国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于高光譜特征和偏最小二乘法的春小麥葉綠素含量估算

2017-12-15 02:33:56尼加提卡斯木師慶東王敬哲茹克亞薩吾提依力亞斯江努爾麥麥提古麗努爾依沙克
關(guān)鍵詞:總和春小麥特征參數(shù)

尼加提·卡斯木,師慶東,王敬哲,茹克亞·薩吾提,依力亞斯江·努爾麥麥提,古麗努爾·依沙克

?

基于高光譜特征和偏最小二乘法的春小麥葉綠素含量估算

尼加提·卡斯木1,2,師慶東1,2※,王敬哲1,2,茹克亞·薩吾提1,2,依力亞斯江·努爾麥麥提1,2,古麗努爾·依沙克1,2

(1. 新疆大學(xué)資源與環(huán)境科學(xué)學(xué)院,烏魯木齊 830046;2. 新疆大學(xué)綠洲生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,烏魯木齊 830046)

葉綠素含量是影響作物生長(zhǎng)及產(chǎn)量的主要因素。該研究以2017年6月小型試驗(yàn)田獲取的抽穗期春小麥葉綠素含量及其對(duì)應(yīng)的光譜反射率為數(shù)據(jù)源,對(duì)紅邊(627~780 nm)、黃邊(566~589 nm)、藍(lán)邊(436~495 nm)、綠邊(495~566 nm)、吸收谷和反射峰的最大反射率及反射率總和等16個(gè)高光譜特征參數(shù)與葉綠素含量之間的相關(guān)性進(jìn)行了分析,并結(jié)合偏最小二乘回歸法(partial least-squares regression, PLSR)對(duì)葉綠素含量進(jìn)行高光譜建模及驗(yàn)證。結(jié)果表明:1)對(duì)特定的16個(gè)光譜特征參數(shù)而言,光譜特征參數(shù)綠邊最大反射率與春小麥葉綠素質(zhì)量分?jǐn)?shù)之間的決定系數(shù)最低(2<0.5);決定系數(shù)較高(2≥ 0.5)的光譜特征參數(shù)包括藍(lán)邊最大反射率、藍(lán)邊反射率總和、黃邊最大反射率、黃邊反射率總和、紅邊最大反射率、紅邊反射率總和、綠邊反射率總和、820~940 nm反射率總和及最大反射率、500~670 nm歸一化吸收深度和560~760 nm歸一化吸收深度,其中820~940 nm反射率總和決定系數(shù)達(dá)到最高(2為0.8);2)利用16個(gè)特征參量進(jìn)行PLSR建模后,發(fā)現(xiàn)波段范圍在820~940 nm的最大反射率及反射率總和所建立的PLSR估算模型為最優(yōu)模型,其精度參數(shù)2=0.8、RMSE=2.0mg/g、RPD=3.2。因此,該模型具有極好的預(yù)測(cè)能力。該研究為相關(guān)研究及當(dāng)?shù)鼐珳?zhǔn)農(nóng)業(yè)提供科學(xué)支持和應(yīng)用參考。

模型;葉綠素;光譜分析;高光譜;光譜特征參數(shù);偏最小二乘回歸

0 引 言

葉綠素是光合作用過(guò)程中起吸收光能的植被色素,是主要的吸收光能的物質(zhì),其含量高低直接影響植被光合作用過(guò)程中的光能利用[1]。農(nóng)作物葉片的葉綠素含量與葉片的凈光合速率、光合能力、發(fā)育階段以及氮素狀況具有良好的相關(guān)性,已經(jīng)成為了評(píng)價(jià)植被生長(zhǎng)發(fā)育和營(yíng)養(yǎng)狀況的一種重要的指示器[2-3]。小麥?zhǔn)侵袊?guó)主要的糧食作物之一,其產(chǎn)量大約占全國(guó)糧食總產(chǎn)量的70%,對(duì)中國(guó)糧食生產(chǎn)安全具有相當(dāng)重的作用[4]。在春小麥的各個(gè)發(fā)育階段中,抽穗期是需要生產(chǎn)以及追肥管理的關(guān)鍵時(shí)期,這一時(shí)期春小麥葉片中較高的葉綠素含量可以促進(jìn)小麥葉片生長(zhǎng)、延長(zhǎng)葉片功能、提高光合效率及產(chǎn)量[5-6]。小麥葉片中的葉綠素含量、濃度、影響因子等研究受到了眾多研究學(xué)者的高度關(guān)注。

近幾十年來(lái),遙感技術(shù)憑借其大尺度、高效率、低成本等優(yōu)勢(shì)在農(nóng)作物的生長(zhǎng)狀況、播種面積、分布情況等方面得以廣泛應(yīng)用。受葉片中葉綠素吸收作用的影響,農(nóng)作物葉片在可見(jiàn)光部分存在明顯的吸收谷,在近紅外波段(受葉片內(nèi)部的結(jié)構(gòu)以及冠層結(jié)構(gòu)特性共同影響)反射率較高并形成突峰,可以反映農(nóng)作物長(zhǎng)勢(shì)信息[7]。而高光譜技術(shù)憑借其高分辨率、高效率、無(wú)損害、安全等特性廣泛應(yīng)用于作物葉綠素含量以及濃度的估算,為農(nóng)作物葉綠素含量研究以及實(shí)施精細(xì)農(nóng)業(yè)提供了有效手段[8-11]。Alabbas等[12-16]學(xué)者證明了利用冠層反射光譜監(jiān)測(cè)農(nóng)作物的葉綠素含量的可行性。Bnnari等[17]通過(guò)實(shí)驗(yàn)室獲取的高光譜數(shù)據(jù)以及PRI(531~550)nm、SRPI(430~680 nm)、CARI(670~700 nm)、PSSR(680~800 nm)等高光譜葉綠素指數(shù)對(duì)冬小麥葉綠素含量進(jìn)行了估算。Daughtry等[18]研究了植被光譜與葉綠素濃度的關(guān)系,并總結(jié)了光譜紅邊位置在作物葉綠素含量估計(jì)中的作用。Curran等[19]研究表明,紅邊位置對(duì)冠層總?cè)~綠素含量敏感程度。郭燕等[20]選擇小麥拔節(jié)期和成熟期的葉綠素含量,采用全光譜數(shù)據(jù)進(jìn)行建模預(yù)測(cè)小麥葉綠素含量,并采用統(tǒng)計(jì)學(xué)方法進(jìn)行各生育期空間變異制圖。黃慧等[21]選取波長(zhǎng)491~887 nm范圍光譜,采用一階、二階微分以及多元散射校正3種處理方法,利用逐步回歸法和偏最小二乘回歸(partial least-squares regression,PLSR)分別建立了小麥葉綠素含量與光譜信號(hào)間的數(shù)學(xué)模型。羅丹等[22]利用350~2500 nm范圍內(nèi)的原始光譜反射率及其一階導(dǎo)數(shù)光譜的任意兩兩波段交叉組合而成的主要高光譜指數(shù)與冬小麥冠層葉片葉綠素含量的定量關(guān)系,建立小麥冠層葉綠素含量估算模型。

以往對(duì)于小麥葉片葉綠素含量的研究?jī)H對(duì)利用單個(gè)敏感波進(jìn)行建模,而對(duì)于光譜細(xì)節(jié)變換及多個(gè)特征參數(shù)綜合建模的研究相對(duì)較少,這可能會(huì)造成光譜數(shù)據(jù)無(wú)法充分利用,模型精度在一定程度上也會(huì)受到制約。本研究以新疆大學(xué)阜康實(shí)驗(yàn)基地的春小麥為研究對(duì)象,利用55個(gè)冠層采樣區(qū)的野外高光譜數(shù)據(jù),并結(jié)合實(shí)測(cè)春小麥抽穗期葉綠素含量,分析春小麥抽穗期光譜特征,嘗試性的利用最大反射率、反射率總和、吸收深度、歸一化吸收深度的光譜特征參數(shù)進(jìn)行偏最小二乘回歸建模,并進(jìn)行估算精度驗(yàn)證,以期深度挖掘光譜數(shù)據(jù)并進(jìn)一步提高春小麥葉綠素含量的高光譜預(yù)測(cè)精度,為衛(wèi)星傳感器的設(shè)計(jì)、區(qū)域精準(zhǔn)農(nóng)業(yè)的發(fā)展提供科學(xué)支持和應(yīng)用參考。

1 材料與方法

1.1 研究區(qū)概況

新疆大學(xué)阜康實(shí)驗(yàn)基地位于新疆維吾爾自治區(qū)阜康市滋泥泉子鎮(zhèn)以北,地理坐標(biāo)87°34′5″~88°34′10″E,44°23′12″~44°23′15″N,實(shí)驗(yàn)基地周邊均為大型農(nóng)場(chǎng),主要播種作物為冬小麥、春小麥和玉米;此區(qū)域?qū)儆诘湫偷臏貛Т箨懶曰哪畾夂颍瑲夂蛱攸c(diǎn)是四季分明,冬冷夏熱,春秋氣溫變化劇烈,降水量少且不均勻,春夏降水量約占全年降水量的2/3[23]。境內(nèi)氣候具有垂直地帶性分布特征,山區(qū)中部的年降水量為530.11 mm,平原區(qū)為187.5 mm,沙漠區(qū)則通常只有144.7 mm。地形呈長(zhǎng)條狀,南高北低,由東南向西北傾斜,地貌總輪廓由南向北分為山地、平原、沙漠3大部分。阜康綠洲生態(tài)系統(tǒng)內(nèi)的植被以農(nóng)田和荒漠占主導(dǎo),主要分布在綠洲內(nèi)部、綠洲邊緣、荒漠帶和綠洲—荒漠過(guò)度地帶,年無(wú)霜期可達(dá)175 d,日較差大,具有新疆地區(qū)典型地理地貌特征(山地-綠洲-荒漠綠洲)。北部沙漠區(qū)為古爾班通古特沙漠的一部分,阜康市位于沖洪積扇的上部,是開墾歷史較為悠久的老綠洲,下游二二二團(tuán)是解放后新開墾的綠洲[24]。

1.2 采樣點(diǎn)布設(shè)

研究區(qū)播種春小麥總面積為50 m×150 m,采樣區(qū)以1 m×1 m為樣方,并進(jìn)行網(wǎng)格狀采樣取均值作為該采樣區(qū)的平均值,共設(shè)置55個(gè)采樣區(qū)(圖1),采樣時(shí)間為2017年6月,研究區(qū)春小麥生育期為抽穗期。采用SPAD-502型便攜式葉綠素儀在每個(gè)采樣區(qū)分別采集同植株倒一、倒二葉片各3次取平均值作為改采樣區(qū)冠層的春小麥的葉綠素含量指標(biāo)。與此同時(shí),春小麥的光譜反射率測(cè)定使用美國(guó)ASD(Analytical Spectral Devices)公司生產(chǎn)的FieldSpec3型光譜儀(波段范圍350~2500 nm)。光譜在350~1000與1000~2500 nm區(qū)間的采樣間隔分別為1.4與2 nm,重采樣間隔為1 nm。將在采樣區(qū)進(jìn)行測(cè)量時(shí),每個(gè)活體樣品由多個(gè)葉片組成,距植株葉片10 cm左右,測(cè)量時(shí)探頭的天頂角為15°,每次光譜測(cè)定之前均進(jìn)行白板標(biāo)定,重復(fù)測(cè)量10次,取光譜曲線的算術(shù)平均值作為該樣區(qū)的實(shí)際光譜反射率[25]。

圖1 研究區(qū)位置和采樣區(qū)分布

1.3 數(shù)據(jù)處理

本研究區(qū)共采集55×3個(gè)春小麥葉綠素含量,每個(gè)采樣區(qū)重復(fù)測(cè)量3次,并計(jì)算各個(gè)采樣區(qū)的平均葉綠素含量。為了使建模集和驗(yàn)證集可以充分反映研究區(qū)小麥葉片葉綠素含量的實(shí)際情況,將55個(gè)樣本按葉綠素含量從高到低進(jìn)行排序,等間隔抽取34個(gè)建模集與21個(gè)驗(yàn)證集樣本(表1)。

表1 采樣區(qū)小麥葉綠素含量統(tǒng)計(jì)特征

由表1可知,建模集和驗(yàn)證集對(duì)應(yīng)的葉綠素含量最大值分別為58.8和57.2 mg/g,最小值分別為28.8和38.8 mg/g,均值分別為48.9和49.6 mg/g,變異系數(shù)分別為14.7%和10.7%;研究區(qū)所有采樣區(qū)葉綠素含量平均值為49.5 mg/g,變異系數(shù)為11.6%,介于建模集與驗(yàn)證集之間,數(shù)據(jù)離散程度不強(qiáng),屬于弱變異強(qiáng)度(0

圖2 平滑處理后的春小麥野外光譜反射率

對(duì)農(nóng)作物遙感監(jiān)測(cè)的原理是建立在農(nóng)作物光譜參數(shù)特征基礎(chǔ)上,農(nóng)作物在可見(jiàn)光部分(被葉綠素吸收)有明顯的吸收谷,近紅外波段受葉片內(nèi)部的結(jié)構(gòu)以及冠層結(jié)構(gòu)特性共同影響呈現(xiàn)較高的反射率,形成突峰,這些敏感波段及其組合通常稱為植被指數(shù),可以反射農(nóng)作物生長(zhǎng)的空間信息[26]。葉綠素含量是小麥重要的賦色成分,其含量高低對(duì)小麥反射光譜產(chǎn)生一定的影響[27]。研究區(qū)不同葉綠素含量的光譜反射曲線形態(tài)基本一致(圖2)。圖3為春小麥光譜特征曲線,由圖3中可知,在可見(jiàn)光波段(400~760 nm)范圍內(nèi)光譜曲線呈快速上升后下降趨勢(shì),具有明顯的反射峰和吸收谷;在近紅波段(760~1 300 nm)范圍趨于大幅度上升后呈現(xiàn)下降趨勢(shì)。就整體而言,除760~800 nm波段范圍,不同葉綠素含量小麥的光譜反射率曲線較為容易區(qū)分。

1.4 光譜參數(shù)建模

光譜特征,既物質(zhì)在電磁波的相互作用下,在特定波長(zhǎng)位置形成反映物質(zhì)成分和結(jié)構(gòu)信息的光譜吸收和反射特征,用吸收深度、吸收面積以及歸一化吸收深度3個(gè)參數(shù)來(lái)描述每個(gè)吸收率和反射率的位置[28]。選取春小麥葉片光譜最大反射率、反射率總和、吸收深度和歸一化吸收深度的反射光譜特征參數(shù)[29](表2);利用偏最小二乘回歸法建立葉綠素含量的估算模型。通過(guò)對(duì)比各模型的校正均方根誤差(root mean square error of calibration,RMSE)、建模決定系數(shù)2、預(yù)測(cè)均方根誤差(root mean square error of prediction,RMSE)、預(yù)測(cè)決定系數(shù)2、相對(duì)分析誤差(relative prediction deviation,RPD)篩選出最優(yōu)模型用以研究區(qū)春小麥的葉綠素含量的反演。2用以判定模型的穩(wěn)定程度,越接近于1說(shuō)明模型的穩(wěn)定性越好;RMSE用于表征模型的準(zhǔn)確性,其值越小表明模型的精度越高。另外,當(dāng)RPD小于1.4時(shí),模型不可用;RPD大于等于1.4或小于2時(shí),模型估算效果一般,RPD大于等于2時(shí),模型具有較好的定量預(yù)測(cè)能力[30]。

圖3 春小麥光譜特征曲線

表2 反射光譜特征參數(shù)

2 結(jié)果與分析

2.1 春小麥葉綠素含量與光譜特征參數(shù)相關(guān)性分析

就綠色植被的光譜特征而言,植被的光譜反射率在700~750 nm波段范圍內(nèi)急劇上升,具有陡而近于直線的形態(tài),其斜率與植物的單位面積葉綠素含量有關(guān)[31]。本研究通過(guò)對(duì)去除邊緣波段的全譜數(shù)據(jù),在對(duì)作物葉片高光譜數(shù)據(jù)進(jìn)行平滑去燥、歸一化預(yù)處理后,選取了藍(lán)邊最大反射率及反射率總和、綠邊最大反射率及反射率總和、黃邊最大反射率及反射率總和、紅邊最大反射率及反射率總和、吸收谷、反射峰和歸一化吸收深度的最大反射率及反射率總和等16種光譜特征參數(shù),并對(duì)了抽穗期的春小麥葉片葉綠素含量的相關(guān)性進(jìn)行了初步探討,嘗試性地對(duì)葉綠素含量進(jìn)行光譜建模。相關(guān)性檢驗(yàn)表明,除了光譜特征參數(shù)500~670 nm吸收深度、780~970 nm歸一化吸收深度和560~760 nm吸收深度之外,其余均達(dá)到(=0.01)顯著性水平(圖4);其中綠邊最大反射率(495~566 nm)與葉綠素質(zhì)量分?jǐn)?shù)的決定系數(shù)最低(2<0.5)(圖4c);決定系數(shù)較高(2≥0.5)的光譜特征參數(shù)包括藍(lán)邊最大反射率、藍(lán)邊反射率總和(436~495 nm)、黃邊最大反射率、黃邊反射率總和(566~589 nm)、紅邊最大反射率、紅邊反射率總和(627~780 nm)、綠邊反射率總和(495~566 nm)、820~940 nm反射率總和及最大反射率、500~670 nm歸一化吸收深度和560~760 nm歸一化吸收深度;其中820~940 nm反射率總和及最大反射率與葉綠素含量的相關(guān)性達(dá)到最高,相關(guān)系數(shù)分別為0.8和0.6(圖4e),較其它光譜特征參數(shù)而言,該參數(shù)更具備反映春小麥葉綠含量變化的能力。

圖4 春小麥葉綠素含量與光譜特征參數(shù)的關(guān)系

2.2 PLSR模型的建立及精度分析

本研究以冠層采樣春小麥的野外高光譜數(shù)據(jù),以春小麥光譜特征參數(shù)(最大反射率、反射率總和、吸收深度、歸一化吸收深度)為自變量,實(shí)測(cè)春小麥葉綠素含量為因變量,利用PLSR建立春小麥葉綠素含量估算模型,模型的精度參數(shù)(2、RMSE、2、RMSE、RPD)見(jiàn)表3所示。

根據(jù)PLSR模型的精度參數(shù),對(duì)建立的9個(gè)模型進(jìn)行篩選后發(fā)現(xiàn),RPD大于2的模型只有2個(gè),分別是基于820~940 nm波段范圍的最大反射率和反射率總和、全部光譜特征參數(shù)為自變量的偏最小二乘回歸法(PLSR)建立的模型,其余模型的RPD屬于小于2。結(jié)合參與PLSR模型的自變量個(gè)數(shù)來(lái)分析,參與個(gè)數(shù)相同預(yù)測(cè)模型的精度及穩(wěn)定性具有一定差異性;隨著特征參數(shù)的波段范圍接近于820~940 nm時(shí),對(duì)應(yīng)的預(yù)測(cè)模型精度逐漸提高并達(dá)到最大值。對(duì)模型的2、RMSE、2、RMSE、RPD以及光譜特征參數(shù)進(jìn)行綜合對(duì)比,發(fā)現(xiàn)基于820~940 nm波段范圍的最大反射率和反射率總和建立PLSR模型最優(yōu),2=0.8、RMSE=2.0 mg/g、RPD=3.2(表3)?;谌抗庾V特征參數(shù)所建立的預(yù)測(cè)模型精度參數(shù)略低于最優(yōu)模型,精度參數(shù)分別為2=0.7、RMSE=2.6 mg/g、RPD=3.0。綜上所述,對(duì)16個(gè)光譜特征參數(shù)偏最小二乘回歸發(fā)現(xiàn),光譜特征參數(shù)(820~940 nm最大反射率及反射率總和)與春小麥葉綠素含量具有較好的相關(guān)性,并達(dá)到1%的顯著性水平(閾值為±0.34)。利用春小麥葉綠素含量驗(yàn)證數(shù)據(jù)對(duì)模型進(jìn)行預(yù)測(cè)能力檢驗(yàn),結(jié)果如圖5所示。由圖5可知,與其它特征參數(shù)相比較,基于此特征參數(shù)構(gòu)建的PLSR模型,表現(xiàn)了最好的預(yù)測(cè)能力。

表3 不同光譜特征參數(shù)反演葉綠素含量的PLSR模型

圖5 春小麥葉綠素含量估算模型的驗(yàn)證

3 討 論

葉綠素是光合作用中最重要的有機(jī)分子,其濃度對(duì)農(nóng)作物的生長(zhǎng)過(guò)程中影響最為明顯[32]。且作物葉片中氮素的合成也與葉綠素內(nèi)部結(jié)構(gòu)有一定的聯(lián)系,通過(guò)葉綠素含量可以有效的估算作物營(yíng)養(yǎng)及生理狀態(tài)[33-35]。植物營(yíng)養(yǎng)狀況與其光譜特性密切相關(guān),尤其針對(duì)大田作物的相關(guān)研究一直是精準(zhǔn)農(nóng)業(yè)的研究熱點(diǎn)問(wèn)題[36-39]。光譜反射率隨著作物葉綠素含量的不同,呈現(xiàn)不同光譜響應(yīng)[40]。而對(duì)于具有豐富信息的高光譜數(shù)據(jù)來(lái)講,僅利用單個(gè)波段反射率所建立的光譜指數(shù)可能無(wú)法充分利用光譜數(shù)據(jù),并在一定程度上制約反演模型的精度[41]。基于此,本研究不單利用光譜指數(shù)中的單個(gè)波段反射率,而且考慮了去除邊緣波段的全譜數(shù)據(jù),在對(duì)作物葉片高光譜數(shù)據(jù)進(jìn)行平滑去燥、歸一化預(yù)處理后,選取了紅邊、黃邊、藍(lán)邊、綠邊、吸收谷和反射峰的最大反射率及反射率總和等16種光譜特征參數(shù)對(duì)抽穗期的春小麥葉片葉綠素含量的相關(guān)性進(jìn)行了初步探討,并嘗試性地對(duì)葉綠素含量進(jìn)行光譜建模。

本研究以小型系統(tǒng)性試驗(yàn)田為研究靶區(qū),在獲得作物葉片葉綠素含量及對(duì)應(yīng)的光譜數(shù)據(jù)之后,將16種光譜特征參數(shù)兩兩組合并利用偏最小二乘回歸法對(duì)春小麥葉綠素含量進(jìn)行定量估算。在利用436~780 nm波長(zhǎng)范圍內(nèi)的14個(gè)光譜特征參數(shù)建模過(guò)程中發(fā)現(xiàn),通過(guò)500~670nm吸收深度及歸一化吸收深度建立的模型無(wú)法對(duì)葉綠素含量進(jìn)行有效估算(RPD=0.2、2=0.3、2=0.2,RMSE=4.2 mg/g、RMSE=6.9 mg/g),通過(guò)627~780 nm紅邊最大反射率及反射率總和建立的模型表現(xiàn)最優(yōu)(RPD=1.9、2=0.6、2=0.6,RMSE=3.0 mg/g、RMSE=3.2 mg/g);而利用820~940 nm波長(zhǎng)范圍內(nèi)的2個(gè)光譜參數(shù)建立的模型的RPD達(dá)到了3.2,此外RMSE、RMSE較可見(jiàn)光及紅邊特征參數(shù)分別降低了1.8和4.9 mg/g,2、2則提高至0.8。利用全部光譜特征參數(shù)對(duì)葉片葉綠素含量建模發(fā)現(xiàn),所建立的模型精度(RPD=3.0、2=0.7、2=0.8、RMSE=2.6 mg/g、RMSE=2.3 mg/g)較上述模型(500~670 nm、627~780 nm波段范圍的特征參數(shù))比較高;而對(duì)與上述820~940 nm波段范圍的模型而言,模型的穩(wěn)定性具有一定差異。因此說(shuō)明,利用全部光譜參數(shù)中可能存在對(duì)葉片葉綠素含量敏感程度不顯著的波段,導(dǎo)致對(duì)模型精度及穩(wěn)健性產(chǎn)生一定影響。

已有大量研究利用多種光譜特征指數(shù)結(jié)合實(shí)測(cè)葉綠素含量進(jìn)行光譜定量估算[42]。Zarco-Tejada等[43]學(xué)者結(jié)合轉(zhuǎn)化葉綠素吸收反射指數(shù)(TCARI)及優(yōu)化土壤調(diào)節(jié)植被指數(shù)(OSAVI)作為估算葉綠素含量的最有效光譜指標(biāo),模型精度為(2=0.67,RMSE=11.5g/cm2)。王曉星等[44]利用高光譜數(shù)據(jù)并對(duì)原始光譜反射率及其一階導(dǎo)數(shù)光譜與葉綠素相對(duì)含量進(jìn)行了相關(guān)分析,建立了基于敏感波段、紅邊位置(690~750 nm)、原始及一階導(dǎo)數(shù)的光譜峰度和偏度等參數(shù)的葉綠素估算模型。研究結(jié)果冬小麥冠層光譜曲線特征與葉綠素含量之間有著密切聯(lián)系,基于原始光譜一階導(dǎo)數(shù)偏度和峰度的冬小麥(抽穗期)葉綠素含量估算模型擬合精度最優(yōu),模型精度2達(dá)到了0.8。梁亮等[45]通過(guò)分析18種高光譜指數(shù)對(duì)春小麥(拔節(jié)后至孕穗前)葉綠素的預(yù)測(cè)能力,篩選出可敏感表征葉綠素含量的指數(shù)REP670~780 nm,利用最小二乘支持向量回歸(least squares support vector regression,LS-SVR)算法建立了小麥冠層葉綠素含量反演模型,其模型校正決定系數(shù)2與預(yù)測(cè)決定系數(shù)2分別為0.751與0.722。作物在750~1300 nm波段范圍具有強(qiáng)烈的反射響應(yīng)[46]。本研究所利用的波段范圍(820~940 nm)與前人結(jié)論基本一致,且模型的精度有了一定的提高,并達(dá)到了葉綠素含量高光譜估算精度要求(RPD≥2.0)。此外,在選取光譜特征參數(shù)時(shí),本研究在436~940 nm波長(zhǎng)范圍內(nèi)選取了16種特征參數(shù),不僅僅考慮了單個(gè)波段反射率對(duì)應(yīng)光譜指數(shù)可能未完全反映高光譜信息,結(jié)合考慮整個(gè)波段范圍的光譜數(shù)據(jù),在一定程度上減少有效光譜信息的損失并豐富了特征參數(shù)的波長(zhǎng)選取范圍。

本研究利用小型系統(tǒng)性試驗(yàn)田內(nèi)抽穗期的春小麥葉片實(shí)測(cè)葉綠素含量及其對(duì)應(yīng)的光譜數(shù)據(jù)進(jìn)行定量估算。但由于抽穗期持續(xù)時(shí)間較短,本研究采樣樣本的數(shù)量也相對(duì)有限,所建立的葉綠素含量高光譜估算模型的穩(wěn)健性及普適性有待進(jìn)一步完善。因此,后續(xù)研究將進(jìn)一步擴(kuò)大播種面積及樣本數(shù)量,并針對(duì)分蘗期、拔節(jié)期、孕穗期、抽穗期、成熟期等春小麥重要生育期進(jìn)行進(jìn)一步的細(xì)化研究,完善春小麥葉片高光譜數(shù)據(jù)庫(kù),以便于今后提高模型的準(zhǔn)確性和普適性。

4 結(jié) 論

本研究以新疆大學(xué)阜康實(shí)驗(yàn)基地的春小麥為研究對(duì)象,利用55個(gè)冠層采樣區(qū)的野外高光譜數(shù)據(jù),并結(jié)合實(shí)測(cè)春小麥抽穗期葉綠素含量,分析春小麥抽穗期光譜特征參數(shù)進(jìn)行偏最小二乘回歸(partial least-squares regression,PLSR)建模。得出了以下結(jié)論:

1)對(duì)特定的16個(gè)光譜特征參數(shù)而言,綠邊最大反射率(495~566 nm)與葉綠素質(zhì)量分?jǐn)?shù)的決定系數(shù)最低(2<0.5);決定系數(shù)較高(2≥0.5);相關(guān)性系數(shù)較高(2≥0.5)的光譜特征參數(shù)包括藍(lán)邊最大反射率、藍(lán)邊反射率總和(436~495 nm)、黃邊最大反射率、黃邊反射率總和(566~589 nm)、紅邊最大反射率、紅邊反射率總和(627~780 nm)、綠邊反射率總和(495~566 nm)、820~940 nm反射率總和及最大反射率、500~670 nm歸一化吸收深度和560~760 nm歸一化吸收深度;其中820~940 nm反射率總和與葉綠素含量的相關(guān)性達(dá)到最高,決定系數(shù)2為0.8。

2)利用16個(gè)特征參量進(jìn)行PLSR建模,發(fā)現(xiàn)波段范圍在820~940 nm的最大反射率及反射率總和所建立的PLSR估算模型為最優(yōu)模型,精度參數(shù)分別為2=0.8、RMSE=2.0mg/g、RPD=3.2,減少了其他特征參數(shù)對(duì)模型精度的影響。該模型表現(xiàn)了極好的預(yù)測(cè)能力,為相關(guān)研究及當(dāng)?shù)鼐珳?zhǔn)農(nóng)業(yè)提供科學(xué)支持和應(yīng)用參考。

[1] Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status[J]. International Journal of Remote Sensing, 1994, 15(7): 1459-1470.

[2] 李粉玲,常慶瑞. 基于連續(xù)統(tǒng)去除法的冬小麥葉片全氮含量估算[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(7):174-179.

Li Fenling, Chang Qingrui. Estimation of winter wheat leaf nitrogen content based on continuum removed spectra[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 174-179. (in Chinese with English abstract)

[3] 孫紅,李民贊,趙勇,等. 冬小麥生長(zhǎng)期光譜變化特征與葉綠素含量監(jiān)測(cè)研究[J]. 光譜學(xué)與光譜分析,2010,30(1):192-196.

Sun Hong, Li Minzan, Zhao Yong, et al. The spectral characteristics and chlorophyll content at winter wheat growth stages[J]. Spectroscopy and Spectral Analysis, 2010, 30(1): 192-196. (in Chinese with English abstract)

[4] 姚云軍,秦其明,張自力,等. 高光譜技術(shù)在農(nóng)業(yè)遙感中的應(yīng)用研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(7):301-306.

Yao Yunjun, Qin qiming, Zhang Zili, et al. Research progress of hyperspectral technology applied in agricultural remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(7): 301-306. (in Chinese with English abstract)

[5] 楊建昌,杜永,劉輝. 長(zhǎng)江下游稻麥周年超-高產(chǎn)栽培途徑與技術(shù)[J]. 中國(guó)農(nóng)業(yè)科學(xué),2008,41(6):1611-1621.

Yang Jianchang, Du Yong, Liu Hui. Cultivation approaches and techniques for annual super-high-yielding of rice and wheat in the lower reaches of Yangtze River[J]. China Agriculture Science, 2008, 41(6): 1611-1621. (in Chinese with English abstract)

[6] 林鴻宣,錢惠榮,熊振民,等. 幾個(gè)水稻品種抽穗期主效基因與微效基因的定位研究[J]. 遺傳學(xué)報(bào),996(3):205-213.

Lin Hongxuan, Qian Huirong, Xiong Zhenmin, et al. Mapping of major genes and minor genes for heading date in several rice varieties[J]. Journal of Geneticss & Sgenomics, 996(3): 205-213. (in Chinese with English abstract)

[7] 茹京娜,于洋,董凡凡,等. 小麥抽穗期QTL及其與環(huán)境的互作[J]. 麥類作物學(xué)報(bào),2014,34(9):1185-1190.

Ru Jingna, Yu Yang, Dong Fanfan, et al. Analysis of QTL for heading date and interaction effects with environments in wheat[J]. Journal of Triticeae Crops, 2014, 34(9): 1185-1190. (in Chinese with English abstract)

[8] Yuan Z, Ata-Ul-Karim S T, Cao Q, et al. Indicators for diagnosing nitrogen status of rice based on chlorophyll meter readings[J]. Field Crops Research, 2016, 185: 12-20.

[9] 姚付啟,蔡煥杰,王海江,等. 冬小麥冠層高光譜特征與覆蓋度相關(guān)性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(7):156-162.

Yao Fuqi, Cai Huanjie, Wang Haijiang, et al. Correlation between percentage vegetation cover and hyperspectral characteristics of winter wheat[J]. Transaction of Chinese society for Agriculture Machinery, 2012, 43(7): 156-162. (in Chinese with English abstract)

[10] Blackburn G A. Relationships between spectral reflectance and pigment concentrations in stacks of deciduous broadleaves[J]. Remote Sensing of Environment, 1999, 70(2): 224-237.

[11] Zhao D, Huang L, Li J, et al. A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2007, 62(1): 25-33.

[12] Alabbas A H, Barr R, Hall J D, et al. Spectra of normal and nutrient-deficient maize leaves[J]. Agronomy Journal, 1974, 37(9): 3693-3700.

[13] Hinzman L D, Bauer M E, Cst D. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat[J]. Remote Sensing of Environment, 1986, 19(1): 47-61.

[14] Bell G E, Howell B M, Johnson G V, et al. Optical sensing of turfgrass chlorophyll content and tissue nitrogen[J]. Hortscience, 2004, 39(5): 1130-1132.

[15] Min M, Lee W S, Kim Y H, et al. Nondestructive detection of nitrogen in Chinese cabbage leaves using VIS-NIR spectroscopy[J]. Hortscience A Publication of the American Society for Horticultural Science, 2006, 41(1): 162-166.

[16] Campbell P K, Middleton E M, Mcmurtrey J E, et al. Assessment of vegetation stress using reflectance or fluorescence measurements[J]. Journal of Environmental Quality, 2007, 36(3): 832.

[17] Bannari A, Khurshid K S, Staenz K, et al. A comparison of hyperspectral chlorophyll indices for wheat crop chlorophyll content estimation using laboratory reflectance measurements[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(10): 3063-3074.

[18] Daughtry C S T, Walthall C L, Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000, 74(2): 229-239.

[19] Curran P J, Dungan J L, Gholz H L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine[J]. Tree Physiology, 1991, 7(1/2/3/4): 33-48.

[20] 郭燕,程永政,黎世民,等. 區(qū)域尺度冬小麥葉綠素含量的高光譜預(yù)測(cè)和空間變異研究[J]. 麥類作物學(xué)報(bào),2017,37(7):970-977.

Guo Yan, Cheng Yongzheng, Li Shimin, et al. Hyperspectral- based estimation and spatial variability of chlorophyll contenteof winter wheat in regional scale[J]. Journal of Triticeae Crops, 2017, 37(7): 970-977. (in Chinese with English abstract)

[21] 黃慧,王偉,彭彥昆,等. 利用高光譜掃描技術(shù)檢測(cè)小麥葉片葉綠素含量[J]. 光譜學(xué)與光譜分析,2010,30(7):1811-1814.

Huang Hui, Wang Wei, Peng Yankun, et al. Measurement of chlorophyll content in wheat leaves using hyperspectral scanning[J]. Spectroscopy and Spectral Analysis, 2010, 30(7): 1811-1814. (in Chinese with English abstract)

[22] 羅丹,常慶瑞,齊雁冰,等. 基于光譜指數(shù)的冬小麥冠層葉綠素含量估算模型研究[J]. 麥類作物學(xué)報(bào),2016,36(9):1225-1233.

Luo Dan, Chang Qirui, Qi Yanbing, et al. Estimation model for chloropyll content in winter wheat canopy based on spectral indices[J]. Journal of Triticeae Crops, 2016, 36(9): 1225-1233. (in Chinese with English abstract)

[23] 曾慶敏,劉新平. 天山北坡經(jīng)濟(jì)帶宜耕未利用地開發(fā)潛力分區(qū)及評(píng)價(jià):以新疆阜康市為例[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2016,24(6):819-828.

Zeng Qingmin, Liu Xinping. Evaluation of potential unused land exploitation in northern tianshan mountain economic belt:A case study of fukang city[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6): 819-828. (in Chinese with English abstract)

[24] 張超,孫林,韓留生,等. 新疆阜康地區(qū)徑流及植被覆蓋變化研究[J]. 測(cè)繪地理信息,2016,41(3):79-81.

Zhang Chao, Sun Lin, Han Liusheng, et al. Runoff and vegetation cover change in Xinjiang Fukang[J]. Journal of Geomatics, 2016, 41(3): 79-81. (in Chinese with English abstract)

[25] Wang J, Tiyip T, Ding J, et al. Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative[J]. PloS One, 2017, 12(9): e0184836.

[26] 李衛(wèi)國(guó). 農(nóng)作物遙感監(jiān)測(cè)方法與應(yīng)用[M]. 中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2013.

Li Weiguo. Methods and applications of crop remote sensing monitoring[M]. China Agricultural Science and Technology Press, 2013.

[27] 程萌,張俊逸,李民贊,等. 用于微小型光譜儀的冬小麥抽穗期葉綠素含量診斷模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(增刊1):157-163.

Cheng Meng, Zhang Junyi, Li Minzan, et al. Chlorophyll content diagnosis model of winter wheat at heading stage applied in miniature spectrometer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(Supp.1): 157-163. (in Chinese with English abstract)

[28] Li X, Zhang Y, Bao Y, et al. Exploring the best hyperspectral features for LAI estimation using partial least squares regression[J]. Remote Sensing, 2014, 6(7): 6221-6241.

[29] 覃昌偉. 農(nóng)業(yè)遙感技術(shù)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2017,8-9.

[30] Zhou S, Wang Q L, Jie P, et al. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations[J]. Science China: Earth Science, 2014, 57(7): 1671-1680.

[31] Blackburn G A. Hyperspectral remote sensing of plant pigments[J]. Journal of Experimental Botany, 2007, 58(4): 855.

[32] Yang F, Li J L, Gan X Y, et al. Assessing nutritional status of Festuca arundinacea by monitoring photosynthetic pigments from hyperspectral data[J]. Computers & Electronics in Agriculture, 2010, 70(1): 52-59.

[33] Moran J A, Mitchell A K, Goodmanson G, et al. Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: A comparison of methods[J]. Tree Physiology, 2000, 20(16): 1113.

[34] Zhao D, Huang L, Li J, et al. A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2007, 62(1): 25-33.

[35] 周冬琴,朱艷,楊杰,等. 基于冠層高光譜參數(shù)的水稻葉片碳氮比監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(3):135-141.

Zhou Dongqin, Zhu Yan, Yang Jie, et al. C/N content ratio of rice leaf monitoring based on canopy hyperspectral parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 135-141. (in Chinese with English abstract)

[36] Li F, Gnyp M L, Jia L, et al. Estimating N status of winter wheat using a handheld spectrometer in the North China Plain[J]. Field Crops Research, 2008, 106(1): 77-85.

[37] 李衛(wèi)國(guó),王紀(jì)華,李存軍,等. 冬小麥花期生理形態(tài)指標(biāo)與衛(wèi)星遙感光譜特征的相關(guān)性分析[J]. 麥類作物學(xué)報(bào),2009,29(1):79-82.

Li Weiguo, Wang Jihua, Li Cunjun, et al. Correlation relationship between satellite remote sensing spectral information and eco-physiology indexes of winter wheat at flowering period[J]. Journal of Triticeae Crops, 2009, 29(1): 79-82. (in Chinese with English abstract)

[38] 盧艷麗,白由路,王磊,等. 黑土土壤中全氮含量的高光譜預(yù)測(cè)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(1):256-261.

Lu Yanli, Bai Youlu, Wang Lei, et al. Determination for total nitrogen content in black soil using hyperspectral data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 256-261. (in Chinese with English abstract)

[39] 孫紅,李民贊,張彥娥,等. 不同施氮水平下玉米冠層光譜反射特征分析[J]. 光譜學(xué)與光譜分析,2010,30(3):715-719.

Sun Hong, Li Minzan, Zhang Yane, et al. Spectral characteristics of corn under different nitrogen treatments[J]. Spectroscopy and Spectral Analysis, 2010, 30(3): 715-719. (in Chinese with English abstract)

[40] 姚付啟,張振華,楊潤(rùn)亞,等. 基于紅邊參數(shù)的植被葉綠素含量高光譜估算模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(13):123-129.

Yao Fuqi, Zhang Zhenhua, Yang Runya, et al. Hyperspectral models for estimating vegetation chlorophyll content based on red edge parameter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(13): 123-129. (in Chinese with English abstract)

[41] 王敬哲,塔西甫拉提·特依拜,丁建麗,等. 基于分?jǐn)?shù)階微分預(yù)處理高光譜數(shù)據(jù)的荒漠土壤有機(jī)碳含量估算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(21):161-169.

Wang Jingzhe, Tashpolat·Tiyip, Ding Jianli, et al. Estimation of desert soil organic carbon content based on hyperspectral data preprocessing with fractional differential[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 161-169. (in Chinese with English abstract)

[42] 姜海玲,楊杭,陳小平,等. 利用光譜指數(shù)反演植被葉綠素含量的精度及穩(wěn)定性研究[J]. 光譜學(xué)與光譜分析,2015,35(4):975-981.

Jiang Hailing, Yang Hang, Chen Xiaoping, et al. Research on accuracy and stability if inversing vegetation chlorophyll content by spectral index method[J]. Spectroscopy and Spectral Analysis, 2015, 35(4): 975-981. (in Chinese with English abstract)

[43] Zarco-Tejada P J, Berjón A, López-Lozano R, et al. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy[J]. Remote Sensing of Environment, 2005, 99(3): 271-287.

[44] 王曉星,常慶瑞,劉夢(mèng)云,等. 冬小麥冠層水平葉綠素含量的高光譜估測(cè)[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2016,44(2):48-54.

Wang Xiaoxing, Chang Qingrui, Liu Mengyun, et al. Hyperspectral estimation of chlorophyll content in canopy of winter wheat[J]. Journal of Northwest A&F University: Natural Science Edition, 2016, 44(2): 48-54. (in Chinese with English abstract)

[45] 梁亮,楊敏華,張連蓬,等. 基于SVR算法的小麥冠層葉綠素含量高光譜反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(20):162-171.

Liang Liang, Yang Minhua, Zhang Lianpeng, et al. Chlorophyll content inversion with hyperspectral technology for wheat canopy based on support vector regression algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 162-171. (in Chinese with English abstract)

[46] 馬淏. 光譜及高光譜成像技術(shù)在作物特征信息提取中的應(yīng)用研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2015.

Ma Hao. Application of Spectral and Hyperspectral Imaging Technology in Crop Characteristic Information Extraction[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)

尼加提·卡斯木,師慶東,王敬哲,茹克亞·薩吾提,依力亞斯江·努爾麥麥提,古麗努爾·依沙克. 基于高光譜特征和偏最小二乘法的春小麥葉綠素含量估算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(22):208-216. doi:10.11975/j.issn.1002-6819.2017.22.027 http://www.tcsae.org

Nijat Kasim, Shi Qingdong, Wang Jingzhe, Rukeya Sawut, Ilyas Nurmemet, Gulnur Isak. Estimation of spring wheat chlorophyll content based on hyperspectral features and PLSR model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 208-216. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.027 http://www.tcsae.org

Estimation of spring wheat chlorophyll content based on hyperspectral features and PLSR model

Nijat Kasim1,2, Shi Qingdong1,2※, Wang Jingzhe1,2, Rukeya Sawut1,2, Ilyas Nurmemet1,2, Gulnur Isak1,2

(1.830046;2.830046)

Chlorophyll content is one of the major factors that affect crop growth and crop output, and an important parameter to monitor the stresses and health status of vegetation. Currently the spectral feature parameter is one of the methods that have been widely applied to estimate the chlorophyll content of wheat. In order to provide scientific basis for wheat growth monitoring and agronomic decision-making, the spring wheat canopy chlorophyll content was estimated by using hyper-spectral technology (spectral feature parameters) in this paper. The correlation between hyper-spectral characteristic parameters and chlorophyll content of spring wheat (heading date) was analyzed, and the models for estimating chlorophyll content were established based on spectral feature parameters using partial least squares regression (PLSR) method. Data of chlorophyll content and spectral reflectance of spring wheat were obtained from the experimental plots at Ziniquanzi Town, Fukang City, Xinjiang Uighur Autonomous Region, China in June, 2017. The canopy spectral reflectance and chlorophyll content of spring wheat were measured in the experimental plots. After removing the marginal bands (350-400 and 2 401-2 500 nm) and being smoothed by Savitzky-Golay filter, 16 types of hyper-spectral characteristic parameters (such as red edge, blue edge, green edge, total reflectivity, absorption depth, and normalized absorption depth) were derived from the raw hyper-spectral reflectance data. Thereafter, PLSR was employed to build the hyper-spectral estimation models of chlorophyll content. Next, root mean square error (RMSEand RMSE) and determination coefficient (2and2) for calibration set and prediction set and relative prediction deviation (RPD) were used for accuracy assessment. The results showed that: 1) Among the selected spectral feature parameters, correlation coefficient between the maximum reflectivity of green edge and chlorophyll content of spring wheat is lower than 0.5. Spectral characteristic parameters that have the higher correlation coefficient (2≥0.5) include maximum reflectivity of blue edge, total reflectivity of blue edge (436-495 nm), maximum reflectivity of yellow edge, total reflectivity of yellow edge (566-589 nm), maximum reflectivity of red edge, total reflectivity of red edge (627-780 nm), total reflectivity of green edge (495-566 nm), maximum reflectivity and total reflectivity within 820-940 nm, normalized absorption depth in 560-670 nm and 560-760 nm. The spectral feature parameters which have the highest correlation coefficient with the chlorophyll content are maximum reflectivity and total reflectivity within 820-940 nm, which reach 0.6 and 0.8, respectively. 2) On the 16 characteristic parameters of PLSR regression, the characteristic parameters (the maximum and sum of reflectance in 820-940 nm) have made a great contribution to the PLSR model, reduce the influence of other parameters on the accuracy of the model, have better performance in predicting chlorophyll content in the study area (2=0.8, RMSE=2.3, RPD=3.0), and provide scientific support and reference for other related local research and precision agriculture. To achieve more universal and stable inversion model, the next step is to enlarge the sampling area and the number of samples as much as possible to improve and perfect the spring wheat hyper-spectral database.

model; chlorophyll; spectral analysis; hyper-spectral; spectral feature parameter; PLSR

10.11975/j.issn.1002-6819.2017.22.027

O657.43; S431.9

A

1002-6819(2017)-22-0208-09

2017-08-03

2017-11-09

國(guó)家自然科學(xué)基金(U170320066、41671348)

尼加提?卡斯木,男,維吾爾族,新疆伊寧人,博士生,主要研究方向?yàn)樯鷳B(tài)規(guī)劃與管理。Email:NejatKasim@126.com

師慶東,男,漢族,教授,博士生導(dǎo)師,主要研究方向?yàn)榫G洲生態(tài)學(xué)。Email:shiqingdong@126.com

猜你喜歡
總和春小麥特征參數(shù)
接 水
巧解最大與最小
早春小麥田間管理抓哪些
故障診斷中信號(hào)特征參數(shù)擇取方法
基于特征參數(shù)化的木工CAD/CAM系統(tǒng)
西藏春小麥SSR遺傳多樣性分析
基于PSO-VMD的齒輪特征參數(shù)提取方法研究
我總和朋友說(shuō)起你
草原歌聲(2017年3期)2017-04-23 05:13:49
春小麥復(fù)種大豆高產(chǎn)栽培技術(shù)
冬小麥和春小麥
中學(xué)生(2015年4期)2015-08-31 02:53:50
柳州市| 丹江口市| 张北县| 定结县| 融水| 汝城县| 寿光市| 梅河口市| 承德市| 益阳市| 新建县| 呼和浩特市| 宝丰县| 凤城市| 观塘区| 五华县| 岳普湖县| 丰城市| 渝北区| 阳东县| 清涧县| 兰溪市| 阜阳市| 鄂托克前旗| 临颍县| 化州市| 巨野县| 六安市| 阳泉市| 河北省| 临洮县| 津市市| 龙岩市| 休宁县| 科技| 蕉岭县| 涡阳县| 元谋县| 景泰县| 常州市| 吴忠市|