閆銀發(fā),韓守強,周盛祥,宋占華,李法德,張春慶,張曉輝,王 敬
?
極低頻高壓脈沖電場提高陳年棉種活力的參數(shù)優(yōu)化
閆銀發(fā)1,2,韓守強1,周盛祥3,宋占華1※,李法德1,2,張春慶4,張曉輝1,王 敬1
(1. 山東農業(yè)大學機械與電子工程學院,泰安 271018;2. 山東省園藝機械與裝備重點實驗室,泰安 271018; 3. 中天科技集團,南通 226009;4. 山東農業(yè)大學農學院,泰安 271018)
為研究極低頻脈沖電場對陳年棉種活力的影響,該文利用高壓脈沖電源和弧形電極-平板組成的電場系統(tǒng)在極間距離為50 mm條件下,以16 kV、10 Hz為中心點,利用Design-expert軟件設計正交試驗,高壓脈沖電場處理棉種時間為40 s。并利用響應面分析法,對發(fā)芽勢、發(fā)芽率、發(fā)芽指數(shù)、活力指數(shù)等4個指標進行參數(shù)優(yōu)化,得出最優(yōu)處理電壓為16.25 kV,最優(yōu)頻率為10.90 Hz。在此基礎上,對優(yōu)化條件進行了試驗驗證。結果表明:陳年棉種在脈沖電壓16.25 kV、脈沖頻率10.90 Hz處理條件下,與對照相比,發(fā)芽勢提高了44.2%,發(fā)芽率提高了56.8%,發(fā)芽指數(shù)提高了64.3%,活力指數(shù)提高了81.8%,各指標都達到極顯著差異(<0.01)。陳年棉種的電場生物學效應對電場電壓和頻率都具有選擇性,在電壓為16.25 kV、頻率為10.90 Hz的脈沖電場作用下,陳年棉種的電場生物學效應最明顯,研究結果為后續(xù)作物種子高壓電場處理的參數(shù)優(yōu)化提供參考。
電場;種子;優(yōu)化;弧形電極;種子活力
農作物是人類賴以生存的基礎,隨著農業(yè)科技與時俱進的發(fā)展,越來越多的新興技術被應用于農業(yè)領域,為了調控和干預作物種子萌發(fā)及其生長發(fā)育,高壓電場技術成功應用于種子處理[1]。到目前為止,高壓電場種子處理主要采用交變電場和高壓靜電場,極少涉及高壓脈沖電場[2-5]。
在高壓電場處理種子方面已有試驗證明,合理的電場強度和處理時間可以提高種子的發(fā)芽指標[6-10]、提升種子酶活性、促進細胞膜修復、降低細胞膜對干旱脅迫的敏感性并能有效增強種子的活力[11-12]。高壓靜電場能對種子細胞膜產生強烈的刺激作用,同時在細胞內部會產生感應電流,對整個生物系統(tǒng)產生影響[13]。由于細胞膜內外兩側存在電位差,當電位差達到一定數(shù)值時便能夠使細胞膜產生可逆穿孔,這種效應改變了細胞膜的通透性[14]。因此,得益于高壓脈沖電場的劇烈作用,使其生物學效應更為顯著。
極低頻高壓脈沖電場是指頻率在0~300 Hz范圍內的高壓脈沖電場,由于生物體的頻率也處于這一頻率范圍,因此極低頻高壓脈沖電場能夠與生物體電磁場產生耦合共振,進而產生非熱生物效應[15]。早有研究證明,生命體電位波動能夠影響呼吸代謝、光合作用、水分吸收和氣孔導度等核心生理過程[16-18]。采用極低頻率的高壓脈沖電場來促進種子的生長發(fā)育,由此產生一種干預和調控種子萌發(fā)的極低頻脈沖電場種子處理技術[19-21]。
本文從種子萌發(fā)及生長活力方面進行了探索,研究了低頻高壓脈沖電場對種子發(fā)芽勢、發(fā)芽率、發(fā)芽指數(shù)和活力指數(shù)等活力指標的影響,試驗設計了陳年棉種的最優(yōu)電場處理劑量,并進行試驗驗證,為后續(xù)研究低頻高壓脈沖電場生物學效應提供參考。
試驗所用陳年棉種是山東農業(yè)大學農學院提供的邯鄲885,2013年生產,產地為山東夏津,初始含水率為7%±0.5%,挑選大小一致,外觀飽滿的陳年棉種進行發(fā)芽試驗,未經電場處理的初始發(fā)芽率在40%左右。陳年棉種的物理特性如表1所示。
表1 棉種的物理特性
1.2.1 高壓脈沖電源
本試驗所用脈沖電源由山東農業(yè)大學機電學院自行研制,該脈沖電源在10~20 kV輸出幅值范圍內連續(xù)可調,輸出頻率在1~50 Hz范圍內連續(xù)可調,脈寬為10~500 ms,占空比為50%。
1.2.2 電場極板間距可調的種子處理裝置
圖1為電場極板間距可調的種子處理裝置,種子處理裝置主要由滑動導軌、絲杠套、絲杠、上支撐板、芒刺板、下支撐板、支撐底座和提升法蘭等部分組成,該裝置使弧形芒刺電極片始終處于張緊狀態(tài)而不發(fā)生彎曲,還能使電極片之間距離均勻且保持平行。當需要調節(jié)電極尖端與下極板距離時,可手動轉動調節(jié)手輪,電極尖端與下極板間距離可調范圍為0~300 mm。
1.滑動導軌 2.絲杠套 3.絲杠 4.上支撐板 5.芒刺板 6.下支撐板
弧形電極片為厚度0.6 mm的不銹鋼金屬片,每片電極片有24個弧形半圓頂端,半圓半徑為4.5 mm,安裝時將10片弧形電極片通過兩端的圓孔與試驗臺固定,設置金屬片之間的間距為24 mm,弧形電極陣列具體形狀見文獻[22-23]。
用高壓脈沖電場處理系統(tǒng)[24]進行種子處理試驗時,弧形電極尖端距離不銹鋼下極板(接地)的距離調整為50 mm。在下極板上均勻平鋪單層300粒左右的陳年棉種,調整高壓脈沖電源輸出的電壓和頻率,通過高壓探頭(美國泰克公司Tektronix P6015A)和示波器(美國泰克公司Tektronix TDS1012B-SC)實時讀取電源電壓、波形和頻率信號。
1.3.1 高壓脈沖電場處理
陳年棉種在恒定溫度為25 ℃,空氣相對濕度為30%的環(huán)境下進行電場處理,根據(jù)前期在弧形電極條件下電源電壓和頻率對陳年棉種活力影響的初步探索,選擇電源電壓12~20 kV、脈沖頻率5~15 Hz,電場場強方向豎直向下,棉種處理時間為40 s[20,24],以16 kV、10 Hz為中心點[24],利用Design-expert軟件設計正交試驗并分析,因素水平表如表2所示。同時設置CK對照組,CK不做電場處理,將電場處理后的陳年棉種及時放入密封袋保存,在全部種子處理完成后(4 h以內)進行萌發(fā)試驗。
表2 脈沖電場正交試驗因素水平表
1.3.2 發(fā)芽試驗
在置床前將每個密封袋中待發(fā)芽棉種放入質量分數(shù)為0.2% HgCl2溶液中進行殺菌處理,然后從每個密封袋隨機選取50粒種子,清洗后用砂床法置床,所有置床種子在山東農業(yè)大學作物生物學國家重點實驗室種子幼苗培養(yǎng)室進行萌發(fā)試驗,培養(yǎng)室按照國家標準為:25 ℃恒溫、持續(xù)光照、相對濕度為100%恒濕[25]。每個電場處理條件做4盒試驗,為4次重復,每項指標取平均值計算。
棉種發(fā)芽期間要定時補水,保證幼苗發(fā)育所需水分。在此期間,若發(fā)現(xiàn)棉種霉變應及時進行清理,以免影響其他幼苗生長。在第3天,部分幼苗高度接近發(fā)芽盒盒蓋,應及時去除盒蓋,防止影響幼苗生長,從第3天開始每天記錄每盒的發(fā)芽數(shù),直到第12天進行洗苗,測量相關數(shù)據(jù)[26]。數(shù)據(jù)統(tǒng)計標準根據(jù)《種子檢驗學》進行界定,測量每盒所有棉花幼苗[26]。然后計算每個處理條件下棉種的發(fā)芽率、發(fā)芽勢、發(fā)芽指數(shù)和活力指數(shù),計算公式為(1)-(4)所示[27]。
式中GE為發(fā)芽勢,%;GP為發(fā)芽率,%;4為棉花種子在第4天的發(fā)芽數(shù);12為第12天洗苗后的正常苗數(shù);為發(fā)芽天數(shù),d;為與相對應的每天種子發(fā)芽數(shù);GI為發(fā)芽指數(shù);為幼苗長度,cm;VI為活力指數(shù)。
1.3.3 幼苗指標測量及數(shù)據(jù)處理方法
用流水將幼苗進行沖洗,去除砂子,用吸水紙吸干幼苗表面的水分,用數(shù)顯式游標卡尺(世達工具(上海)有限公司生產,型號:91513,精度:±0.03 mm)測量苗的長度,每盒測量25株棉花幼苗,計算每盒幼苗的平均長度,然后取每個重復的平均值作為一次電場處理的幼苗長度,與CK對照組進行對比,用SPSS軟件進行方差分析。
正交試驗共13個處理,中心值點處有4個重復,試驗結果如表3所示。
表3 脈沖電場正交試驗結果
注:表中‘*’為<0.05顯著 ‘**’為<0.01極顯著。
Note: ‘*’ in the table represents significance as<0.05, ‘**’ in the table represents extremely significance as<0.01.
由表3可知,脈沖電場處理后陳年棉種的活力指數(shù)、發(fā)芽率、發(fā)芽勢和發(fā)芽指數(shù)顯著高于CK,當電源頻率為10 Hz,電源電壓在16 kV時,所有指標與CK相比都有極顯著差異(<0.01)。
利用Design Expert軟件對表3試驗數(shù)據(jù)進行多元回歸擬合,建立棉種活力指數(shù)、發(fā)芽勢、發(fā)芽率、發(fā)芽指數(shù)與電壓、頻率之間的二次多項回歸模型。對各項進行方差分析,分析結果如表4所示。
表4 響應面方差分析結果
注:表中‘*’為<0.05顯著;‘**’為<0.01極顯著;為脈沖電壓,kV;為電源頻率,Hz。
Note: ‘*’ in the table represents significance as<0.05; ‘**’ in the table represents extremely significance as<0.01;is pulsed voltage, kV;is power frequency, Hz.
由表3可知,脈沖電場處理后陳年棉種的活力指數(shù)顯著高于CK,大部分有極顯著差異(<0.01)。圖2為脈沖電場與弧形電極對棉種處理后活力指數(shù)的響應面分析,從圖2可以看出,不同頻率下,提高電壓對陳年棉種活力指數(shù)的影響趨勢是相似的;不同電壓下,提高頻率對陳年棉種活力指數(shù)的影響趨勢也是相似的;綜合來看,弧形電極脈沖電場處理后的棉種活力指數(shù)隨著電壓和頻率的升高都呈現(xiàn)出先升高后下降的趨勢。而且脈沖頻率的變化對棉種活力指數(shù)的影響較為明顯。建立棉種活力指數(shù)與影響因素實際值之間的二次多項回歸模型如式(5)所示。
式中VI為脈沖電場與弧形電極處理棉種活力指數(shù),%;V為脈沖電壓,kV;f為電源頻率,Hz。
從表4可知,活力指數(shù)的值為8.07,值為0.008,說明建立的活力指數(shù)與試驗因素的關系模型極顯著(<0.01),關系模型的信噪比為8.378,說明模型較優(yōu),試驗的準確度和可信度較高。從表4中數(shù)據(jù)可以看出,頻率對活力指數(shù)的影響極顯著,電壓和頻率的交互作用對活力指數(shù)的影響不顯著。
由表3可知,弧形電極脈沖電場處理后陳年棉種的發(fā)芽勢高于CK,有顯著或極顯著差異(<0.01或<0.05)。圖3為脈沖電場與弧形電極對棉種發(fā)芽勢的響應面分析,從圖3可以看出,弧形電極脈沖電場處理后的棉種發(fā)芽勢隨著電壓和頻率的升高都呈現(xiàn)出先升高后下降的趨勢,也就是說存在一個最優(yōu)處理條件,使棉種經脈沖電場處理后發(fā)芽勢達到最高。通過響應面分析,建立陳年棉種發(fā)芽勢與影響因素實際值之間的二次多項回歸模型如式(6)所示。
式中GE為脈沖電場與弧形電極處理棉種發(fā)芽勢,%。
從表4可知,發(fā)芽勢的值為12.72,值為0.002 1,說明建立的發(fā)芽勢與試驗因素之間的表達式是極顯著的(<0.01),關系模型的信噪比為9.348,說明模型較優(yōu),試驗的準確度和可信度較高。從表4中數(shù)據(jù)可以看出,電壓和頻率的平方對發(fā)芽勢的影響極顯著,電壓、頻率以及電壓和頻率的交互作用對發(fā)芽勢的影響不顯著。
圖3 脈沖電場與弧形電極對棉種發(fā)芽勢的響應面分析
由表3可知,弧形電極脈沖電場處理后陳年棉種的發(fā)芽率顯著高于CK,大部分有極顯著差異(<0.01)。個別處理達到顯著差異(<0.05)。圖4為脈沖電場與弧形電極對棉種處理后發(fā)芽率的響應面分析,從圖4可以看出,不同頻率下,提高電壓對陳年棉種發(fā)芽率的影響趨勢是相似的;不同電壓下,提高頻率對陳年棉種發(fā)芽率的影響趨勢也是相似的;綜合來看,弧形電極脈沖電場處理后的棉種發(fā)芽率隨著電壓和頻率的升高都呈現(xiàn)出先升高后下降的趨勢。通過響應面分析,建立陳年棉種發(fā)芽率與影響因素實際值之間的二次多項回歸模型如式(7)所示。
式中GP為脈沖電場與弧形電極處理棉種發(fā)芽率,%。
從表4可知,發(fā)芽率的值為8.74,值為0.006 4,說明建立的發(fā)芽率與試驗因素之間的表達式是極顯著的(<0.01),關系模型的信噪比為6.872,說明模型是較優(yōu)的,試驗的準確度和可信度較高。從表4中數(shù)據(jù)可以看出,電壓和頻率的平方對發(fā)芽率的影響極顯著,電壓、頻率以及電壓和頻率的交互作用對發(fā)芽率的影響不顯著。
由表3可知,弧形電極脈沖電場處理后陳年棉種的發(fā)芽指數(shù)高于CK,有顯著或極顯著差異(<0.01或<0.05)。圖5為脈沖電場與弧形電極對棉種發(fā)芽指數(shù)的響應面分析,從圖5可以看出,弧形電極脈沖電場處理后的棉種發(fā)芽指數(shù)隨著電壓和頻率的升高也都呈現(xiàn)出先升高后下降的趨勢。通過響應面分析,建立陳年棉種發(fā)芽指數(shù)與影響因素實際值之間的二次多項回歸模型如式(8)所示。
式中GI為脈沖電場與弧形電極處理棉種發(fā)芽指數(shù)。
從表4可知,發(fā)芽指數(shù)的值為8.35,值為0.007 3,說明建立的發(fā)芽指數(shù)與試驗因素之間的表達式是極顯著的(<0.01),關系模型的信噪比為6.137,說明模型是較優(yōu)的,試驗的準確度和可信度較高。從表4中數(shù)據(jù)可以看出,電壓和頻率的平方對發(fā)芽指數(shù)的影響極顯著,電壓、頻率以及電壓和頻率的交互作用對發(fā)芽指數(shù)的影響不顯著。
以陳年棉種發(fā)芽勢、發(fā)芽率、發(fā)芽指數(shù)和活力指數(shù)的最大值為優(yōu)化目標,發(fā)芽勢、發(fā)芽率、發(fā)芽指數(shù)和活力指數(shù)的權重均為1,利用響應面法對二項回歸數(shù)學模型式(5)-(8)進行數(shù)學優(yōu)化,得到弧形電極脈沖電場處理陳年棉種的電壓、頻率最優(yōu)組合是:電壓16.25 kV,頻率10.90 Hz。在此最優(yōu)條件下,陳年棉種發(fā)芽勢、發(fā)芽率、發(fā)芽指數(shù)和活力指數(shù)的期望值分別為60.06%、67.99%、44.45和266.84,都顯著高于CK(<0.01)。
依據(jù)參數(shù)優(yōu)化的結果,取脈沖電壓16.25 kV、頻率10.90 Hz為處理條件對陳年棉種進行電場處理,陳年棉種的發(fā)芽勢、發(fā)芽率、發(fā)芽指數(shù)和活力指數(shù)分別為62%、69%、46和269,其發(fā)芽指標與CK的發(fā)芽勢、發(fā)芽率、發(fā)芽指數(shù)和活力指數(shù)相比,發(fā)芽勢提高了44.2%,發(fā)芽率提高了56.8%,發(fā)芽指數(shù)提高了64.3%,活力指數(shù)提高了81.8%,各指標都達到極顯著差異(<0.01),符合參數(shù)優(yōu)化的結果。
電場作為自然界存在物質,能夠不同程度影響環(huán)境中生物的生長。高壓脈沖電場的生物效應是由電場引起生物體內的物理和化學原發(fā)反應,從而形成一個綜合的后效應[28-29]。適當電場劑量(電場劑量=電場強度×作用時間)的處理,對種子萌發(fā)起著積極的促進作用[30-33],從試驗結果分析來看,陳年棉種的發(fā)芽勢、發(fā)芽率、發(fā)芽指數(shù)、活力指數(shù)隨電壓和頻率的升高呈現(xiàn)先升高后下降的趨勢,在極板間距為50 mm,電壓為16.25 kV,頻率為10.90 Hz,處理時間40 s時,陳年棉種發(fā)芽的各項指標均達到最大值。因此電場劑量不僅與電場強度、作用時間有關,還與高壓電場的頻率有關,當電場頻率大于或小于10.90 Hz時,陳年棉種的發(fā)芽指標都有所降低。
從試驗結果來看,陳年棉種的電場生物學效應對電場電壓和頻率都具有選擇性,在合適的電場電壓和頻率下,生物體的電場生物學效應最明顯。根據(jù)“種子萌發(fā)的能量刺激假說”[34],陳年棉種經電壓為16.25 kV,頻率為10.90 Hz的電場處理后,種子內部經過復雜的物理和化學變化,為陳年棉種萌發(fā)提供了恰當?shù)哪芰看碳?,顯著提高了陳年棉種的發(fā)芽勢、發(fā)芽率、發(fā)芽指數(shù)、活力指數(shù)。
1)用弧形電極,脈沖電場對陳年棉種處理,進行正交試驗,通過分析得出處理后的棉種發(fā)芽勢、發(fā)芽率、發(fā)芽指數(shù)、活力指數(shù)隨電壓和頻率的升高呈現(xiàn)先升高后下降的趨勢,陳年棉種的電場生物學效應對電場電壓和頻率都具有選擇性。
2)在弧形電極條件下,極板間距為50 mm,處理時間為40 s,脈沖電場的較優(yōu)處理條件為16.25 kV、10.90 Hz,在此電場劑量條件下處理的棉種與CK相比,發(fā)芽勢提高了44.2%,發(fā)芽率提高了56.8%,發(fā)芽指數(shù)提高了64.3%,活力指數(shù)提高了81.8%,各指標與對照(CK)相比都達到極顯著差異(<0.01)。
[1] 習崗,高宇,劉鍇,等. 極低頻高壓脈沖電場對綠豆萌發(fā)過程中水分吸收的影響及其機理[J]. 高電壓技術,2014,40(12):3762-3767.
Xi Gang, Gao Yu, Liu Kai, et al. Effect of extremely-low- frequency high-voltage pulsed electric field on water absorption of germinating mung beans and its mechanism[J]. High Voltage Engineering, 2014, 40(12): 3762-3767. (in Chinese with English abstract)
[2] 包斯琴高娃,楊體強,馬占新,等. 高壓電場對優(yōu)化小麥種子生長特性的時效性[J]. 高電壓技術,2010,36(2):467-473.Bao Siqingaowa, Yang Tiqiang, Ma Zhanxin, et al. Aging property of the effect on wheat seeds in high voltage electric field[J]. High Voltage Engineering, 2010, 36(2): 467-473. (in Chinese with English abstract)
[3] Guixue W, Junli H, Weina G, et al. The effect of high-voltage electrostatic field (HVEF) on aged rice (L) seeds vigor and lipid peroxidation of seedlings[J]. Journal of Electrostatics, 2009, 67(5): 759-764.
[4] Daniela I, Dorina C, Alina R. The influence of the electrostatic stress on cell proliferation in plants[J]. Journal of Electrostatics, 2007, 65(7): 408-413.
[5] Costanzo E. The influence of an electric field on the growth of soy seedlings[J]. Journal of Electrostatics, 2008, 66(7/8): 417-420.
[6] 蔡興旺,林昌華. 高壓靜電場處理對黃瓜種子發(fā)芽的影響[J]. 種子,2002,126(6):16-17.
Cai Xinwang, Lin Changhua. The influence of the process in high voltage static electricity field upon cucumber seeds[J]. Seed, 2002, 126(6): 16-17. (in Chinese with English abstract)
[7] 白亞鄉(xiāng). 高壓靜電場對大麥、甜菜、玉米種子超弱發(fā)光的影響[J]. 內蒙古大學學報:自然科學版,2000,31(4):443-446.
Bai Yaxiang. Influence of high voltage static electric field for super-weak luminescence of seed on barley, beet and maize[J]. Journal of Inner Mongolia University: Natural Science Edition, 2000, 31(4): 443-446. (in Chinese with English abstract)
[8] Moon J, Chung H. Acceleration of germination of tomato seed by applying AC electric and magnetic fields[J]. Journal of Electrostatics. 2000, 48(1): 103-114.
[9] 呂劍剛,楊體強,蘇恩光,等. 電場處理小麥種了對幼苗生長抗鹽性的影響[J]. 內蒙古大學學報:自然科學版,2001,32(6):707-710.
Lu Jiangang, Yang Tiqiang, Su Enguang, et al. Effect of electric field treatment of wheat seeds on the salt resistance of growth in seedling stage[J]. Journal of Inner Mongolia University: Natural Science Edition, 2001, 32(6): 707-710. (in Chinese with English abstract)
[10] Morar R, Munteanu R, Simion l, et al. Electrostatic treatment of bean seeds[C]// Conference Record of the 1995 IEEE Industry Applications 30 IAS Annual Meeting. Orlando: IEEE, 1995.
[11] 劉輝. 高壓芒刺電場對大豆種子萌發(fā)及其活性的影響[D]. 長春:東北師范大學,2006.
[12] 遲燕平. 高壓脈沖電場對蔬菜種子生物學效應的研究[D]. 長春:吉林大學,2008.
Chi Yanping. Study on High Intensity Pulsed Electric Field to the Biological Effects of Vegetable Seeds[D]. Changchun: Jilin University, 2008. (in Chinese with English abstract)
[13] Cramariuc R, Donescu V, Popa M, et al. The biological effect of the electrical field treatment on the potato seed: agronomic evaluation[J]. Journal of Electrostatics, 2005, 63(6): 837-846.
[14] Weaver J C. Electroporation of biological membranes from multicellular to nanoscales[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(5): 754-768.
[15] 習崗,宋清,楊初平. 異常環(huán)境電磁場對生物影響的研究進展[J]. 應用與環(huán)境生物學報,2003,9(2):203-206.
Xi Gang, Song Qing, Yang Chuping. Research progress about effect of abnormal electromagnetic field on biological system[J].Chinese Journal of Applied and Environmental Biology, 2003, 9(2): 203-206. (in Chinese with English abstract)
[16] Koziolek C, Grams T, Schreiber U, et al. Transient knockout of photosynthesis mediated by electrical signals[J]. New Phytologist, 2003, 161(3): 715-722.
[17] Zhang X, Yu N, Meng X, et al. Power spectrum analysis of maize based on wavelet de-noising[C]// International Conference on Information Science and Engineering. IEEE, 2010: 419-422.
[18] Zhang X H, Yu N M, Xi G, et al. Changes in the power spectrum of electrical signals in maize leaf induced by osmotic stress[J]. Chinese Science Bullentin, 2012, 57(4): 413-420.
[19] Federico G, Galindo P, Thomas V, et al. Pulsed electric field reduces the permeability of potato cell wall[J]. Bioelectromagnetics, 2008, 29(4): 296-301.
[20] 習崗,劉鍇,徐永奎,等. 極低頻脈沖電場與高壓靜電場對作物種子萌發(fā)影響的差異[J]. 農業(yè)工程學報,2013,29(1):265-271.
Xi Gang, Liu Kai, Xu Yongkui, et al. Difference of extremely low frequency pulsed electric field (PEF) and high voltage electrostatic field (HVEF) on germinating crop seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 265-271. (in Chinese with English abstract)
[21] 習崗,劉鍇,楊運經,等. 基于玉米幼苗電位波動的脈沖電場生物學效應[J]. 高電壓技術,2013,39(1):129-134.
Xi Gang, Liu Kai, Yang Yunjing, et al. Biological effects of pulsed electric field based on potential fluctuations in maize seedlings[J]. High Voltage Engineering, 2013, 39(1): 129-134. (in Chinese with English abstract)
[22] 徐江,郭守志,賈國梁,等. 電暈場處理三層水稻種子對其活力的影響[J]. 農業(yè)工程學報,2015,31(增刊1):307-314.
Xu Jiang, Guo Shouzhi, Jia Guoliang, et al. Effect of corona discharge field processing on vigor of three layers of paddy seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 307-314. (in Chinese with English abstract)
[23] 李法德,張憲剛,李秀芝,等. 電場處理與介電分選對棉種發(fā)芽率和幼苗質量的影響[J]. 農業(yè)工程學報,2010,26(9):128-132.
Li Fade, Zhang Xiangang, Li Xiuzhi, et al. Effects of electric field processing and dielectric separation on cotton seed germination rate and seedling mass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 128-132. (in Chinese with English abstract)
[24] 閆銀發(fā),周盛祥,宋占華,等.頻率及電壓對高壓脈沖電場提高陳年棉種活力的影響[J]. 農業(yè)工程學報,2017,33(13):310-314.Yan Yinfa, Zhou Shengxiang, Song Zhanhua, et al. Effects of frequency and voltage of high voltage pulsed electric field on improving vigor of aged cotton seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(13): 310-314. (in Chinese with English abstract)
[25] 農作物種子檢驗規(guī)程發(fā)芽試驗:GB/T 3543.4-1995[S].
[26] 張春慶. 種子檢驗學[M]. 北京:高等教育出版社,2005.
[27] 徐江,譚敏,張春慶,等. 電暈場與介電分選提高水稻種子活力[J]. 農業(yè)工程學報,2013,29(23):233-240.
Xu Jiang, Tan Min, Zhang Chunqing, et al. Improving paddy seed vigor by corona discharge field processing and dielectric separation[J]. Transactions of the Chinese Society of AgriculturalEngineering (Transactions of the CSAE), 2013, 29(23): 233-240. (in Chinese with English abstract)
[28] 謝菊芳,易偉松,熊剛,等. 高壓靜電場對植物細胞跨膜電位的影響及機理初探[J]. 湖北大學學報:自然科學版,2002(3):235-237.
[29] Harrison S L, Barbosacanovas G V, Swanson B G. Saccharomyces cerevisiae structural changes induced by pulsed electric field treatment.[J]. LWT - Food Science and Technology, 1997, 30(3): 236-240.
[30] 白亞鄉(xiāng),胡玉才. 高壓靜電場對農作物種子生物學效應原發(fā)機制的探討[J]. 農業(yè)工程學報,2003,19(2):49-51.
Bai Yaxiang, Hu Yucai. Original mechanism of biological effects of electrostatic field on crop seeds[J]. Transactions of the Chinese Society of AgriculturalEngineering (Transactions of the CSAE), 2003, 19(2): 49-51. (in Chinese with English abstract)
[31] 陳建中,胡建芳,杜慧玲,等. 優(yōu)化高壓電場處理對谷子種子萌發(fā)期內源激素的影響[J]. 農業(yè)工程學報,2016,32(13):286-292.
Chen Jianzhong, Hu Jianfang, Du Huiling, et al. Response of endogenous hormone in germination of millet seeds to optimal high voltage electrostatic field[J]. Transactions of the Chinese Society of AgriculturalEngineering (Transactions of the CSAE), 2016, 32(13): 286-292. (in Chinese with English abstract)
[32] 張本華,李成華,王丹陽. 水稻種子電場分選電極化力計算域驗證試驗[J]. 農業(yè)工程學報,2012,28(增刊2):96-100.
Zhang Benhua, Li Chenghua, Wang Danyang. Calculation and test of electric polarization force for rice seed dielectric separation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(Supp.2): 96-100. (in English with Chinese abstract)
[33] 張俐,申勛業(yè),楊方. 高壓靜電場對生物效應影響的研究進展[J]. 東北農業(yè)大學學報,2000,31(3):307-312.
Zhang Li, Shen Xunye, Yang Fang. Influence of high voltage electrostatic field to the biological effect[J]. Journal of Northeast Agricultural University, 2000, 31(3): 307-312. (in English with Chinese abstract)
[34] 徐恒恒,黎妮,劉樹君,等.種子萌發(fā)及其調控的研究進展[J]. 作物學報,2014,40(7):1141-1156. Xu Hengheng, Li Ni, Liu Shujun, et al. Research progress in seed germination and its control[J]. Acta Agronomica Sinica, 2014, 40(7): 1141-1156. (in English with Chinese abstract)
閆銀發(fā),韓守強,周盛祥,宋占華,李法德,張春慶,張曉輝,王 敬. 極低頻高壓脈沖電場提高陳年棉種活力的參數(shù)優(yōu)化[J]. 農業(yè)工程學報,2017,33(22):301-307. doi:10.11975/j.issn.1002-6819.2017.22.039 http://www.tcsae.org
Yan Yinfa, Han Shouqiang, Zhou Shengxiang, Song Zhanhua, Li Fade, Zhang Chunqing, Zhang Xiaohui, Wang Jing. Parameter optimization on improving aged cotton seeds vigor by extremely low frequency high voltage pulsed electric field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 301-307. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.039 http://www.tcsae.org
Parameter optimization on improving aged cotton seeds vigor by extremely low frequency high voltage pulsed electric field
Yan Yinfa1,2, Han Shouqiang1, Zhou Shengxiang3, Song Zhanhua1※, Li Fade1,2, Zhang Chunqing4, Zhang Xiaohui1, Wang Jing1
(1.,271018,; 2.,271018,; 3.,226009,;4.,’271018,)
In order to explore the effect of extremely low frequency high-voltage pulsed electric field on the aged cotton seed vigor, high voltage pulse power supply and arc electrode were used to treat aged cotton seeds with different voltages and frequencies. The treatment time was 40 s. The experiment environment temperature was set as 25 ℃, the relative humidity was set as 30%, and the temperature and humidity were remained relativelystable during the experiment. The effect of high voltage and extremely low frequency on germination ability of aged cotton seeds was studied. The voltage of vertically downward electric field was 12-20 kV, the pulse frequency was 5-15 Hz, the electrode was arc, and the distance between electrode plates was 50 mm. The point of 16 kV and 10 Hz was selected as the center point, and the orthogonal test was designed by Design-Expert software. The CK stood for the aged cotton seeds that had not been treated by electric field. The aged cotton seeds treated by electric field were taken into the sealed bag in time, and all the seeds were germinated within 4 h after treatment. The aged cotton seeds in sealed bag were put separately into the HgCl2solution with mass fraction of 0.2% for sterilization before seeds germination, and then 50 seeds were selected randomly from each seed sterilization group. Finally, the selected seeds were cleaned and put on the germination bed with sand bed method. The seed germination experiments were carried out at the National Key Laboratory of Crop Biology, Shandong Agricultural University, which were in accordance with the national standard: 25 ℃ constant temperature, continuous light, and relative humidity of 100%. Four boxes of seeds were treated under each electric field for 40 s, which were 4 repetitions, and then the average of each index was calculated.During the cotton seeds germination, the moldy cotton seeds should be removed timely, in order not to affect other seeds growth. According to the response surface analysis of the pulsed electric field and the arc electrode to the dynamic index of the aged cotton seed, and the single factor analysis of the pulsed electric field and the arc electrode to the cotton vigor index, the effect of increasing the voltage on the aged cotton seed vigor index was similar. At different voltages, the influence of increasing frequency on the cotton seed vigor index was similar. On the whole, the cotton seed vigor index after arc electrode electric field treatment showed a tendency of rising firstly and then falling with the increasing of voltage and frequency. And the influence of pulse frequency on cotton vigor index was obvious. Using the Design-Expert software, the pulse voltage and frequency were optimized, and the optimal condition was that the pulse voltage was 16.25 kV and the pulse frequency was 10.90 Hz. Under the optimal condition, the germination potential was increased by 44.2%, the germination rate was increased by 56.8%, the germination index was increased by 64.3%, and the vigor index was increased by 81.8%, and the indices were all significantly different (<0.01) from that of the CK.
electric field; seeds; optimization; arc electrode; seeds vigor
10.11975/j.issn.1002-6819.2017.22.039
S335.2
A
1002-6819(2017)-22-0301-07
2017-07-26
2017-11-07
2015年山東省農業(yè)重大應用技術創(chuàng)新課題;山東省現(xiàn)代農業(yè)產業(yè)技術體系棉花創(chuàng)新團隊項目(SDAIT0309)
閆銀發(fā),漢族,山東曹縣,副教授,主要從事高壓靜電技術在現(xiàn)代農業(yè)中的應用研究。Email:sd28@163.com
宋占華,山東臨清市,博士,副教授,主要從事現(xiàn)代農業(yè)機械裝備設計與開發(fā)。Email:songzh6688@163.com