李德順,王成澤,李銀然,李仁年,趙振希,陳 霞
?
葉片前緣磨損形貌特征對風(fēng)力機翼型氣動性能的影響
李德順1,2,3,王成澤1,4,李銀然1,2,3,李仁年1,2,3,趙振希1,陳 霞1
(1. 蘭州理工大學(xué)能源與動力工程學(xué)院,蘭州 730050; 2. 甘肅省風(fēng)力機工程技術(shù)研究中心,蘭州 730050; 3. 甘肅省流體機械及系統(tǒng)重點實驗室,蘭州 730050; 4. 湘電風(fēng)能有限公司,湘潭 411101)
根據(jù)實際風(fēng)電場中風(fēng)力機葉片前緣磨損在不同階段的形貌特征,通過對DU 96-W-180風(fēng)力機翼型前緣進行改型,建立幾何模型,結(jié)合SST湍流模型求解RANS方程,分析了翼型的升力、阻力及流場特性,研究了風(fēng)力機翼型前緣磨損形貌特征對其氣動性能的影響。結(jié)果表明,前緣磨損特征為砂眼和小坑時,對翼型的升、阻力系數(shù)影響較小;而前緣磨損特征為脫層時,對翼型的升阻特性影響顯著,尤其隨著攻角增加,升力系數(shù)大幅減小,阻力系數(shù)急劇增大,并且隨著磨損的加劇,減小和增加的幅度逐漸增大。前緣磨損加劇了翼型吸力面尾緣附近的流動分離,使分離點前移;砂眼和小坑對氣流在翼型前緣的流動影響較小;脫層對翼型前緣附近流動影響很大,導(dǎo)致翼型表面出現(xiàn)臺階流,氣流繞過臺階先發(fā)生分離,然后再次附著翼型表面流動。
風(fēng)能;風(fēng)力機;磨損;翼型;前緣磨損特征;氣動性能;數(shù)值模擬
風(fēng)力機常運行在惡劣的自然環(huán)境下,無法避免沙粒、雨滴、冰雹和昆蟲等顆粒物對葉片表面的沖刷,導(dǎo)致葉片表面發(fā)生磨損,前緣磨損尤其嚴(yán)重[1-2]。隨著風(fēng)力機運行時間的增長,葉片前緣磨損越來越嚴(yán)重,表面粗糙度也逐漸增大。針對葉片表面粗糙度和前緣磨損的研究表明,葉片前緣粗糙度對其氣動性能影響顯著,使其氣動性能下降明顯[3-4];隨著前緣粗糙度的增大,翼型升力系數(shù)明顯下降,阻力系數(shù)大幅增加[5-6],同時,風(fēng)力機輸出功率顯著下降,下降幅度可達到25%[7],影響了機組正常發(fā)電。
Sareen等[8]通過風(fēng)洞試驗研究了前緣磨損對風(fēng)力機葉片氣動性能的影響,結(jié)果表明,前緣磨損對翼型的氣動性能產(chǎn)生嚴(yán)重的影響,導(dǎo)致翼型的升力下降、阻力上升,隨著前緣磨損的加劇,阻力增加可高達6%~500%。Gaudern等[9]開展了風(fēng)洞試驗,通過對不同厚度翼型的實際粗糙度大小進行縮放來模擬多種磨損深度,研究了磨損對翼型氣動性能的影響。Kidder等[10-11]研究了前緣保護帶對翼型氣動特性的影響。Gharali和Johnson[12]采用數(shù)值模擬的方法研究了S809翼型的前緣磨損問題,發(fā)現(xiàn)升力系數(shù)減小的主要影響因素為磨損的寬度而非磨損的深度。張駿等[13]采用數(shù)值模擬方法研究了風(fēng)力機二維翼型和三維葉片表面粗糙度對其氣動性能的影響,結(jié)果表明,翼型氣動性能受到翼型表面粗糙度,尤其是前緣粗糙度的影響非常嚴(yán)重,并且隨著攻角的增大,氣動性能對前緣粗糙度的敏感性增大;三維葉片的表面粗糙度使得葉片氣動性能明顯下降,葉尖部位的粗糙度影響尤為顯著。焦靈燕[14]研究了葉片氣動性能隨著粗糙度的變化規(guī)律,粗糙度增大使得翼型阻力增大,升力降低,升阻比減小,翼型尾緣處布置粗糙帶可以使翼型的流動分離點前移。Ren等[15]基于二維N-S方程和SST湍流模型對NACA 63-430翼型的氣動特性進行了數(shù)值模擬,結(jié)果表明,粗糙度加劇了層流向湍流的過渡和流動分離。Keegan等[16-19]建立了雨和冰雹的動態(tài)模型,并使用LS-DYNA軟件模擬了冰雹對于前緣的影響。Zhang等[20]通過試驗方法研究了雨滴侵蝕磨損過程中的影響因素,研究發(fā)現(xiàn)雨滴沖擊葉片表面的相對速度和沖擊的頻率是影響磨損率的最主要因素。蔣傳鴻[21]采用RFOIL軟件和CFD方法,對比分析了光冰和霜冰對翼型氣動性能的影響,結(jié)果表明,霜冰導(dǎo)致升力系數(shù)變化不大,在一定的攻角范圍內(nèi),升阻比略有下降;光冰對翼型的氣動性能影響顯著,使其升力系數(shù)減小,阻力系數(shù)增大,升阻比大幅度降低。李長仁等[22]研究了風(fēng)力機葉片表面污染對其氣動性能的影響,研究結(jié)果表明,表面污染會使葉片氣動性能下降,其升力系數(shù)最大可下降35%。Dalili等[23-24]論述了葉片表面工程問題對風(fēng)力發(fā)電機的重要性,當(dāng)風(fēng)力機葉片表面的完整性受到損害時,其性能會發(fā)生顯著的降低,功率損失最高可達到50%。新疆大學(xué)余冬、張永等對風(fēng)力機葉片涂層材料的沖蝕磨損進行了大量的研究[25-29]。
總體來看,上述相關(guān)文獻主要針對葉片表面結(jié)冰和灰塵、昆蟲顆粒吸附在葉片表面等情況下引起的前緣粗糙度對翼型氣動性能的影響開展了研究,然而,針對由于葉片磨損而導(dǎo)致的前緣形貌改變(即葉片前緣部分材料磨損脫落)對風(fēng)力機翼型氣動性能影響的研究較少。
本文結(jié)合實際風(fēng)場中運行的風(fēng)力機葉片前緣磨損的形貌特征,通過對DU 96-W-180風(fēng)力機翼型的前緣進行改型建立幾何模型,以模擬風(fēng)力機葉片不同磨損階段的前緣磨損形貌特征,基于CFD方法對翼型的空氣動力特性進行數(shù)值模擬,通過將不同磨損特征時翼型的氣動特性和光滑翼型的氣動特性進行對比,研究了前緣磨損形貌特征對風(fēng)力機翼型氣動特性的影響。
研究對象為DU 96-W-180翼型,該翼型由荷蘭Delft大學(xué)設(shè)計,常用于風(fēng)力機葉片的葉尖部分,其相對厚度為18%[30]。為了與文獻[8]中的風(fēng)洞試驗結(jié)果進行對比,本文選用的翼型弦長與試驗?zāi)P偷南议L一致為0.457 m。DU 96-W-180翼型的幾何外形如圖1所示。
圖1 DU 96-W-180翼型
圖2 葉片磨損圖
根據(jù)3M公司提供的分別運行了1、2、10 a及10 a以上葉片的磨損圖片(如圖2所示)可知,運行了1 a的葉片,在各種復(fù)雜顆粒撞擊下,葉片前緣最先出現(xiàn)細(xì)小的砂眼,運行2 a后,砂眼很快發(fā)展成尺寸更大、深度更深的小坑,如果任其發(fā)展下去,隨著砂眼和小坑數(shù)量的增多,最終導(dǎo)致前緣材料大面積脫落,稱之為脫層現(xiàn)象。脫層現(xiàn)象首先出現(xiàn)在葉片前緣,隨著時間的推移,它將沿著弦線方向逐漸擴大。最先出現(xiàn)磨損(也是磨損最嚴(yán)重)的部位在葉片前緣,隨后葉片壓力面靠近前緣部分逐漸出現(xiàn)磨損,磨損區(qū)域隨著時間的推移向葉片尾緣擴展。
通過對不同階段磨損圖片的分析,將葉片前緣磨損形貌特征定義為3種形式:砂眼、小坑和脫層?;?M公司提供的葉片磨損特征,得到砂眼、小坑、脫層的尺寸及其在翼型前緣的覆蓋范圍,如表1所示[8]。砂眼、小坑、脫層的深度分別取0.51、2.54、3.81 mm,并且砂眼和小坑的平均直徑和深度的大小相等,前緣覆蓋范圍表示磨損特征從前緣開始沿弦向的分布范圍。根據(jù)磨損發(fā)展的過程,用3種磨損類型來描述磨損的過程,分別是Type A(只有砂眼的磨損情況),Type B(既有砂眼又有小坑的磨損情況)和Type C(有砂眼、小坑以及脫層的磨損情況),每種磨損類型都分為3個不同的磨損階段,下一階段的砂眼、小坑的數(shù)目和脫層的覆蓋范圍是前一階段的兩倍;由于壓力面前緣磨損程度和磨損覆蓋范圍都要大于吸力面,因此取壓力面上砂眼、小坑數(shù)量為吸力面數(shù)目的兩倍,具體見表2。
表1 不同磨損特征的尺寸
表2 不同磨損程度時的磨損特征分布
注:P為砂眼,G為小坑,DL為脫層,下同。
Note: P means pits, G means gouges, DL means delamination. Same as below.
圖3 C3前緣磨損模型
表2列出了各磨損階段時,翼型壓力面和吸力面上砂眼、小坑的數(shù)目和脫層的覆蓋范圍。表中從左往右表示磨損程度逐漸加??;從上往下表示同一種磨損特征時,磨損越來越嚴(yán)重。表中的數(shù)字表示砂眼和小坑的數(shù)目,比如Type C Stage 3(簡寫為C3)磨損程度為翼型吸力面有1個砂眼(1P)和1個小坑(1G),壓力面有2個砂眼(2P)和2個小坑(2G),前緣有輕微的脫層(DL),如圖3所示。每種磨損類型均在雷諾數(shù)為1×106時進行數(shù)值模擬。
計算域如圖4所示,半圓形入口距尾緣處為12.5倍的弦長,尾緣距出口為15倍的弦長(),計算域網(wǎng)格劃分采用C型結(jié)構(gòu)化網(wǎng)格。
注:c為弦長。
流體繞流的數(shù)值模擬精度跟網(wǎng)格節(jié)點分布密切相關(guān),且翼型附近流體速度和壓力的變化梯度遠(yuǎn)大于遠(yuǎn)場相關(guān)參數(shù)變化梯度,因此,對翼型表面和周圍網(wǎng)格進行適當(dāng)加密,翼型周向分布913個節(jié)點,邊界層第1層高度為0.02 mm。翼型周圍網(wǎng)格如圖5所示。
圖5 翼型周圍網(wǎng)格
沖蝕磨損使得翼型表面凹凸不平,在翼型的氣動外形受到破壞的同時也增大了翼型表面粗糙度。翼型外形的改變,造成氣流在翼型近壁面的流動發(fā)生變化,為了更加精確地捕捉氣流繞磨損區(qū)域的流動狀態(tài),本文采用SST湍流模型封閉二維不可壓縮RANS方程,求解湍流流動,研究前緣磨損對翼型氣動性能的影響。該湍流模型在近壁面采用湍流模型,用來精準(zhǔn)地捕捉黏性底層流動,同時,為了克服湍流模型對來流的敏感性,主流區(qū)采用湍流模型。
入口邊界條件為速度進口,為圖4所示半圓形邊界,當(dāng)攻角為正值時,邊界為速度進口邊界,攻角為負(fù)值時,邊界AE為速度進口,攻角為0時,邊界、同時設(shè)為速度入口,其中速度大小為23.084 m/s(雷諾數(shù)為1×106),湍流強度為0.05,湍流黏度比為10。
出口邊界條件為壓力出口,為圖4所示邊界,表壓為0,當(dāng)來流為正攻角,邊界為壓力出口,若來流為負(fù)攻角,邊界為壓力出口。
壁面邊界采用無滑移固體壁面邊界條件。
對DU 96-W-180翼型進行數(shù)值模擬時,離散方法采用二階迎風(fēng)格式,壓力和速度的耦合采用SIMPLEC算法。圖6為光滑DU 96-W-180翼型升、阻力系數(shù)隨攻角變化的試驗值和數(shù)值模擬結(jié)果對比圖,圖中的試驗值是由Sareen等[8]在伊利諾斯大學(xué)香檳分校的低湍流亞音速風(fēng)洞中測試得到,矩形測試段截面尺寸為0.853 m×1.219 m,長為2.438 m,試驗段風(fēng)速可達71.53 m/s,分別在為1×106,1.5×106,1.85×1063種工況下,開展了DU 96-W-180翼型的風(fēng)洞試驗,試驗?zāi)P拖议L為0.457 m(與本文幾何模型的弦長一致),通過測量翼型所受的法向力和軸向力,進而計算出翼型的升力系數(shù)和阻力系數(shù),具體見文獻。由圖可知,翼型升、阻力系數(shù)的數(shù)值計算結(jié)果與風(fēng)洞試驗值吻合良好,?5.3°~10.3°攻角范圍內(nèi),升力系數(shù)的最大誤差為7%,故本文采用的數(shù)值方法可靠。
注:Cl為升力系數(shù),Cd為阻力系數(shù),α為攻角。
圖7分別是翼型在Type A、B、C 3種磨損類型時的升、阻力系數(shù)和升阻比隨攻角的變化曲線與光滑翼型的升、阻力曲線和升阻比曲線的對比圖。
由圖7a可知,磨損類型為Type A時,隨著砂眼數(shù)目的增多,翼型的升力、阻力系數(shù)和升阻比基本不變,磨損翼型的阻力系數(shù)較光滑翼型略有增大。在?5.3°~0°攻角范圍內(nèi),磨損翼型的升力系數(shù)和升阻比與光滑翼型的幾乎相同。當(dāng)攻角大于0°后,其升力系數(shù)和升阻比較光滑翼型的值均有所下降,并且隨著攻角的增大,下降幅度增大。在攻角為10.3°時,3種磨損程度時磨損翼型的升力系數(shù)較光滑翼型的值均減小了2.7%左右,升阻比下降6%。
由圖7b可知,磨損類型為Type B時,升、阻力系數(shù)變化規(guī)律跟磨損類型為Type A時相似,當(dāng)攻角大于0°時,隨著磨損階段從B2到B4,升力系數(shù)減小和阻力系數(shù)增大的幅度逐漸增大。3種磨損程度時,翼型的升阻比與光滑翼型相比下降比較明顯。同時,隨著磨損的加劇(從B2到B4),翼型升阻比略有下降。當(dāng)攻角為10.3°時,翼型在3種磨損程度時對應(yīng)的升力系數(shù)較光滑翼型均減少了5.8%左右,對應(yīng)升阻比均減小10%左右。
注:A1-A3、B2-B4、C3-C4分別對應(yīng)表2中的Type A、B、C的3個磨損階段。
Note: A1-A3, B2-B4, C3-C4 were the three erosion stages of Type A, B, C in table 2, respectively.
圖7 升力、阻力及升阻比曲線
Fig.7 Curves of lift, drag and lift-drag ratio
由圖7c可知,磨損類型為Type C時,當(dāng)攻角在0°附近時,升力系數(shù)相比于光滑翼型的變化很小,隨著攻角增大,升力系數(shù)降低,阻力系數(shù)增加,而且攻角越大,升、阻力系數(shù)變化越明顯。當(dāng)攻角大于?2°時,3種磨損程度時對應(yīng)的升阻比與光滑翼型的相比均有所減小,且攻角越大減小越明顯,隨著磨損程度加?。◤腃3到C5),升力系數(shù)略有下降,阻力系數(shù)增大越明顯,升阻比減小也更加顯著。當(dāng)攻角為10.3°時,翼型在3種磨損程度時的升力系數(shù)均減少了14.3%左右,升阻比減小60%左右。
綜上所述,表面磨損特征為砂眼和小坑時,對翼型氣動性能影響較??;當(dāng)磨損導(dǎo)致葉片前緣出現(xiàn)脫層后,翼型的升力系數(shù)顯著減小,阻力系數(shù)急劇增大,翼型氣動性能顯著下降。
圖8為攻角為9.3°時磨損翼型和光滑翼型周圍的流線圖,對比發(fā)現(xiàn),前緣磨損加劇了吸力面尾緣附近的流動分離,使得流動分離點前移,并且隨著磨損從Type A到Type C逐漸加深,邊界層分離點向前緣靠近,分離現(xiàn)象越來越顯著,分離后形成的漩渦區(qū)逐漸變大,導(dǎo)致翼型的升力降低和阻力增加。
圖8 攻角為9.3°時光滑翼型與磨損翼型的流場對比圖
翼型前緣受到顆粒物的撞擊,表面部分材料被磨損而脫落,造成翼型的幾何外形發(fā)生改變,對氣流繞翼型的流動產(chǎn)生影響。圖9是攻角為9.3°時氣流繞光滑翼型和磨損翼型前緣流線圖,比較磨損翼型和光滑翼型前緣流動發(fā)現(xiàn),前緣發(fā)生磨損為砂眼和小坑時,對邊界層流動影響非常小,在黏性力的作用下砂眼和小坑內(nèi)的氣流呈無限循環(huán)的漩渦狀,該漩渦對邊界層沒有太大的影響,由于砂眼和小坑的尺寸對翼型外形的影響很小,使得氣流流過Type A、Type B磨損類型的翼型時幾乎和光滑翼型的流動情況相同,如圖9b、c所示,因此,對翼型的氣動性能的影響較小。當(dāng)前緣磨損加重,出現(xiàn)脫層時,脫層邊界處形成明顯的臺階,改變了翼型前緣附近流動狀態(tài),氣流繞過脫層臺階后出現(xiàn)邊界層流動分離,如圖9d所示,氣流流過吸力面和壓力面臺階的流動分離如圖9e、f所示,在臺階前后都形成了漩渦,氣流在流過臺階后先發(fā)生分離然后又重新附著在翼型表面流動;結(jié)合圖8d可知,前緣脫層導(dǎo)致翼型表面同時發(fā)生了前緣分離和后緣分離現(xiàn)象,使得翼型的升力減小,阻力急劇上升,升阻比顯著下降。
圖9 攻角為9.3°時光滑翼型與磨損翼型前緣流動對比
本文基于CFD方法,研究了風(fēng)力機翼型在3種磨損特征時,其升力系數(shù)、阻力系數(shù)、升阻比的變化規(guī)律,以及流動特性。結(jié)論如下:
1)砂眼和小坑對翼型的升、阻力系數(shù)影響較小,當(dāng)攻角小于0°時,磨損翼型的升力系數(shù)跟光滑翼型的幾乎相等,隨著攻角增大,升力系數(shù)略有減小,阻力系數(shù)有小幅增加,升阻比略有下降,當(dāng)攻角為10.3°時,磨損翼型的升阻比較光滑翼型值減少10%左右。
2)前緣脫層對翼型升、阻力系數(shù)和升阻比的影響顯著,尤其在大攻角時,升力系數(shù)大幅降低,阻力系數(shù)急劇增加,升阻比下降明顯,當(dāng)攻角為10.3°時,磨損翼型的升阻比較光滑翼型值的減小量可高達60%;隨著磨損程度加劇,升力系數(shù)減小和阻力系數(shù)增加的幅度逐漸增大。
3)前緣磨損加劇了翼型吸力面尾緣附近的流動分離,使分離點前移;砂眼和小坑對氣流在翼型前緣的流動影響較??;脫層對翼型前緣附近流動影響較大,脫層導(dǎo)致翼型表面出現(xiàn)臺階流,氣流繞過臺階先發(fā)生分離,然后再次附著于翼型表面流動。
[1] Slot H M, Gelinck E R M, Rentrop C, et al. Leading edge erosion of coated wind turbine blades: Review of coating life models[J]. Renewable Energy, 2015, 80: 837-848.
[2] Keegan M H, Nash D H, Stack M M. On erosion issues associated with the leading edge of wind turbine blades[J]. Journal of Physics D Applied Physics, 2013, 46(38): 383001.
[3] Khalfallah M G, Koliub A M. Effect of dust on the performance of wind turbines[J]. Desalination, 2007, 209(1): 209-220.
[4] Soltani M R, Birjandi A H, Moorani M S. Effect of surface contamination on the performance of a section of a wind turbine blade[J]. Scientia Iranica, 2011(3): 349-357.
[5] 李德順,李仁年,楊從新,等. 粗糙度對風(fēng)力機翼型氣動性能影響的數(shù)值預(yù)測[J]. 農(nóng)業(yè)機械學(xué)報,2011,42(5):111-115.
Li Deshun, Li Rennian, Yang Congxin, et al. Numerical prediction of the effect of surface roughness on aerodynamic performance of a wind turbine airfoil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(5): 111-115.
[6] 李仁年,陳寅. 雷諾數(shù)對粗糙表面翼型氣動性能的影響[J]. 南京航空航天大學(xué)學(xué)報,2011,43(5):693-696.
Li Rennian, Chen Yin. Effects of surface roughness and reynolds number on aerodynamic performance of wind turbine airfoil[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(5): 693-696. (in Chinese with English abstract)
[7] Madsen H A. Aerodynamics of a horizontal-axis wind turbine in natural conditions[R]. Ris? National Laboratory for Sustainable Energy, Technical University of Denmark, 1991.
[8] Sareen A, Sapre C A, Selig M S. Effects of leading edge erosion on wind turbine blade performance[J]. Wind Energy, 2014(17): 1531-1542.
[9] Gaudern N. A practical study of the aerodynamic impact of wind turbine blade leading edge erosion[J]. Journal of Physics: Conference Series, 2014, 524(1): 012-031.
[10] Kidder N. Aerodynamic Impact of Leading Edge Surface Treatments on Wind Turbine Blades[D]. Columbus: The Ohio State University, 2015.
[11] AgrimSareen, Chinmay A Sapre, Michael S Selig. Effects of leading-edge protection tape on wind turbine blade performance[J]. Wind Engineering, 2012, 36(5): 525-534.
[12] Gharali K, Johnson D A. Numerical modeling of an S809 airfoil under dynamic stall, erosion and high reduced frequencies[J]. Applied Energy, 2012, 93: 45-52.
[13] 張駿,袁奇,吳聰,等. 大型風(fēng)力機葉片表面粗糙度效應(yīng)數(shù)值研究[J]. 中國電機工程學(xué)報,2014,20:3384-3391.
Zhang Jun, Yuan Qi, Wu Cong, et al. Numerical simulation on the effect of surface roughness for large wind turbine blades[J]. Proceedings of the CSEE, 2014, 20: 3384-3391. (in Chinese with English abstract)
[14] 焦靈燕. 翼型及粗糙度對風(fēng)力機葉片氣動性能影響的初探[D]. 呼和浩特:內(nèi)蒙古工業(yè)大學(xué),2015.
Jiao Lingyan. Investigation on Influence of Airfoils and Roughness on Wind Turbine Aerodynamic Performance of Blade[D]. Huhhot: Inner Mongolia University of Technology, 2015. (in Chinese with English abstract)
[15] Ren Nianxin, Ou J. Dust effect on the performance of wind turbine airfoils[J]. Journal of Electromagnetic Analysis and Applications, 2009, 1(1): 102-107.
[16] Keegan M H, Nash D H, Stack M M. Numerical modelling of hailstone impact on the leading edge of a wind turbine blade[J]. Ewea, 2013, 4(6): 498-502.
[17] Keegan M H, Nash D H, Stack M M. Modelling rain drop impact of offshore wind turbine blades[J]. ASME Turbo Expo, 2012. 2012, 31(1): 887-898, Copenhagen.
[18] Keegan M H, Nash D, Stack M. Modelling rain drop impact of offshore wind turbine blades[J]. ASME Turbo Expo, 2012, 2012: Article GT 2012-69175.
[19] Keegan M H, Nash D, Stack M. Numerical modelling of hailstone impact on the leading edge of a wind turbine blade[J]. EWEA Annual Wind Energy Event, Transactions of the ASME, 2005, 127: 464-474.
[20] Zhang S, Dam-Johansen K, N?rkj?r S, et al. Erosion of wind turbine blade coatings: Design and analysis of jet-based laboratory equipment for performance evaluation[J]. Progress in Organic Coatings, 2015, 78: 103-115.
[21] 蔣傳鴻. 風(fēng)力機結(jié)冰翼型的氣動性能分析及優(yōu)化設(shè)計[D].重慶:重慶大學(xué),2014.
Jiang Chuanhong. Aerodynamic Performance Analysis and Optimization Design of Wind Turbine with Iced Airfoil[D]. Chongqing: Chongqing University, 2014. (in Chinese with English abstract)
[22] 李長仁,李國文,陳薇. 風(fēng)力機葉片前緣表面附著物對氣動性能的影響研究[J]. 太陽能學(xué)報,2012, 33(4):540-544.
Li Changren, Li Guowen, Chen Wei. Effect of attachment of blade surface on wind turbine[J]. Acta Energiae Solaris Sinica, 2012, 33(4): 540-544. (in Chinese with English abstract)
[23] Dalili N, Edrisy A, Carriveau R. A review of surface engineering issues critical to wind turbine performance[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 428-438.
[24] Slot H M, Gelinck E R M, Rentropa C, et al. Leading edge erosion of coated wind turbine blades: Review of coating life models[J]. Renewable Energy, 2015, 80: 837-848.
[25] 余冬. 風(fēng)機葉片復(fù)合材料沖刷磨損研究[D]. 烏魯木齊:新疆大學(xué),2014.
Yu Dong. The Study about Composite Materialerosion Wear of Wind Turbine Blade[D]. Urumchi: Xinjiang University. 2014. (in Chinese with English abstract)
[26] 余冬,李新梅,于青,等. 風(fēng)力發(fā)電機葉片復(fù)合材料的沖刷磨損[J]. 材料熱處理學(xué)報,2014, 35(4):166-170.
Yu Dong, Li Xinmei, Yu Qing, et al. Erosion corrosion of wind turbine blade composite material[J]. Transactions of Materials and Heat Treatment, 2014, 35(4): 166-170. (in Chinese with English abstract)
[27] 董曉鋒. 氣固兩相流下風(fēng)力發(fā)電機葉片材料沖刷磨損行為研究[D]. 烏魯木齊:新疆大學(xué),2013.
Dong Xiaofeng. Gas-solid Flow Erosion Wear Behavior of Key Materials of the Wind Turbine[D]. Urumchi: Xinjiang University, 2013. (in Chinese with English abstract)
[28] 張永,劉召,黃超,等. 挾沙風(fēng)作用下風(fēng)力機葉片涂層沖蝕磨損研究進展[J]. 新能源進展,2015,5(4):331-335.
Zhang Yong, Liu Zhao, Huang Chao, et al. Research process on erosion wear of wind turbine blade coating by wind-borne sands[J]. Advances in New and Renewable Energy, 2015, 5(4): 331-335. (in Chinese with English abstract)
[29] 董旭旭,李新梅,董蘭蘭,等. 風(fēng)力機葉片用復(fù)合材料的拉伸及沖蝕磨損性能[J]. 機械工程材料,2015,12:25-29.
Dong Xuxu, Li Xinmei, Dong Lanlan, et al. Tensile and erosion-wear properties of composite material for wind turbine blade[J]. Materials for Mechanical Engineering, 2015, 12: 25-29. (in Chinese with English abstract)
[30] Timmer W A, Rooij R PJ O M. Summary of the Delft University wind turbine dedicated airfoils[J]. ASME Journal of Solar Energy Engineering, 2003, 125(4): 488-496.
李德順,王成澤,李銀然,李仁年,趙振希,陳 霞. 葉片前緣磨損形貌特征對風(fēng)力機翼型氣動性能的影響[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(22):269-275. doi:10.11975/j.issn.1002-6819.2017.22.035 http://www.tcsae.org
Li Deshun, Wang Chengze, Li Yinran, Li Rennian, Zhao Zhenxi, Chen Xia. Influence of blade leading edge erosion features on aerodynamic characteristics of wind turbine airfoil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 269-275. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.035 http://www.tcsae.org
Influence of blade leading edge erosion features on aerodynamic characteristics of wind turbine airfoil
Li Deshun1,2,3, Wang Chengze1,4, Li Yinran1,2,3, Li Rennian1,2,3, Zhao Zhenxi1, Chen Xia1
(1.730050,; 2.730050; 3.730050; 4.411101,)
Because wind turbine blades are exposed to complex natural environment for a long time, as time goes on, rain, snow, dust and other particles will gradually erode the surface of blade, then causing the erosion on the blade surface, especially at the leading edge of the blades, which is the area with the most serious wear. With wind turbine running time increasing, under the impact of various complex particles, the erosion process on wind turbine blades typically starts with the formation of small pits at the leading edge, which quickly develop into gouges with larger size and deeper depth, and then the increasing pits and gouges eventually lead to the fact that material of the leading edge falls off largely, forming delamination. In order to simulate the leading edge erosion of wind turbine as accurately as possible, a geometric model which is close to the actual wear profile was established and a mathematical model which is suitable for airfoil calculation was selected. According to the erosion features on leading edge of wind turbine blade operating in actual wind farm, the leading edge of DU96-W-180 airfoil profile was modified to study the effects of aerodynamic characteristics caused by leading edge erosion on wind turbine blades. At the same time, a geometric model was built and numerical simulations were performed to solve the RANS equation based on SSTturbulence model. Lift force, drag force and flow field characteristics of the erosion airfoil were analyzed. And then the conclusions were drawn. In the situation that leading edge erosion is characterized by pits and gouges, the coefficients of lift and drag have a small change, and as the attack angle increases, the lift coefficient and lift-drag ratio decrease slightly, and the drag coefficient increases slightly. The influence of leading edge delamination is notable, especially under the situation of high attack angle, and the lift coefficient and lift-drag ratio are significantly reduced and the drag coefficient is sharply enlarged with the increase of the attack angle, and this change becomes more notable with the increase of erosion. The leading edge erosion intensifies the flow separation near the trailing edge of the airfoil suction surface, and makes the separation point move forward. The phenomenon of separation is more and more obvious as the degree of wear and tearing is gradually deepening, and the eddy forms after separation gradually becomes larger, resulting in the fact that lift reduces and resistance increases. Pits and gouges have small influence on the flow near the airfoil leading edge. On the contrary, delamination leads to the step-flow around the airfoil surface, and air bypasses the step with separating flow, and then adheres to the airfoil surface again, so the delamination has a significant impact on the flow near the leading edge, which leads to the deterioration of airfoil aerodynamic performance.
wind energy; wind turbines; erosion; airfoil; leading edge erosion feature; aerodynamic characteristics; numerical simulation
10.11975/j.issn.1002-6819.2017.22.035
TK83
A
1002-6819(2017)-22-0269-07
2017-06-02
2017-11-07
國家重點基礎(chǔ)研究發(fā)展計劃(973計劃)(2014CB046201);國家自然科學(xué)基金項目(51766009、51566011)。
李德順,男(漢族),甘肅甘谷人,副教授,博士,主要從事風(fēng)能利用方向的研究。Email:lideshun_8510@sina.com