張 婧,李保平,孟 玲
(南京農(nóng)業(yè)大學植物保護學院/農(nóng)作物生物災(zāi)害綜合治理教育部重點實驗室,江蘇南京 210095)
土壤添加生物質(zhì)炭對黏蟲生長發(fā)育和生殖的影響
張 婧,李保平,孟 玲
(南京農(nóng)業(yè)大學植物保護學院/農(nóng)作物生物災(zāi)害綜合治理教育部重點實驗室,江蘇南京 210095)
為探究土壤添加生物質(zhì)炭對植食性咀嚼式口器害蟲的影響,選用黏蟲為研究對象,設(shè)0、15、30和50 g·kg-1四個土壤添加生物質(zhì)炭處理,對盆栽種植的麥苗接初孵黏蟲幼蟲,觀察和分析幼蟲生長發(fā)育和成蟲生殖力的變化。結(jié)果表明,隨生物質(zhì)炭施用量的增大,黏蟲幼蟲發(fā)育歷期呈線性縮短趨勢,50 g·kg-1生物質(zhì)炭處理下幼蟲發(fā)育歷期為19.0 d,較不添加生物質(zhì)炭處理下降6.5%。黏蟲蛹鮮重隨生物質(zhì)炭添加量增大呈線性減小趨勢,其中50 g·kg-1生物質(zhì)炭處理下雌蟲蛹鮮重為0.28 g,較不添加生物質(zhì)炭處理下降12.5%。施加生物質(zhì)炭對黏蟲的化蛹率(平均69.89%)和羽化率(92.08%)無顯著影響。但隨生物質(zhì)炭施用量的增大,黏蟲產(chǎn)卵量呈線性增大的趨勢,50 g·kg-1生物質(zhì)炭處理產(chǎn)卵量為605粒,較不添加生物質(zhì)炭處理下增加近3.3倍。以上結(jié)果說明,施用生物質(zhì)炭有提高黏蟲生殖潛力的作用。
生物質(zhì)炭;小麥;黏蟲;咀嚼式口器昆蟲;害蟲治理
生物質(zhì)炭是指由生物質(zhì)在限氧或無氧條件下低溫熱解而得到的一種細粒度、多孔性的富碳材料。近年來,生物質(zhì)炭作為一類新型環(huán)境功能材料,在土壤改良、保持土壤肥力、提高作物產(chǎn)量等諸多方面[1-4],以及在溫室氣體減排和環(huán)境污染修復(fù)等方面都展現(xiàn)出應(yīng)用潛力[5-6],已成為當前的研究熱點。
生物質(zhì)炭對土壤以及部分作物性狀會產(chǎn)生影響。生物質(zhì)炭大多呈堿性,施用至土壤后,可以降低土壤酸性,并提高部分養(yǎng)分的有效性[7-9]。生物質(zhì)炭富含碳,因而施用到土壤中可以提高土壤有機碳含量。相對于其他傳統(tǒng)有機肥,生物質(zhì)炭能夠更加穩(wěn)定、顯著地提高土壤中有機碳的含量[10-13]。陽離子轉(zhuǎn)換量可從側(cè)面反映土壤肥力[14],生物質(zhì)炭有顯著增加土壤陽離子交換量的作用[15]。施用適量的生物質(zhì)炭對作物株高有一定的增高作用,可促進水稻莖、葉干物質(zhì)積累,其中低施炭量對莖稈干物質(zhì)積累的促進作用相對明顯[16],葉片葉綠素含量隨著生物質(zhì)炭用量的增加而遞增[17]。
基于生物質(zhì)炭可以改進土壤理化性質(zhì)、微生物組成以及改變植物中關(guān)鍵營養(yǎng)等眾多研究結(jié)果,本研究推測生物質(zhì)炭可能間接影響植物病原物和植食性害蟲。然而迄今有關(guān)生物質(zhì)炭對植物害蟲影響的研究很少。有研究發(fā)現(xiàn),生物質(zhì)炭對病原菌有抑制作用,可減輕土傳病菌鐮刀菌(Fusarium)[18-19]和辣椒疫霉菌(PhytophthoracapsiciLeonian)[20]的侵染;生物質(zhì)炭可減少番茄上螨蟲的侵害[21],抑制稻飛虱的發(fā)育和生殖力[22]。但迄今尚未見有關(guān)土壤添加生物質(zhì)炭對咀嚼式口器植食性害蟲影響的研究報道。
黏蟲具有季節(jié)遷飛習性,食性廣泛,危害小麥、玉米等一百多種農(nóng)作物[23],其對作物造成的危害較大,具有短時間內(nèi)暴發(fā)性危害的特點?,F(xiàn)階段常采取低齡幼蟲期噴灑藥劑與物理誘殺成蟲相結(jié)合對其進行防治[24]。隨著生物質(zhì)炭的大規(guī)模施用,土壤和作物性狀也在發(fā)生著改變。因此,有必要研究生物質(zhì)炭對黏蟲生活史特征的影響。本研究以黏蟲Mythimnaseparata(Walker)(鱗翅目Lepidoptera、夜蛾科Noctuidae)為研究對象,觀察土壤添加生物質(zhì)炭處理下其取食小麥后發(fā)育和生殖力的變化,探究土壤添加生物質(zhì)炭對植食性咀嚼式口器害蟲的影響,以期為此類害蟲的防治提供參考依據(jù)。
供試土壤取自南京市東郊一塊閑置農(nóng)田,為紅棕壤,采樣深度0~15 cm。土壤pH值為7.30,全氮含量為0.09%,有機碳含量為1.17%。將土壤自然風干、粉碎,過2 mm網(wǎng)篩備用。供試生物質(zhì)炭原料為玉米秸稈(南京勤豐秸稈研發(fā)有限公司生產(chǎn))。供試小麥品種為南農(nóng)0686(南京農(nóng)業(yè)大學細胞遺傳研究所提供)。供試黏蟲由河北省農(nóng)科院植物保護研究所提供,在25±1 ℃、相對濕度60%±10%和光暗時間14 h/10 h的養(yǎng)蟲室內(nèi)飼養(yǎng),用主要成分為玉米葉粉等制成的半人工飼料[25]飼喂幼蟲,以10%的蜂蜜水供成蟲補充營養(yǎng),室內(nèi)繁殖多代,選用初孵幼蟲用于試驗。
參考大田生物質(zhì)炭推薦施用量(20~40 t·hm-2),設(shè)4個生物質(zhì)炭添加量處理,即每千克土壤干重添加0、15、30和50 g,以不添加(添加量0 g·kg-1)為對照。將土壤與生物質(zhì)炭混勻后裝盆(直徑6 cm,高10 cm),小麥種子催芽后播種,置于人工智能氣候箱(光周期16L/8D,相對濕度60%~70%,晝夜溫度分別為26和24 ℃)內(nèi)生長,每2 d澆水1次,生長8 ~11 d后接試蟲。挑選同一天孵化的初孵幼蟲單頭移至麥苗葉片上,然后用塑料杯罩住麥苗以防治幼蟲逃逸。每處理重復(fù)60次。麥苗每2 d澆水1次;每24 h觀察1次。當麥苗被食約3/4后,將幼蟲移至另一盆麥苗的葉片上,如此飼養(yǎng)至6齡幼蟲鉆入土中化蛹為止。幼蟲化蛹后按性別單頭稱鮮重(Mittler XS105 Dual Range 分析天平),然后將蛹轉(zhuǎn)移至試管中等待成蟲羽化,逐日觀察成蟲羽化情況。為測定雌蟲的終身生殖力,將雌、雄蛾配對飼養(yǎng)于塑料杯(直徑6 cm、高10 cm)中,杯口用黑色紗布覆蓋,杯內(nèi)懸掛塑料繩供雌蟲產(chǎn)卵,每天提供10%的蔗糖溶液飼喂成蟲,直至成蟲死亡。收集塑料繩并計數(shù)卵量。
用趨勢方差分析(trend ANOVA)的正交對比法(orthogonal contrasts)分別分析各生長發(fā)育和生殖參數(shù)隨生物質(zhì)炭添加量增大的變化趨勢(線性或二次曲線)。對比率變量分析采用二項分布誤差,對整數(shù)數(shù)據(jù)用Poisson分布誤差的廣義線性回歸模型進行分析,對連續(xù)數(shù)值變量用一般線性模型分析。數(shù)據(jù)分析使用R統(tǒng)計軟件(R version 3.2.4)[26]。
生物質(zhì)炭處理對黏蟲幼蟲發(fā)育歷期有顯著影響(Poisson模型,似然比測驗χ2= 16.57,P<0.001),黏蟲幼蟲發(fā)育歷期隨生物質(zhì)炭添加量增大呈線性縮短的趨勢(t=-4.07,P<0.001),從不添加生物質(zhì)炭處理下的20.33±0.16 d縮短到添加高濃度50 g·kg-1處理下的19.00±0.20 d,下降6.5%(圖1)。
生物質(zhì)炭處理對黏蟲蛹重具有顯著影響(一般線性模型,F(xiàn)=13.16,P<0.001),且與黏蟲性別無關(guān)(F=0.09,P=0.77)。隨生物質(zhì)炭添加量的增大,黏蟲蛹重呈線性縮短的趨勢(t=-3.63,P<0.001)。黏蟲雌性和雄性蛹重從不添加生物質(zhì)炭處理的0.320±0.010和 0.323±0.011 g 分別減至高濃度50 g·kg-1處理的生物質(zhì)炭處理對黏蟲幼蟲至成蟲羽化的歷期有顯著影響(Poisson模型,似然比測驗χ2=26.07,P=0.013),且與黏蟲性別有關(guān)(χ2=4.88,P=0.027)。黏蟲發(fā)育歷期隨生物質(zhì)炭添加量的增大呈線性縮短的趨勢(t=-2.463,P=0.015),雌、雄蟲歷期從不添加生物質(zhì)炭處理的31.81±0.32 d和32.39±0.23 d分別縮短到高濃度50 g·kg-1處理下的30.53±0.67 和30.93± 0.44 d,分別縮短了4.02%和4.51% (圖3)。黏蟲的性別對歷期有顯著影響(t=2.209,P=0.027),雄蟲平均歷期(31.73±0.20 d)比雌蟲平均歷期(30.83±0.32 d)延長了0.90 d。
0.278±0.017 和0.279±0.010 g,分別下降13.1%和13.6%(圖2)。
菱形點代表均值,豎柄代表標準誤。
Diamond point and bar are mean±standard error.
圖1黏蟲幼蟲發(fā)育歷期隨生物質(zhì)炭添加量增加的變化趨勢
Fig.1Trendinlarvalduration(egg-to-pupatime)ofMythimnaseparataacrosstheincreasinglevelsofbiocharapplication
菱形點代表均值,豎柄代表標準誤。 Diamond point and bar are mean±standard error.
生物質(zhì)炭處理對黏蟲幼蟲化蛹率沒有影響(Logistic模型,似然比測驗χ2= 4.76,P=0.19)(圖4),對黏蟲羽化率也無顯著影響(Logistic回歸模型,似然比測驗χ2= 1.11,P=0.78)(圖5)。
菱形點代表均值,豎柄代表標準誤。 Diamond point and bar are mean±standard error.
圖4 黏蟲化蛹率隨生物質(zhì)炭添加量增加的變化趨勢
圖5 黏蟲羽化率隨生物質(zhì)炭添加量增加的變化趨勢
生物質(zhì)炭處理對黏蟲產(chǎn)卵量有顯著影響(Poisson模型,似然比測驗χ2= 11.13,P<0.001)。黏蟲產(chǎn)卵量隨生物質(zhì)炭添加量的增大呈線性增大趨勢(t=3.258,P=0.003),從不添加生物質(zhì)炭處理下的142±45粒增加到高濃度50 g·kg-1處理下的605±68粒,增加了326.3%(圖6)。
菱形點代表均值,豎柄代表標準誤。
Diamond point and bar are mean±standard error.
圖6黏蟲終身產(chǎn)卵量隨生物質(zhì)炭添加量增加的變化趨勢
Fig.6Trendinlifetimefecundity(numberofeggslaidperfemaleinalifetime)ofMythimnaseparataacrosstheincreasinglevelsofbiocharapplication
本研究發(fā)現(xiàn),隨生物質(zhì)炭添加量增大,黏蟲幼蟲發(fā)育歷期表現(xiàn)出縮短的趨勢,蛹重呈減輕的趨勢,但雌成蟲產(chǎn)卵量呈明顯的增大趨勢。這些表現(xiàn)與刺吸式口器昆蟲稻飛虱的表現(xiàn)相反,后者在高水平添加生物質(zhì)炭處理下幼蟲生長和成蟲生殖力均明顯降低[22]。昆蟲幼蟲期是積累營養(yǎng)的階段,其發(fā)育歷期長短受多種因素影響而變化。從營養(yǎng)方面看,當食物營養(yǎng)質(zhì)量高時,生長速率提高,發(fā)育歷期縮短;當食物品質(zhì)較差時,生長速率緩慢,發(fā)育歷期延長。由此推測,生物質(zhì)炭處理下小麥營養(yǎng)質(zhì)量對黏蟲幼蟲而言得到了提高,進而縮短幼蟲歷期,而且這種效應(yīng)隨生物質(zhì)炭量增大而增強。但當幼蟲期面臨生存風險時,昆蟲會縮短發(fā)育歷期,提前變態(tài)為成蟲以完成生殖。例如,土壤干旱脅迫可導致黏蟲發(fā)育歷期縮短[27]。Elad 等[21]推測生物質(zhì)炭可能誘導植物的系統(tǒng)抗性,故而也可能導致黏蟲幼蟲歷期縮短。所以,若要理解為何生物質(zhì)炭處理導致黏蟲發(fā)育歷期縮短,有必要進一步研究生物質(zhì)炭影響昆蟲的生理生化機理。
昆蟲蛹重通常作為其適合度的正相關(guān)特征。Leuck等[28]認為,鱗翅目昆蟲的蛹重是衡量其適應(yīng)性的間接指標,蛹越小,昆蟲的適應(yīng)性越差。由此推測,隨添加生物質(zhì)炭量的增大,黏蟲蛹重的緩慢減輕意味著生物質(zhì)炭對黏蟲造成微弱的不利影響,且對雌性黏蟲的影響比雄性略明顯。由于不同處理在重復(fù)間具有較大的變異,需進一步通過增大重復(fù)數(shù)及控制好重復(fù)間的其他干擾因素進行試驗,以揭示生物質(zhì)炭對黏蟲蛹的影響。
本研究觀察到生物質(zhì)炭可促進黏蟲生殖力,需引起關(guān)注。此前研究發(fā)現(xiàn),稻飛虱生殖力在大量添加生物質(zhì)炭處理下大幅降低,可能與生物質(zhì)炭促進水稻對硅的吸收而增強抗蟲性有關(guān)[22],因為土壤添加生物質(zhì)炭可提高水稻植株的硅含量[29],而稻株硅含量的增大可阻礙飛虱對植物細胞的刺吸行為[30]。然而,本研究認為,增加生物質(zhì)炭刺激黏蟲發(fā)育歷期縮短、成蟲生殖力提高的原因有待探究。一種解釋可能是由于生物質(zhì)炭對植物的有益作用,從而促進了黏蟲的生殖,類似施氮肥促進植食性昆蟲的生殖那樣[31]。許多研究發(fā)現(xiàn),施用生物質(zhì)炭可促進植物對多種營養(yǎng)元素的吸收而提高產(chǎn)量[32-33]。故據(jù)此推測,土壤添加生物質(zhì)炭可能通過促進小麥對某種營養(yǎng)元素(如氮)的吸收而促進黏蟲的生殖。因此,有必要進一步通過研究生物質(zhì)炭對小麥營養(yǎng)吸收和利用的影響,進而分析對黏蟲的營養(yǎng)代謝生理生化過程的影響。
致謝:南京農(nóng)業(yè)大學資源和環(huán)境學院潘根興、李戀卿和劉曉雨等提供生物質(zhì)炭及其生產(chǎn)應(yīng)用信息,特此致謝。
[1] HAYES M H B.Biochar and biofuels for a brighter future [J].Nature,2006,443(7108):144.
[2] WOOLF D,AMONETTE J E,STREET-PERROTT F A,etal.Sustainable biochar to mitigate global climate change [J].NatureCommunications,2010,1:56.
[3] LEHMANN J,PEREIRA D A,SILVA J,STEINER C,etal.Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central amazon basin:Fertilizer,manure and charcoal amendments [J].Plant&Soil,2003,249(2):343.
[4] ANTAL M J,GR?NLI M.The art,science,and technology of charcoal production [J].Industrial&EngineeringChemistryResearch,2003,42(8):1619.
[5] JOSEPH S,LEHMANN J.Biochar for Environmental Management:Science and Technology [M].London GB:Earthscan,2009.
[6] SCHMIDT M W I.Biogeochemistry:Carbon budget in the black [J].Nature,2004,427(6972):305.
[7] VAN ZWIETEN L,KIMBER S,MORRIS S,etal.Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility [J].PlantandSoil,2010,327(1-2):235.
[8] NOVAK J M,BUSSCHER W J,LAIRD D L,etal.Impact of biochar amendment on fertility of a southeastern coastal plain soil [J].SoilScience,2009,174(2):105.
[9] MASULILI A,UTOMO W H,SYECHFANI M S.Rice husk biochar for rice based cropping system in acid soil 1.The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan,Indonesia [J].JournalofAgriculturalScience,2010,2(1):39.
[10] DEENIK J L,MCCLELLAN A T,UEHARA G.Biochar volatile matter content effects on plant growth and nitrogen transformations in a tropical soil [C].Western Nutrient Management Conference,2009,8:26.
[11] KIMETU J M,LEHMANN J.Stability and stabilisation of biochar and green manure in soil with different organic carbon contents [J].SoilResearch,2010,48(7):577.
[12] LEHMANN J,DA SILVA JR J P,RONDON M,etal.Slash-and-char:a feasible alternative for soil fertility management in the central Amazon? [C].Proceedings of the 17th World Congress of Soil Science,2002:1.
[13] TENENBAUM D.Biochar:Carbon mitigation from the ground up [J].EnvironmentalHealthPerspectives,2009,117(2):70.
[14] CHENG C H,LEHMANN J,THIES J E,etal.Oxidation of black carbon by biotic and abiotic processes [J].OrganicGeochemistry,2006,37(11):1477.
[15] GLASER B,HAUMAIER L,GUGGENBERGER G,etal.The ‘Terra Preta’ phenomenon:A model for sustainable agriculture in the humid tropics [J].TheScienceofNature,2001,88(1):37.
[16] 張偉明.生物質(zhì)炭的理化性質(zhì)及其在作物生產(chǎn)上的應(yīng)用[D].沈陽:沈陽農(nóng)業(yè)大學,2012:1-11.
ZHANG W M.Physical and chemical properties of biochar and its application in crop production [D].Shenyang:Shenyang Agricultural University,2012:1-11.
[17] 張園營,劉國順,劉宏恩.施用生物質(zhì)炭對煙葉石油醚提取物及致香物質(zhì)的影響[J].江西農(nóng)業(yè)學報,2013,25(5):96.
ZHANG Y Y,LIU G S,LIU H E.Effects of biochar application on petroleum ether extract and aroma constituent of flue-cured tobacco leaves [J].ActaAgriculturaeJiangxi,2013,25(5):96.
[18] MATSUBARA Y,HASEGAWA N,FUKUI H.Incidence ofFusariumroot rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments [J].EngeiGakkaizasshi,2002,71(3):370.
[19] ELMER W H,PIGNATELLO J J.Effect of biochar amendments on mycorrhizal associations andFusariumcrown and root rot of asparagus in replant soils [J].PlantDisease,2011,95(95):960.
[20] 王光飛,馬 艷,郭德杰,等.秸稈生物炭對辣椒疫病的防控效果及機理研究[J].土壤,2015,47(6):1107.
WANG G F,MA Y,GUO D J,etal.Effect and mechanism of straw biochar on disease control ofPhytophthorablightof chilli pepper [J].Soils,2015,47(6):1107.
[21] ELAD Y,DAVID D R,HAREL Y M,etal.Induction of systemic resistance in plants by biochar,a soil-applied carbon sequestering agent [J].Phytopathology,2010,100(9):913.
[22] HOU X,MENG L,LI L,etal.Biochar amendment to soils impairs developmental and reproductive performances of a major rice pestNilaparvatalugens(Homopera:Delphacidae) [J].JournalofAppliedEntomology,2015,139(10):727.
[23] 洪曉月,丁錦華.農(nóng)業(yè)昆蟲學[M].北京:中國農(nóng)業(yè)出版社,2007:122-123.
HONG X Y,DING J H.Agricultural Entomology [M].Beijing:China Agriculture Press,2007:122-123.
[24] LI J H.Occurrence law of armyworm in China and its identification and prevention [J].PlantDiseases&Pests,2010,1(3):31.
[25] 李建成.中紅側(cè)溝繭蜂的擴繁與應(yīng)用技術(shù)//曾繁榮,陳紅印 主編.天敵昆蟲飼養(yǎng)系統(tǒng)工程[M].北京:中國農(nóng)業(yè)科學技術(shù)出版社.2009:209-221.
LI J C.Mass rearing and application of Microplitis mediato[M]//ZENG F R,CHEN H Y.The System Engineering for Rearing Insect Natural Enemies.Beijing:China Agricultural Science and Technology Press,2009:209-221.
[26] R Development Core Team,A language and environment for statistical computing [R]//R Foundation for Statistical Computing,Vienna,Austria,URL http://www.R-project.org/,2016.
[27] 侯佳麗,李保平,孟 玲.小麥干旱脅迫對黏蟲取食及食物利用效率的影響[J].麥類作物學報,2015,35(1):138.
HOU J L,LI B P,MENG L.Effects of drought stress in wheat on consumption and utilization of wheat as food for the oriental armywormMythimnaseperata(Lepidoptera:Noctuidae) [J].JournalofTriticeaeCrops,2015,35(1):138.
[28] LEUCK D B,PERKINS W D.A method of estimating fall armyworm progeny reduction when evaluating control achieved by host-plant resistance [J].JournalofEconomicEntomology,1972,65(2):482.
[29] LIU X,LI L,BIAN R,etal.Effect of biochar amendment on soil-silicon availability and rice uptake [J].JournalofPlantNutrition&SoilScience,2014,177(1):91.
[30] SOGAWA K.The rice brown planthopper:Feeding physiology and host plant interactions [J].AnnualReviewofEntomology,1982,27(1):49.
[31] SCHOONHOVEN L M,VAN LOON J J A,DICKE M.Insect-Plant Biology [M].Oxford:Oxford University Press,2005.
[32] ATKINSON C J,FITZGERALD J D,HIPPS N A.Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:A review [J].PlantandSoil,2010,337(1):1-18.
[33] BIEDERMAN L A,HARPOLE W S.Biochar and its effects on plant productivity and nutrient cycling:A meta-analysis [J].GlobalChangeBiologyBioenergy,2013,5(2):202.
EffectsofBiocharAmendmenttoSoilsonImmatureGrowthandAdultReproductionoftheOrientalArmywormMythimnaseparata(Lepidoptera:Noctuidae)
ZHANGJing,LIBaoping,MENGLing
(College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Insect Pest, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China)
To explore the potential of biochar amendment to soils in influencing chewing insect pests, laboratory experiments were conducted using the oriental armywormMythimnaseparata(Lepidoptera: Noctuidae) as a model species. Biochar was added at the levels of 0, 15, 30 and 50 g·kg-1to soils in the pots planted with wheat. Neonate larvae were individually transferred onto potted wheat seedlings and observed throughout their development. Larval duration showed a linear downward trend across the increasing levels of biochar application, with a decrease rate of 6.5% to 19.0 d at the highest biochar-added level. Additionally, pupal weight showed a linear downward trend across the increasing levels of biochar application, from 0.32 g in the control by a decrease rate of 12.5% to 0.28 g at the highest biochar-added level. Larval pupation rate(92.08%) and adult eclosion rate(69.89%) did not change across the biochar amendment levels. However, lifetime fecundity demonstrated a linear upward trend across the increasing levels of biochar application, from 142 eggs laid per female in the control to 605 eggs at the highest biochar-added level. It is suggested that biochar amendment to soils may improve the reproduction ofM.separata.
Biocharcol; Wheat;Mythimnaseparata; Chewing insects; Pest control
時間:2017-11-14
網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/61.1359.S.20171114.1028.030.html
2017-03-29
2017-05-24
國際重點研發(fā)計劃資助(編號2017YFD0201000)
E-mail:2014102073@njau.edu.cn
孟 玲(E-mail:ml@njau.edu.cn)
S512.1;S435.122
A
1009-1041(2017)11-1512-06