zhuǎn)化率只有1%,但加入適當膦配體后即使CO2和H2在較低的壓力下也可提高二乙胺的轉(zhuǎn)化率.采用三齒膦配體15時的反應(yīng)TOF高于采用位阻較大的單齒膦配體的TOF,但低于PPh3和雙齒膦配體的.而在采用1,2-雙(二苯基膦基)苯配體14時,可以得到最好催化效果:反應(yīng)TON最高可達2 475,反應(yīng)轉(zhuǎn)化率達99%,N,N-二乙基甲酰胺反應(yīng)選擇性達90%以上.
圖6 二乙胺的甲酰化反應(yīng)Fig. 6 Formylation of Diethylamine
烯烴氫甲酰化反應(yīng)是制備醛的一種重要方法.Brown等[11]發(fā)現(xiàn)銠催化劑中加入膦配體可以催化氫甲?;磻?yīng),且反應(yīng)能在較低溫度和壓力下完成.其中,雙膦配體具有特殊的立體效應(yīng)和電子效應(yīng),其與銠形成的配合物對提高烯烴氫甲?;磻?yīng)的選擇性和反應(yīng)活性有極大的作用.
2002年,Slot等[12]合成一種新穎的含有N-吡咯基的雙齒膦配體16,18(圖7).將配體16,18及含苯氧基膦配體17,19與Rh(acac)(CO)2形成的配合物催化1-辛烯的氫甲?;l(fā)現(xiàn)16,18的銠配合物得到的反應(yīng)產(chǎn)率較高,直鏈醛的選擇性也較高,其中18的銠配合物得到直鏈醛的選擇性可達92%.通過比較18,19的銠配合物催化1-辛烯的氫甲?;磻?yīng),可發(fā)現(xiàn)增加配體的吸電子基團和改變配體的位阻,能極大提高反應(yīng)轉(zhuǎn)化率和目標產(chǎn)物選擇性.
圖7 1-辛烯的氫甲?;磻?yīng)Fig. 7 Hydroformylation of 1-octene
圖8 內(nèi)烯烴的氫甲?;磻?yīng)Fig. 8 Hydroformylation of Internal olefin
關(guān)于末端烯烴的氫甲?;磻?yīng)已得到較廣泛研究,但內(nèi)烯烴則較少文獻報道.Yu 等[13]設(shè)計合成了一種較新穎且含有4個P的配體20(圖8),其吡咯基團吸電子效應(yīng)和P本身具有的強螯合能力相結(jié)合,(R=H)與過渡金屬形成的配合物可顯著提高內(nèi)烯烴氫甲酰化反應(yīng)生成直鏈醛的速率.催化2-辛烯和2-己烯的氫甲?;磻?yīng)得到直鏈醛的選擇性為98.1%和99.2%.
Tijani 等[14]研究了以Rh(acac)(CO)2和含亞磷酸結(jié)構(gòu)的配體(如21,圖9)形成的配合物催化苯乙烯氫甲?;姆磻?yīng),轉(zhuǎn)化率可達97%,直鏈醛和支鏈醛選擇性為44%,56%.催化2-戊烯和2-苯丙烯的轉(zhuǎn)化率則較低,而催化亞甲基環(huán)戊烷、3,3-二甲基-1-丁烯的氫甲?;磻?yīng)的轉(zhuǎn)化率分別達80%,83%,相應(yīng)的直鏈醛選擇性均高達98%.
圖9 烯烴的氫甲?;磻?yīng)Fig. 9 Hydroformylation of alkene
圖10 Ni(acac)2/L催化C—C偶聯(lián)加氫反應(yīng)Fig. 10 C—C coupling catalyzed with Ni(acac)2/L
過渡金屬催化的偶聯(lián)反應(yīng)是制備化合物的一種重要方法.而含膦配體過渡金屬配合物應(yīng)用于大多數(shù)偶聯(lián)反應(yīng),如Kumada-Corriu反應(yīng)[15-16]、Stille反應(yīng)[17]、Suzuki反應(yīng)[18]、Hiyama反應(yīng)[19-20]、Negishi反應(yīng)[21-22]以及端炔作為親核試劑的Sonogashira反應(yīng)[23-24]和端烯作為親核試劑的Heck反應(yīng)[25-26].
2005年,Ackermann等[27]使用Ni(acac)2與一系列含膦配體等摩爾量混合后催化一系列取代氟苯、取代氯苯與芳基格氏試劑的C—C偶聯(lián)反應(yīng)(圖10),發(fā)現(xiàn)使用22,23配體的催化體系的活性較好,同時,用對甲氧基氟苯作為反應(yīng)底物,偶聯(lián)產(chǎn)物產(chǎn)率可以達到80%以上.
Martin等[28]合成一系列具有聯(lián)苯結(jié)構(gòu)的配體24-26(圖11),與Pd(dba)2形成配合物催化4-甲基苯基溴化鎂與碘苯的Kumada-Corriu交叉偶聯(lián)反應(yīng),與常規(guī)的PCy3,PtBu3,PPh3等膦配體相比,采用聯(lián)苯式配體得到目標產(chǎn)物的產(chǎn)率普遍較高,其中采用24,25,26時的產(chǎn)率分別為82%,93%,98%.
圖11 配體24,25,26的結(jié)構(gòu)式Fig. 11 Structure of ligands 24, 25, 26
Biscoe等[29]用25配體與Pd試劑形成配合物在室溫下催化PhCl和胺類的C—N偶聯(lián)反應(yīng)(圖12),得到較高的產(chǎn)率,其中27和28是催化反應(yīng)過程中關(guān)鍵的中間體.他們通過P譜以及DFT理論計算提出了該催化循環(huán)機理:首先鈀-膦配合物與底物氯化苯作用,再與底物胺作用生成中間體28,在堿的作用下脫去一分子HX,最后得到產(chǎn)物和原始鈀-膦催化劑.當催化氯苯與苯胺的偶聯(lián)反應(yīng)時,目標產(chǎn)物二苯胺的選擇性達到99%以上.
圖12 [Pd]/25催化C—N偶聯(lián)反應(yīng)Fig. 12 C—N coupling catalyzed with [Pd]/25
圖13 Pd2(dba)3/29催化的C—O偶聯(lián)反應(yīng)Fig. 13 C—O coupling catalyzed with Pd2(dba)3/29
Anderson等[30]將具有聯(lián)苯結(jié)構(gòu)的膦配體29與Pd2(dba)3得到的催化劑采用一鍋法來催化芳鹵化合物以及鹵代物的C—O偶聯(lián)反應(yīng)(圖13),產(chǎn)物醚收率達到80%以上.該催化反應(yīng)是通過鹵代芳烴、酚類化合物或脂肪族醇合成二芳基醚和烷基芳基醚等產(chǎn)物的一種有效方法.
2008年,Zhang等[31]將30與[PdCl2(PhCN)2]在摩爾比為1∶1的條件下制備了[Pd]/30催化劑(圖14).在25 ℃下,催化鄰碘苯甲酸乙酯與環(huán)己基氯化鋅的Negishi偶聯(lián)反應(yīng),11 h后反應(yīng)完全,產(chǎn)物的收率為99%,反應(yīng)的TOF達1 000 s-1.同時,用[Pd]/30催化正十二烷基氯化鋅和鄰碘苯甲酸乙酯的偶聯(lián)反應(yīng)也得到了較好的催化效果.
圖14 [Pd]/30催化Negishi偶聯(lián)反應(yīng)Fig. 14 Negishi coupling catalyzed with [Pd]/30
以Pd(0)作催化劑,芳基鹵化物、苯甲酰氯或烯基鹵化物和末端烯烴發(fā)生C—C偶聯(lián)的反應(yīng)稱Heck反應(yīng),該反應(yīng)官能團適應(yīng)性和收率相對較好.Motswaninyana等[32]合成了一種亞胺膦配體31(圖15),在CH3CN作反應(yīng)溶劑、Et3N作堿且回流條件下,用[Pd]/31催化碘代苯和丙烯酸甲酯的C—C偶聯(lián)反應(yīng),反應(yīng)24 h的轉(zhuǎn)化率為90%,選擇性為85%.而在室溫下反應(yīng)8 h后,產(chǎn)率為68%;反應(yīng)24 h后產(chǎn)率達到75%,反式產(chǎn)物的選擇性達到85%.室溫下反應(yīng)的轉(zhuǎn)化率和反應(yīng)選擇性高的原因主要在于亞胺膦配體的半配位效應(yīng).
圖15 [Pd]/31催化C—C偶聯(lián)反應(yīng)Fig. 15 C—C coupling catalyzed with [Pd]/31
與其他偶聯(lián)反應(yīng)采用有機金屬試劑不同,Suzuki偶聯(lián)反應(yīng)使用有機硼試劑,反應(yīng)后產(chǎn)物較易純化,且其對水不敏感,同時適用于多種官能團(包括羧基、醛基、氰基等).2000年,Bedford等[33]合成了鈀配合物32,33,在K2CO3為堿且THF為溶劑的情況下,分別用來催化4-溴苯乙酮、4-溴苯甲醚和PhB(OH)2的偶聯(lián)反應(yīng)(圖16).當32,33用量為反應(yīng)底物的0.001%時,33的催化效果(轉(zhuǎn)化率為92%)明顯優(yōu)于32的催化效果(轉(zhuǎn)化率為59%).
圖16 32,33催化Suzuki偶聯(lián)反應(yīng)Fig. 16 Suzuki coupling catalyzed with 32,33
2016年,Koschker等[34]報道了銠化合物催化端炔的烯丙基化反應(yīng)(圖17).當[Rh(COD)Cl]2/34配合物(其中COD為1,5-環(huán)辛二烯)在1,2-二氯乙烷作反應(yīng)溶劑,70 ℃下催化1-辛炔與苯甲酸的烯丙基化反應(yīng)18 h時,反應(yīng)轉(zhuǎn)化率為80%,支鏈產(chǎn)物占比為94%.同時,發(fā)現(xiàn)[Rh(COD)Cl]2與其他膦配體形成的配合物在催化炔基酸的內(nèi)酯化以及端炔與硫醇、芳基肼、咪唑等的烯丙基化反應(yīng)時,均取得了較好的催化效果.
圖17 [Rh(COD)Cl]2/34催化烯丙基化反應(yīng)Fig. 17 Allylation catalyzed with [Rh(COD)Cl]2/34
Lee等[35]研究了氟苯與含有苯丙烯鹽基的物質(zhì)的烯丙基化反應(yīng)(圖18),在Pd(OAc)2作催化劑,P(t-Bu)2(2-OMeC6H4)作為膦配體,Cs2CO3和AgOPiv的作用下,產(chǎn)物為單一的線性產(chǎn)物(E)-烯丙基化氟苯,產(chǎn)率達82%.當無該膦配體時,產(chǎn)率低于5%.在該反應(yīng)條件下,考察了其他含有烯丙基物質(zhì)作為底物的催化反應(yīng),催化效果均較理想.而當PPh3,PCy3,P(t-Bu)3,PAd2Bu,PCy2Ph等常規(guī)膦配體作為催化反應(yīng)配體時,相應(yīng)的反應(yīng)產(chǎn)率僅為5%,16%,14%,17%,22%.
圖18 [Pd]/P(t-Bu)2(2-OMeC6H4)催化烯丙基化反應(yīng)Fig. 18 Allylation catalyzed with [Pd]/P(t-Bu)2(2-OMeC6H4)
Niyomura等[36]將類似碗狀的膦配體35與銠化合物形成的配合物用來催化環(huán)己酮和二甲基苯基硅烷的硅氫加成反應(yīng)(圖19).當苯為溶劑且n(35)∶n(Rh)=2∶1時,催化效果最好,底物環(huán)己酮轉(zhuǎn)化率為97%.與PPh3,PEt3,P(t-Bu)3,PCy3等常規(guī)膦配體相比,35膦配體參與的催化硅氫加成反應(yīng)的效果較好,可能因為該配體空間結(jié)構(gòu)類似碗狀,具有一定空間位阻卻又不至于位阻過大,不像P(t-Bu)3那樣P與相鄰原子太過于接近.同時,該膦配體參與催化鄰甲基苯甲醛、N-芐烯苯胺、1-己烯與二甲基苯基硅烷的硅氫加成反應(yīng)的反應(yīng)產(chǎn)率分別為90%,88%,93%.
圖19 [Rh(C2H4)2Cl]2/35催化硅氫加成反應(yīng)Fig. 19 Hydrosilylation catalyzed with [Rh(C2H4)2Cl]2/35
2008年,Ochida課題組[37]合成了膦配體36(圖20).當36和[RhCl(C2H4)2]2摩爾比為1∶1、苯作溶劑且常溫下催化鄰甲基環(huán)己酮、苯乙酮、3-戊酮、4-庚酮、二異丙基酮與二甲基苯基硅烷的硅氫加成反應(yīng),轉(zhuǎn)化率分別為100%,93%,100%,83%,72%,顯示了該配體與[RhCl(C2H4)2]2形成的配合物非常適合于催化酮類與二甲基苯基硅烷的硅氫加成反應(yīng).但在硅烷為Et3SiH時,環(huán)己酮和二異丙基酮的轉(zhuǎn)化率極低,甚至環(huán)己酮與(t-Bu)Me2SiH幾乎不反應(yīng).
Saito等[38]合成了一種新型的含卟啉鋅的膦配體37(圖21),將其與[RhCl(COD)]2化合物配位并應(yīng)用于催化酮與二苯基氫硅烷的硅氫加成反應(yīng).在THF作反應(yīng)溶劑,n(37)∶n(Rh)=2∶1且室溫下反應(yīng)24 h時,得到苯乙醇(硅氫加成反應(yīng)完再酸解)轉(zhuǎn)化率為53%.當用對氯苯乙酮、對甲氧基苯乙酮作為底物時,相應(yīng)產(chǎn)物的產(chǎn)率分別為82%,18%.與不加配體的反應(yīng)進行比較,該配體可大大提高苯乙酮的轉(zhuǎn)化率,尤其是對氯苯乙酮作為反應(yīng)底物時,產(chǎn)率最高.
圖21 [RhCl(COD)]2/37催化酮的硅氫加成反應(yīng)Fig. 21 Hydrosilylation catalyzed with [RhCl(C2H4)2]2/37
Li課題組[39]報道了一系列含有炔基的鉑-膦配合物催化體系(圖22),與Speier催化劑、Karstedt催化劑進行比較,同樣的催化條件下其催化的直鏈烯烴、苯乙烯同系物的硅氫加成反應(yīng)具有較高的轉(zhuǎn)化率和β-加成產(chǎn)物選擇性.當用trans-Pt(PPh3)2(C≡CSiPh3)2來催化2-甲基苯乙烯、3-甲基苯乙烯、4-甲基苯乙烯、4-氟苯乙烯與三乙氧基硅烷的硅氫加成反應(yīng),在90 ℃下反應(yīng)5 h時的轉(zhuǎn)化率分別為92.4%,91.4%,89.4%,92.1%,β-加成產(chǎn)物選擇性均在94%以上.相同條件下,催化1-己烯、1-十二烯與三乙基硅烷的硅氫加成反應(yīng),轉(zhuǎn)化率均在91%以上,β-加成產(chǎn)物選擇性均在97%以上.在有含硫化合物存在下,這種含炔基的鉑-膦配合物催化體系也不失活,甲基硅烷基的存在對該催化劑催化硅氫加成反應(yīng)過程有一定的影響.
圖22 鉑-膦配合物催化劑的合成Fig. 22 Synthesis of [Pt]/P complex catalyst
2005年,Hamze等[40]報道了氧化鉑是催化芳基炔烴硅氫加成反應(yīng)的一種很好的催化劑,但是由于無膦配體,其催化端炔與H—Si鍵加成反應(yīng)時的反應(yīng)選擇性不高.2008年,Hamze等[41]合成了配體38,促進二氯化鉑催化端炔與三乙基氫硅烷的硅氫加成反應(yīng)(圖23).當用苯乙炔、對甲基苯乙炔、對甲氧基苯乙炔、對溴苯乙炔等作為反應(yīng)底物時,反應(yīng)轉(zhuǎn)化率90%以上,β-加成產(chǎn)物接近100%.
圖 23 PtCl2/38催化炔烴的硅氫加成反應(yīng)Fig. 23 Hydrosilylation of alkyne catalyzed with PtCl2/38
圖24 [Ru]/P催化硅氫加成反應(yīng)Fig. 24 Hydrogenation catalyzed with [Ru]/P
2017年,Wang等[44]合成了膦配體39,40,其與Co(acac)2形成配合物催化烯烴和苯基硅烷的硅氫加成反應(yīng)(圖25).常溫下Co(acac)2/40催化體系催化苯乙烯和PhSiH3的硅氫加成反應(yīng)的產(chǎn)率達98%以上,β-加成產(chǎn)物選擇性為97%.而Co(acac)2/40配合物催化苯乙烯和Ph2SiH2的硅氫加成反應(yīng)的支鏈和直鏈產(chǎn)物比則為36∶64.當用39作為配體且反應(yīng)溫度為50 ℃時,苯乙烯和PhSiH3的轉(zhuǎn)化率達98%以上,直鏈產(chǎn)物占比為98%.將39,40配體與Co(acac)2用在催化1-辛烯、取代苯乙烯和PhSiH3、Ph2SiH2的硅氫加成反應(yīng)中,均得到較好的反應(yīng)結(jié)果.
圖25 Co(acac)2/39催化硅氫加成反應(yīng)Fig. 25 Hydrogenation catalyzed with Co(acac)2/39
膦配體作為過渡金屬催化反應(yīng)中研究和應(yīng)用最廣泛的配體,在諸多催化反應(yīng)中起著重要作用,可以提高反應(yīng)轉(zhuǎn)化率和目標產(chǎn)物選擇性.通過調(diào)控膦配體的空間效應(yīng)和電子效應(yīng),大量新穎膦配體被設(shè)計合成出來并用到過渡金屬催化反應(yīng)過程中.同時,含膦配體的過渡金屬催化劑的循環(huán)利用、催化反應(yīng)機理以及高效新穎的膦配體的合成等方面仍是未來研究的重點方向.
[1] MCGUINNESS D S, WASSERSCHEID P, KEIM W, et al. First Cr(III)-SNS complexes and their use as highly efficient catalysts for the trimerization of ethylene to 1-hexene[J]. J Am Chem Soc,2003,125(18):5272-5273.
[2] BOLLMANN A, BLANN K, DIXON J T, et al. Ethylene tetramerization: a new route to produce 1-octene in exceptionally high selectivities[J]. J Am Chem Soc,2004,126(45):14712-14713.
[3] DIJKSTRA H P, MEIJER M D, PATEL J, et al. Design and performance of rigid nanosize multimetallic cartwheel pincer compounds as Lewis-acid catalysts[J]. Organometallics,2001,20(14):3159-3168.
[4] DIJKSTRA H P, ALBRECHT M, VAN KOTEN G. Transcyclometalation, a versatile methodology for multiple metal-carbon bond formation with multisite ligands[J]. Chem Commun,2002,2(2):126-127.
[5] DE ARAUJO M P, DE FIGUEIREDO A T, BOGADO A L, et al. Ruthenium phosphine/diimine complexes: syntheses, characterization, reactivity with carbon monoxide, and catalytic hydrogenation of ketones[J]. Organometallics,2005,24(25):6159-6168.
[6] KOMURO T, ARAI T, KIKUCHI K, et al. Synthesis of ruthenium complexes with a nonspectator Si,O,P-chelate ligand: interconversion between a hydrido(η2-silane) complex and a silyl complex leading to catalytic alkene hydrogenation[J]. Organometallics,2015,34(7):1211-1217.
[7] RODRIGUES C, DELOLO F G, FERREIRA L M, et al. Ruthenium(III)/phosphine/pyridine complexes applied in the hydrogenation reactions of polar and apolar double bonds[J]. J Mol Struct,2016,1111:84-89.
[8] JESSOP P G, HSIAO Y, IKARIYA T, et al. Catalytic production of dimethylformamide from supercritical carbon dioxide[J]. J Am Chem Soc,1994,116(19):8851-8852.
[9] LI Y H, FANG X J, JUNGE K, et al. A general catalytic methylation of amines using carbon dioxide[J]. Angew Chem Int Ed,2013,52(36):9568-9571.
[10] DABBAWALA A A, SUDHEESH N, BAJAJ H C. Ru catalyzed formylation of diethylamine with CO2and H2under moderate pressure condition[J]. Indian J Chem,2015,54(6):752-756.
[11] BROWN C K, WILKINSON G J. Homogeneous hydroformylation of alkenes with hydridocarbonyltris-(triphenylphosphine) rhodium(I) as catalyst[J]. J Chem Soc A,1970,17(17):2753-2764.
[12] VAN DER SLOT S C, DURAN J, LUTEN J, et al. Rhodium-catalyzed hydroformylation and deuterioformylation with pyrrolyl-based phosphorus amidite ligands: influence of electronic ligand properties[J]. Organometallics,2002,21(19):3873-3883.
[13] YU S C, CHIE Y M, GUAN Z H, et al. Highly regioselective isomerization-hydroformylation of internal olefins to linear aldehyde using Rh complexes with tetraphosphorus ligands[J]. Org Lett,2008,10(16):3469-3472.
[14] TIJANI J, EL ALI B. Rhodium-catalyzed hydroformylation of olefins: effect of [bis(2,4-di-tert-butyl) pentaerythritol] diphosphite (alkanox P-24) on the regioselectivity of the reaction[J]. J Organomet Chem,2007,692(16):3492-3497.
[15] LABANDE A, DEYDIER E, MANOURY E, et al. Contribution of heterobifunctional ligands to transition metal-catalysed C—C coupling reactions[J]. Turk J Chem,2015,39(6):1158-1170.
[16] ACKERMANN L, KAPDI A R, SCHULZKE C. Air-stable secondary phosphine oxide or chloride (pre)ligands for cross-couplings of unactivated alkyl chlorides[J]. Org Lett,2010,12(10):2298-2301.
[17] NAGHIPOUR A, GHORBANI-CHOGHAMARANI A, BABAEE H, et al. Synthesis and X-ray structural characterization of a bidendate phosphine (dppe) palladium(II) complex and its application in stille and suzuki cross-coupling reactions[J]. Appl Organomet Chem,2016,30(12):998-1003.
[18] MORENO-MANAS M, PLEIXATS R, SERRA-MUNS A. Suzuki cross-couplings on aryl (heteroaryl) bromides and chlorides with bulky aliphatic phosphines/Pd(0)-triolefinic macrocyclic catalyst[J]. Synlett,2006(18):3001-3004.
[19] OGIWARA Y, MAEGAWA Y, SAKINO D, et al. Palladium-catalyzed coupling of benzoyl halides with aryltrifluorosilanes leading to diaryl ketones[J]. Chem Lett,2016,45(7):790-792.
[20] YANG J, LI P H, ZHANG Y C, et al. Dinuclear NHC-palladium complexes containing phosphine spacers: synthesis, X-ray structures and their catalytic activities towards the hiyama coupling reaction[J]. Dalton Trans,2014,43(19):7166-7175.
[21] NICOLAS E, OHLEIER A, ACCRISCIO F D, et al. "(Diphosphine)nickel"-catalyzed negishi cross-coupling: an experimental and theoretical study[J]. Chem Eur J,2015,21(21):7690-7694.
[22] ZHANG Z T, QIAO J F, WANG D, et al. Synthesis of isoflavones by room-temperature nickel-catalyzed cross-couplings of 3-iodo-(bromo)chromones with arylzincs[J]. Mol Divers,2014,18(2):245-251.
[23] PETUKER A, MERTEN C, APFEL U P. Modulating sonogashira cross-coupling reactivity in four-coordinate nickel complexes by using geometric control[J]. Eur J Inorg Chem,2015,2015(12):2139-2144.
[24] BERNHAMMER J C, CHONG N X, JOTHIBASU R, et al. Palladium(II) complexes bearing an indazole-derivedN-heterocyclic carbene and phosphine coligands as catalysts for the sonogashira coupling and the hydroamination of alkynes[J]. Organometallics,2014,33(13):3607-3617.
[25] KAUKORANTA P, KALLSTROM K, ANDERSSON P G. Microwave-assisted asymmetric intermolecular heck reaction using phosphine-thiazole ligands[J]. Adv Synth Catal,2007,349(17/18):2595-2602.
[26] MA M T, LU J M. Pd(II)-catalyzed oxidative heck-type reaction of triarylphosphines with alkenes via carbon-phosphorus bond cleavage[J]. Tetrahedron,2013,69(9):2102-2106.
[27] ACKERMANN L, BORN R, SPATZ J H, et al. Efficient aryl-(hetero)aryl coupling by activation of C—Cl and C—F bonds using nickel complexes of air-stable phosphine oxides[J]. Angew Chem Int Ed,2005,44(44):7216-7219.
[28] MARTIN R, BUCHWALD S L. Pd-catalyzed kumada-corriu cross-coupling reactions at low temperatures allow the use of knochel-type grignard reagents[J]. J Am Chem Soc,2007,129(13):3844-3845.
[29] BISCOE M R, BARDER T E, BUCHWALD S L. Electronic effects on the selectivity of Pd-catalyzed C—N bond-forming reactions using biarylphosphine ligands: the competitive roles of amine binding and acidity[J]. Angew Chem Int Ed,2007,46(38):7232-7235.
[30] ANDERSON K W, IKAWA T, TUNDEL R E, et al. The selective reaction of aryl halides with KOH: synthesis of phenols, aromatic ethers, and benzofurans[J]. J Am Chem Soc,2006,128(33):10694-10695.
[31] ZHANG H, LUO X C, WONGKHAN K, et al. Acceleration of reductive elimination of [Ar-Pd-Csp3]by a phosphine/electron-deficient olefin ligand: a kinetic investigation[J]. Chem Eur J,2009,15(15):3823-3829.
[32] MOTSWANINYANA W, ONANI M, LALANCETTE R, et al. Hemilabile imino-phosphine palladium(II)complexes: synthesis, molecular structure, and evaluation in heck reactions[J]. Chem Pap,2014,68(7):932-939.
[33] BEDFORD R B, DRAPER S M, SCULLY P N, et al. Palladium bis(phosphinite) ‘PCP’-pincer complexes and their application as catalysts in the suzuki reaction[J]. New J Chem,2000,24(10):745-747.
[34] KOSCHKER P, BREIT B. Branching out: rhodium-catalyzed allylation with alkynes and allenes[J]. Acc Chem Res,2016,49(8):1524-1536.
[35] LEE S Y, HARTWIG J F. Palladium-catalyzed, site-selective direct allylation of aryl C—H bonds by silver-mediated C—H activation: a synthetic and mechanistic investigation[J]. J Am Chem Soc,2016,138(46):15278-15284.
[36] NIYOMURA O, IWASAWA T, SAWADA N, et al. A bowl-shaped phosphine as a ligand in rhodium-catalyzed hydrosilylation: rate enhancement by a mono(phosphine) rhodium species[J]. Organometallics,2005,24(14):3468-3475.
[37] OCHIDA A, HAMASAKA G, YAMAUCHI Y, et al. Synthesis, properties, and catalytic applications of caged, compact trialkylphosphine 4-phenyl-1-phospha-4-silabicyclo[2.2.2]octane[J]. Organometallics,2008,27(21):5494-5503.
[38] SAITO M, NISHIBAYASHI Y, UEMURA S. Synthesis of dinuclear complexes bearing metalloporphyrin-phosphine hybrid ligands and their catalytic activity toward hydrosilylation of ketones[J]. Organometallics,2004,23(17):4012-4017.
[39] LI J Y, NIU C B, PENG J J, et al. Study on the anti-sulfur-poisoning characteristics of platinum-acetylide-phosphine complexes as catalysts for hydrosilylation reactions[J]. Appl Organomet Chem,2014,28(6):454-460.
[40] HAMZE A, PROVOT O, ALAMI M, et al. Platinum oxide catalyzed hydrosilylation of unsymmetrical internal aryl alkynes under ortho-substituent regiocontrol[J]. Org Lett,2005,7(25):5625-5628.
[41] HAMZE A, PROVOT O, BRION J D, et al. Platinum chloride/Xphos-catalyzed regioselective hydrosilylation of functionalized terminal arylalkynes[J]. Tetrahedron Lett,2008,49(15):2429-2431.
[42] GUTSULYAK D V, VYBOISHCHIKOV S F, NIKONOV G I. Cationic silane σ-complexes of ruthenium with relevance to catalysis[J]. J Am Chem Soc,2010,132(17):5950-5951.
[43] GUTSULYAK D V, NIKONOV G I. Chemoselective catalytic hydrosilylation of nitriles[J]. Angew Chem Int Ed,2010,49(41):7553-7556.
[44] WANG C, TEO W J, GE S Z. Cobalt-catalyzed regiodivergent hydrosilylation of vinylarenes and aliphatic alkenes: ligand- and silane-dependent regioselectivities[J]. ACS Catal,2017,7(1):855-863.
TheApplicationofTransitionMetal-phosphineLigandsinCatalyticReactions
YANG Chuang, LI Jiayun, PENG Jiajian, BAI Ying
(Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China)
The phosphine ligands are the important ligands used in the homogeneous transition metal catalytic reaction. The steric and electronic effects of the phosphine ligands are especially important to the transition metal catalytic reaction. Therefore, in order to improve the conversion and selectivity of the catalytic reaction, the design and modification of the phosphine ligands are widely concerned. In this paper, the research progress of transition metal achiral phosphine complexes in the catalytic reactions is reviewed.
phosphine ligand; transition metal complexes; catalyst
2017-04-25
浙江省公益技術(shù)應(yīng)用研究項目(2017C31105).
厲嘉云(1980-),女,高級實驗師,博士,主要從事綠色催化研究.E-mail:jiayun1980@hznu.edu.cn;彭家建(1966-),男,研究員,博士,主要從事綠色催化研究.E-mail:jjpeng@hznu.edu.cn
10.3969/j.issn.1674-232X.2017.06.002
O621.2
A
1674-232X(2017)06-0567-13